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Abstract

Invariant Risk Minimization (IRM) is an emerg-
ing invariant feature extracting technique to help
generalization with distributional shift. However,
we find that there exists a basic and intractable
contradiction between the model trainability and
generalization ability in IRM. On one hand, re-
cent studies on deep learning theory indicate the
importance of large-sized or even overparameter-
ized neural networks to make the model easy to
train. On the other hand, unlike empirical risk
minimization that can be benefited from overpa-
rameterization, our empirical and theoretical anal-
yses show that the generalization ability of IRM
is much easier to be demolished by overfitting
caused by overparameterization. In this paper, we
propose a simple yet effective paradigm named
Sparse Invariant Risk Minimization (SparseIRM)
to address this contradiction. Our key idea is to
employ a global sparsity constraint as a defense
to prevent spurious features from leaking in dur-
ing the whole IRM process. Compared with
sparisfy-after-training prototype by prior work
which can discard invariant features, the global
sparsity constraint limits the budget for feature
selection and enforces SparseIRM to select the
invariant features. We illustrate the benefit of
SparseIRM through a theoretical analysis on a
simple linear case. Empirically we demonstrate
the power of SparseIRM through various datasets
and models and surpass state-of-the-art methods
with a gap up to 29%.

1. Introduction
In the last decade, deep neural networks (DNNs) have
achieved unprecedented successes in numerous applications,
including but not limited to computer vision (He et al., 2016;
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Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; Sun
et al., 2014) and natural language processing (Bahdanau
et al., 2014; Luong et al., 2015). Most deep learning mod-
els are trained by the Empirical Risk Minimization (ERM)
paradigm, under the I.I.D. assumption that the training and
testing samples are independently drawn from an identi-
cal distribution. However, more and more failure cases of
DNNs (Beery et al., 2018; Geirhos et al., 2020; DeGrave
et al., 2021; Zhang et al., 2022b) are reported in the latest
studies where the I.I.D. assumption is violated in application
due to distributional shifts.

IRM (Arjovsky et al., 2019; Creager et al., 2021; Krueger
et al., 2021; Xie et al., 2020; Chang et al., 2020; Zhang
et al., 2021c;b; Jin et al., 2020) is an emerging learning
paradigm to enable the generalization with distributional
shifts. The key idea of IRM is to learn an invariant feature
representation on the datasets drawn from multiple envi-
ronments, in the sense that based on this representation
one should be able to learn a common classifier working
well in all these environments. Due to the consistent good
performance achieved in these existing environments, the
generalization in new environments with unseen distribu-
tional shifts can be expected, which has been verified by the
promising empirical results (Arjovsky et al., 2019; Krueger
et al., 2021; Xie et al., 2020; Chang et al., 2020; Jin et al.,
2020). However, IRM is found to be less effective when
applied to deep models (Gulrajani & Lopez-Paz, 2020; Lin
et al., 2021). In this work, we argue that the reason is that
there exists a basic and intractable contradiction between
the model trainability and generalization ability in the IRM
paradigm:

• On one hand, to make the model easy to train, we
should use large-sized or even overparameterized
DNNs (Zhang et al., 2021a), i.e., networks with mas-
sive neurons. Empirically, it is observed that such
DNNs are easy to train, while small-sized ones could
easily get stuck at bad local minima, that’s why modern
DNNs are always overparameterized. Theoretically,
recent studies on deep learning theory show that DNNs
behave like convex systems and their loss landscapes
become smoother when the number of the neurons
goes to infinity (Gu et al., 2020; Mei et al., 2018).

• On the other hand, when overparameterized, the gener-



Sparse Invariant Risk Minimization

alization ability of IRM is very easy to be demolished
by over-fitting because of mistakenly using some spu-
rious features. We theoretically proved that, when
overparamterized, unlike that ERM can have good or
better generalization (Zhang et al., 2021a), IRM could
fail even in a simple linear case. It can be expected
that IRM will collapse in more overparameterized deep
neural networks because there are much more param-
eters than a simple linear model. The details can be
seen Section 3.2.

In this paper, we propose a simple yet effective Sparse
Invariant Risk Minimization (SparseIRM) paradigm to ad-
dress contradiction above. Our key idea is to employ a
global sparsity constraint as a defense to prevent spurious
features from leaking into the submodel we work on dur-
ing the whole IRM process. Compared with the sparisfy-
after-training prototype adopted by prior work (Zhang et al.,
2021b), which can discard invariant features misled by the
undetected spurious features, our paradigm successfully sets
up a barrier to spurious and random features with sparsity
constraint throughout training, leading to better generaliza-
tion performance. Specifically, during the training process,
because of our sparsity constraint, the subnetwork we work
on is too small to include all the spurious and random fea-
tures, as the number of these features is always significantly
larger than invariant features. Therefore, the network has
to identify and focus on the invariant features to minimize
the loss function. We provide our understanding of this
phenomenon through theoretical analysis on a simple linear
case (Theorem 1). We validate the superior performance in
defending overfitting through various datasets and models,
and find that we surpass state-of-the-art methods on various
datasets with a gap up to 29%. In addition, we perform
ablation studies to verify that our method is indeed effective
in removing the spurious features in Section 5.3.

The contributions and novelties of this work are summarized
as follows:

• We demonstrate that when overparameterized, the gen-
eralization ability of IRM is easy to be demolished by
overfitting because of mistakenly using some spurious
features (see Section 3.2).

• We propose a sparse invariant risk minimization (Spar-
seIRM) method which enforces sparsity constraint dur-
ing the whole training process and illustrate its benefit
through theoretical analysis in a simple linear case.(see
Sections 4).

• We demonstrate the superiority of our method in over-
parameterized settings and show that the improvement
over state-of-the-art methods can be up to 29% in ac-
curacy (see Section 5).

Notations: Let ∥ · ∥1 and ∥ · ∥2 be the ℓ1 and ℓ2 norm of
a real valued vector, respectively. We denote 1n/0n ∈ Rn

to be a vector with all components equal to 1/0 with length
n. In addition, {0, 1}n is the set of n-dimensional vectors
with each coordinate valued in {0, 1}. u ◦ v denotes the
element-wise product between two vectors.

2. Related Work
2.1. Causality and invariance

IRM (Arjovsky et al., 2019) is proposed to learn the features
invariant among different environments based on the invari-
ance priciple first raised in (Peters et al., 2016) which aims
to build model on the direct cause of target. Numerous vari-
ants have been developed recently in the community. (Ahuja
et al., 2020a; Jin et al., 2020) provides new perspectives by
introducing game theory and regret minimization into in-
variant risk minimization. (Krueger et al., 2021; Xie et al.,
2020; Chang et al., 2020; Xu & Jaakkola, 2021; Xu et al.,
2020; 2022) propose more effective methods motivated by
penalizing the variance of losses among environments, esti-
mating the violation of invariance, improving transferability
among environments, etc. (Wang et al., 2022) proposes
to reweight the training samples based on influence func-
tion. (Zhou et al., 2022b) reweights the training samples to
improve out-of-domain generalization. (Lin et al., 2022a)
shows that IRM suffers from the overfitting problem caused
by overparameterized neural networks. There are also some
analyses concerning the sufficiency of invariance principle
(Ahuja et al., 2021) and the relationship of IRM to out-
of-distribution generalization ability based on discrepancy
measures (Zhang et al., 2021c). Another line of works try to
learn invariant features when explicit environment indices
are not provided (Creager et al., 2021; Liu et al., 2021b;a;
Lin et al., 2022b; Xu et al., 2021; Zhang et al., 2022a). (Lin
et al., 2022b) proposes a mini-max framework based on aux-
iliary information that can provably infer the environment
indexes and learn invariance.

From the theoretical perspective, (Arjovsky et al., 2019;
Rosenfeld et al., 2020; Chen et al., 2021c) investigate IRM’s
dependence on the environment numbers when the model
is linear. (Chen et al., 2021c) proposes to take advantage
of the intrinsically low dimensional structure of spurious
features to identify the invariant features with logarithmic
environments. (Rosenfeld et al., 2020) also studies the
performance of IRM when applied to non-linear models.
(Kamath et al., 2021) analyzes the success and failure cases
of IRM in different scenarios and (Ahuja et al., 2020b)
compares the sample complexity of IRM with ERM. In this
paper we want to investigate the effectiveness of enforcing
sparsity in improving generalization performance of IRM.
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2.2. Sparsity in Deep Neural Networks

In the recent years, sparsity (Han et al., 2016) has been
introduced into DNNs to improve the inference efficiency
or reduce the model size. The key idea(Han et al., 2016;
Kusupati et al., 2020; Yuan et al., 2020b;a; Lym et al., 2019;
Zhou et al., 2021b; Zou et al., 2019) is to identify and re-
move unimportant weights from the neural networks during
or after training by developing some proper pruning rules.
The most typical rule is based on the weight magnitude
and some others are learning based. The empirical results
demonstrate that one can reduce the model size and improve
the inference efficiency significantly with slight or even
negligible loss on performance. This makes it possible to
deploy modern DNNs on the devices with limited computa-
tional and memory budget. Most of the existing methods are
developed for the neural networks trained by ERM in the
I.I.D. scenarios. In this work, we will introduce sparsity into
the IRM training to boost the generalization performance.

2.3. Overparameterized Deep Neural Networks

Modern neural networks are always overparameterized (He
et al., 2016; Simonyan & Zisserman, 2015), that is, the
number of the trainable parameters in them is always sig-
nificantly larger than the training dataset size. They can
be trained easily to fit a random labeling of the training
data (Zhang et al., 2021a). However, in the applications of
I.I.D. scenario trained with ERM, we repeatedly observed
that such networks can always be trained more easily and
generalize better than the small-sized networks, which can
get stuck in bad local minima. That’s why the community
is continuing exploring larger-sized networks. Latest the-
oretical studies (Gu et al., 2020; Mei et al., 2018; Jacot
et al., 2021; Kawaguchi et al., 2019) investigated the above
phenomenon of overparameterized neural networks and sug-
gested that DNNs behave like convex systems and their loss
landscapes become smoother when the number of the neu-
rons goes to infinity, which makes it easy to train and be
able to avoid bad local minima. In this paper, we show that
unlike in the applications of I.I.D. scenario, overfitting can
be a catastrophic problem of overparamertized networks in
the applications where distributional shifts occur.

3. Investigating the Effects of
Overparameterization on IRM

In this section, we first present the formulation of IRM and
then we investigate the effects of overparameterization on
the generalization of IRM.

3.1. Preliminaries

Consider a set of E environments E := {e1, e2, . . . , eE}
in the sample space X × Y with different joint distribu-

tions Pre(x,y), where e ∈ E , X and Y are the input and
target spaces, respectively. Let Etr ⊂ E be the training en-
vironments and De := {(xe

i ,y
e
i )}

ne
i=1 be the data set drawn

from e ∈ Etr with ne being data set size. Based on these
training data sets, the problem is to learn a robust model
f(·;w) : X −→ Y , in the sense that it can predicts y well
when given x for all e ∈ E including the unseen environ-
ments E \ Etr, where w is the parameters of f .

IRM first formulates the predictor f(·;w) as a composite
function of g(·; Φ) and h(·;v), i.e., f(·;w) = h(g(·; Φ);v),
where w = {v,Φ} are the trainable parameters. Here,
g(·; Φ) : X → H maps X to the representation space H
to extract invariant features among Etr. h(·;v) : H → Y
is the classifier, which is simultaneously optimal for all
training environments. Existing IRM methods learn g(·; Φ)
and h(·;v) by solving the following minimization problem:

min
w
L(w) :=

∑
e∈Etr

Re(w) + λJ (w), (1)

whereRe(w) = 1
ne

∑ne

i=1 ℓ(f(x
e
i ,w),ye

i ) and ℓ is the loss
function. J (w) is the regularizer encouraging f(·;w) to
be optimal in all Etr. Different methods can have different
J (w). Two representative IRM methods IRMv1 (Arjovsky
et al., 2019) and REx (Krueger et al., 2021) adopt the fol-
lowing two regularizers:

J (w) :=
∑
e∈Etr

∥∇vRe(w)∥22, (J-IRMv1)

J (w) := V[Re(w)], (J-REx)

where V[Re(w)] is the variance of the losses Re(w) in
Etr. Intuitively, to encourages f(·;w) to be simultaneously
optimal, the former enforces the gradients∇vRe(w) to be
0, and the later reduces the loss variance to be 0.

3.2. Analysis of Overparamterizated IRM in a Linear
Case

In this section, we will show the difficulty of IRM to learn
invariant features with a overparamterized linear model. We
consider a anti-causal linear data generation procedure simi-
lar to (Arjovsky et al., 2019; Ahuja et al., 2020a). We will
show IRM can struggle in such a simple linear case, not to
mention the case with the overparameterized deep neural
networks. Different from existing theoretical analysis on
IRM (Arjovsky et al., 2019; Rosenfeld et al., 2020) that
assume infinite samples are accessible, we consider the case
that the model is with access to limited samples. Further,
we consider the existence of huge amount of random fea-
tures (Gaussian noise) apart from the invariant and spurious
features, which is a direct consequence of model overparam-
eterization (Jacot et al., 2018; Sagawa et al., 2020).

[Settings]. Suppose we have two training environments,
i.e., Etr = {e1, e2} and denote xe to be the input feature of
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environment e ∈ Etr, which is a concatenation of the invari-
ant feature xe

inv ∈ Rdinv , the spurious xe
s ∈ Rds and the

random feature xe
r ∈ Rdr , i.e., xe := [xe

inv,x
e
s,x

e
r] ∈ Rd.

We consider a anti-causal setting as (Arjovsky et al., 2019;
Rosenfeld et al., 2020) (Noticeably, some of our results,
e.g., Proposition 1 and Corollary 1, can be immediately ex-
tended to more general data generation process). The data
is generated as follows:

ye = γ⊤xe
inv + ϵinv,

xe
s = ye1s +αe ◦ ϵs

xe
r = ϵr,

where e ∈ Etr, ϵinv, ϵs and ϵr are independent random
noise that follows sub-Gaussian distributions with zero
mean and bounded variance. The label ye is generated from
the invariant feature xe

inv with a fixed vector γ ∈ Rdinv

that is invariant in ∀e ∈ Etr. The spurious feature xe
s is

generated from ye by the non-invariant vectors αe ∈ Rds

that depend on the environment e. More detailed setting are
placed in appendix due to space limitation.

We aim to learn a linear model to predict y based on x. To
be precise, the predictor f(·;w) can be expressed as:

f(x;w) = (Φ ◦ x)⊤v + b, (2)

where Φ ∈ {0, 1}dinv+ds+dr is a binary vector to perform
feature selection . v ∈ Rdinv+ds+dr is the parameter of
the linear function on the top of Φ and ◦ stands for the
element-wise product operation. We also use Φ(x) and
Φ ◦ x interchangeably in this example’s analysis when it is
clear from the context. Our analysis focuses on IRMv1 as an
example, withRe(w) = 1

ne

∑ne

i=1(y
e
i − (Φ ◦xe

i )
⊤v− b)2.

We denote the L̂(Φ) as loss of a given Φ when v is solved
optimally, L̂(Φ) := minv L(w).

The ideal feature selector is Φinv = [1dinv ,0ds+dr ], merely
selecting the invariant feature xinv and discarding spurious
features xs and random features xr. IRM learns w by
minimizing L(w), therefore, it can finally find the ideal
feature selector Φinv if and only if the following condition
holds

L̂(Φinv) < L̂(Φ),∀Φ ̸= Φinv. (3)

The proposition below shows that the above condition (3)
does not hold in the following conditions:

Proposition 1. (Failure of IRM in Overparameterization
Region). If dinv + ds + dr > ne1 + ne2 , then

L̂(Φall) = 0 ≤ L̂(Φinv), (4)

where Φall = 1dinv+ds+dr .

Proposition 1 demonstrates that Φall that includes all the
spurious and noisy features achieves smaller or equal loss

than Φinv, which implies that IRM can not identify the in-
variant features. Notably, Proposition 1 does not impose any
constraint on the structure of environments, which further
indicates that whatever structure of environments (Arjovsky
et al., 2019; Rosenfeld et al., 2020) can not rescue IRM as
long as overparametrization occurs.

The following corollary demonstrates that significant overpa-
rameterization can completely demolish the generalization
of IRM.

Corollary 1. (Worse Case) If ds + dr > ne1 + ne2 , then

L̂(Φall) = L̂(Φsr) = 0 ≤ L̂(Φinv) (5)

where Φsr = [0dinv ,1ds+dr ].

Corollary 1 shows that if the model is significantly overpa-
rameterized, e.g., we have massive bad (spurious or random)
features such that ds + dr > ne1 + ne2 , then the objective
funtion L̂(w) can be reduced to 0 when predictor f(·,w)
purely relies on the spurious and random features. This
means that a totally wrong model could be learned.

[Empirical Verification]. Figure 1 presents the training and
testing accuracy of ERM, IRM (i.e., IRMv1) and Oracle
(ERM trained on datasets without spurious features) on
ColoredMNIST. We can see that as the hidden dimension
increases, the training and testing accuracy of ERM and
Oracle increases steadily. However, the testing accuracy of
IRM decreases while its training accuracy increases. This
verifies that IRM is indeed much easier to be demolished by
overfitting originated from overparameterization.
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Figure 1. The overparametrization effects on IRM. The perfor-
mance of IRM drops as the model sizes become larger after hidden
dimension is larger than 160.

4. Sparse Invariant Risk Minimization
Below, we present our SparseIRM framework and give its
theoretical properties to show its superiority.

4.1. SparseIRM Framework

Sparsity is a natural idea to promote generalization ability.
The previous work (Zhang et al., 2021b) applied lottery
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Figure 2. The flow charts of SparseIRM (top line) and the sparsify-after-training method MRM (Zhang et al., 2021b) (bottom line). The
block filled with grey indicates the selected feature and the unfilled block indicates the unselected feature. Because the subnetwork
we work on is too small to include all the spurious and random features due to sparsity constraint, SparseIRM is enforced to select the
invariant features to minimize the loss function. MRM first performs dense training and little invariant features selected, making it difficult
to recall invariant features back into the subnetwork.

ticket hypothesis on IRM and preliminarily verified the suc-
cess of pruning-after-training in improving the generaliza-
tion ability of IRM in some cases, while earlier discussions
in Proposition 1 stresses the catastrophic pitfalls under the
overparameterized settings. That is, Φ = [0dinv ,1ds+dr ] af-
ter fully trained. In this scenario, the pruning methods (e.g.,
weight magnitude based rules (Han et al., 2016)) would
discard the component 0dinv in Φ permanently and will
continually work on the model consisting of only spurious
or random features, which is illustrated in the bottom line
of Fig 2. Finding lottery tickets over such structure will
only lead to failure in achieving any performance boost in
generalization.

To avoid such catastrophic pitfalls, we promote our Spar-
seIRM framework. Its key idea is to employ a sparsity
constraint during the whole training process as a defense to
prevent the spurious and random features from leaking into
the subnetwork we work on. That is, in our framework, we
concurrently perform invariant risk minimization and sparse
training at the same time (Fig 2). Intuitively, during the
training process, because of the sparsity constraint, the sub-
network we work on is too small to include all the spurious
and random features, as the number of these features is al-
ways significantly larger than invariant features. Therefore,
to achieve smaller loss, the network has to identify and focus
on the invariant features. We adopt the latest state-of-the-art
sparse training method to solve our sparse invariant risk
minimization problem. In fact, our SparseIRM framework
can be integrated with most sparse training methods flexibly,
and the specific choice is not the main contribution of this
work.

To be precise, we first formulate our sparse invariant risk

minimization problem as follows:

min
w,m

L({v,m ◦ Φ}) (6)

s.t. w ∈ Rdw ,m ∈ {0, 1}dΦ , ∥m∥1 ≤ K,

where we associate each Φi with a binary mask mi, K is
used to control the total model size. dw and dΦ are the
dimensions of w and Φ, respectively. Due to the discrete
nature of variable m, the problem (6) is hard to solve. Fol-
lowing (Zhou et al., 2021b), by reparameterizing mi to be a
independent Bernoulli random variables with si to be 1 and
1− si to be 0, problem (6) can be relaxed into:

min
w,s

Ep(m|s) L({v,m ◦ Φ}) (7)

s.t. w ∈ Rdw , s ∈ S := {s ∈ [0, 1]dΦ : 1⊤s ≤ K}.

We adopt the projected SGD with Gumbel-Softmax (Zhou
et al., 2021b) to solve this minimization problem. Detailed
algorithm description is placed in the appendix due to space
limitation.

4.2. Understanding the Benefits of SparseIRM through
Theoretical Analysis

In this section, we present our understanding on the working
mechnism of SparseIRM in the same linear model in Section
3.2. We first impose a sparsity constraint on the problem:

min
v,Φ
L({v,Φ}) (8)

s.t. v ∈ Rdv ,Φ ∈ {0, 1}dΦ , ∥Φ∥1 ≤ K.

In fact, the problem above is exactly a specific instance
of problem (6). The detailed reason can be found in the
appendix.

For problem (8), we have the following theorem:
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Figure 3. Comparison of MLP on MNIST and MNISTFull with varying hidden dimensions and dataset sizes. The first row indicates
comparisons on IRMv1 (Arjovsky et al., 2019) and the second row indicates comparisons on REx (Krueger et al., 2021). SparseIRM
successfully deals with the serious overfitting problem in IRM and MRM, leading to a gap of up to 40%.

Theorem 1. Under assumptions specified in Appendix B.6.2,
assume ne1 = ne1 = n, if n > Q1 + Q2 ln(d/δ) and
choosing K = dinv , then with probability at least 1− δ the
following inequality holds:

L̂(Φinv) < L̂(Φ),∀ Φ ̸= Φinv and ∥Φ∥1 ≤ K, (9)

where Q1 and Q2 are constants specified in the appendix.

Theorem 1 indicates that in the linear case, SparseIRM can
provably find the invariant features as long as the number of
the data samples is larger than a logarithmic term of spurious
and random features. The intuition behind Theorem 1 is
that, the sparsity constraint limits the number of features to
be selected, in which way any combinations of spurious or
random features not exceeding the constraint will only lead
to a larger loss. In this way, only a feature mask with focus
only on invariant features will lead to the minnimal loss.

We would like to point out that although in Theorem 1 we
choose K as dinv , we find that our algorithm is not sensitive
to K in the empirical evaluation.

5. Experiment
In this section, we conduct a series of experiments on bench-
marks which are widely-used in latest studies (Arjovsky
et al., 2019; Ahmed et al., 2020) to justify the superiority of
our SparseIRM. We divide the experiments into three parts.
In part one, we conduct detailed experiments on multi-layer-
perceptrons (MLP) with varied hidden dimensions on two

datasets ColoredMNIST (Arjovsky et al., 2019) and Full-
ColoredMNIST (Ahmed et al., 2020) with varying dataset
sizes. In part two, we conduct more overparameterized ex-
periments on large-sized model ResNet-18 (He et al., 2016)
on CIFARMNIST and ColoredObject datasets. In part three,
we conduct ablation studies to verify the effectiveness of
SparseIRM in removing spurious features. Detailed experi-
mental configurations are placed in appendux due to space
limitation.

Table 1. Illustration of each dataset. C/FCMNIST stands for Col-
oredMNIST and FullColoredMNIST. Invariant and Spurious stand
for the invariant and spurious features, respectively. The spurious
features have strong correlations with the labels, as shown in Train-
ing samples. The correlations are reversed in the Testing samples
to simulate the distributional shift.

Dataset Invariant Spurious Training Testing

C/FCMNIST Digit Color

ColoredObject Object Background

CIFARMNIST CIFAR MNIST

The datasets and experimental settings adopted in our ex-
periments align with common practice in previous works
on IRM (Arjovsky et al., 2019; Krueger et al., 2021). In all
the four datasets, the labels are generated from the invari-
ant features. The spurious features have strong correlations
with the labels in the training set but the correlation reverses
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Table 2. Comparison of MLP on ColoredMNIST50000 and FullColoredMNIST50000 with varying hidden dimensions.

Dataset ColoredMNIST50000 FullColoredMNIST50000

Dim 64 160 256 390 512 640 64 160 256 390 512 640

Oracle 72.62 72.94 73.00 73.01 74.17 74.52 76.38 76.61 76.12 75.80 75.64 75.72

ERM 14.87 20.16 21.27 22.44 22.85 22.57 25.25 26.27 27.50 27.67 27.93 28.10

SparseERM 15.03 20.22 22.51 23.42 22.97 23.51 26.59 28.92 29.15 28.71 28.43 30.11

IRM 59.80 68.50 66.09 63.24 61.86 60.21 56.36 63.36 64.97 60.62 59.75 57.51

IRMV1 MRM 62.02 68.33 68.93 69.22 69.65 69.32 62.5 64.69 65.49 62.23 59.47 55.91

SparseIRM 63.49 69.95 71.06 72.48 73.10 73.61 65.06 67.30 68.24 68.88 69.20 69.47

IRM 58.38 68.75 69.46 68.84 62.38 59.11 46.08 55.59 60.22 62.83 64.18 60.96

REx MRM 63.59 69.19 70.19 70.19 69.85 68.34 53.44 59.33 66.77 67.08 66.53 61.79

SparseIRM 63.60 69.78 70.87 71.09 71.40 71.84 63.50 71.26 71.54 71.61 72.37 72.83

in the testing set. In each dataset there exist two training
environments and one testing environment with different
correlations. We combine the correlations of two training
environments and one testing environment into a tuple. La-
bel noise is added to the datasets to make the task more
challenging (Arjovsky et al., 2019; Zhang et al., 2021b).

To demonstrate the superiority of our SparseIRM method,
we compare with standard empirical risk minimization
(ERM), sparse empiricial risk minimization without IRM
loss penalty (SparseERM), two classic invariant risk min-
imization methods IRMv1 (Arjovsky et al., 2019) and
REx (Krueger et al., 2021), the sparsify-after-training
method MRM (Zhang et al., 2021b) and state-of-the-art
method BayesianIRM (Lin et al., 2022a) which introduces
Bayesian Inference into IRM. We include ERM trained
on datasets without spurious features to serve as an upper
bound (Oracle).

5.1. MLP on ColoredMNIST/FullColoredMNIST

The MLP consists of three hidden layers and the details of
the structure is given in appendix. The hidden dimensions
vary in the range [64, 640] and training dataset sizes vary
in {20000, 50000}. We add a number to the end of the
dataset name to indicate the training set size. Intuitively,
the larger hidden dimensions and smaller training set sizes,
the more overparameterized the setting is. Table 2 and Fig-
ure 3 presents the Top-1 testing accuracy of Oracle, ERM,
SparseERM, IRM , MRM and SparseIRM with varying hid-
den dimensions and dataset sizes. We achieve the following
observations:

1. SparseIRM largely surpasses MRM and IRM with an
evident threshold, leading to a gap of up to 40%. The
gap becomes larger when the setting is more overpa-
rameterized, i.e., when the hidden dimension goes to

640 and dataset number is 20000.

2. IRM suffers from the overfitting problem caused by
overparameterization seriously. Take the setting of
IRMv1 on ColoredMNIST20000 for example, the per-
formance gap incurred by overparameterization comes
up to 27% when comparing the accuracy at 160 and
640 hidden dimensions.

3. MRM preliminarily deals with the overfitting prob-
lem caused by overparameterization while still can-
not achieve satisfactory performance when the setting
becomes more overparameterized. Take the setting
of IRMv1 on FullColoredMNIST20000 for example,
the performance gap incurred by overparameterization
comes up to 15% when comparing the accuracy at 256
and 640 hidden dimensions.

4. SparseIRM solves the overfitting problem caused by
overparameterization effectively. SparseIRM is resis-
tant to the changes in hidden dimensions. Specifically,
the Top-1 test accuracy even goes up steadily with the
increment of hidden dimensions. In the experiment,
we find that we effectively solves the the contradiction
between model trainability and generalization ability.

5.2. ResNet18 on ColoredObject/CIFARMNIST

In this section, we evaluate the performance of SparseIRM
in extremently overparameterized settings. Table 3 reports
the detailed Top-1 testing accuracy on ResNet-18 on Colore-
dObject and CIFARMNIST. We find that MRM collapsed at
the ColoredObject dataset and achieves little performance
boost in CIFARMNIST. The collapse of MRM can be ex-
pected, as from the previous experiments on relatively small-
sized MLP, the perfomance of MRM drops quickly when
hidden dimension increases. When the paramerter size
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Table 3. Comparison of Top-1 Test Accuracy on ResNet-18 on
ColoredObject and CIFARMNIST.

Dataset ColoredObject CIFARMNIST

Oracle 87.9± 0.3 83.7± 1.5

ERM 51.6± 0.5 39.5± 0.4

SparseERM 54.4± 0.4 40.1± 0.8

BayesianIRM 78.1± 0.6 59.3± 0.8

IRM 72.5± 2.3 51.3± 3.0

IRMv1 MRM 58.4± 0.9 56.7± 2.3

SparseIRM 87.4 ± 0.6 63.9 ± 0.4

IRM 73.8± 1.3 50.1± 2.2

REx MRM 55.7± 2.9 52.6± 1.5

SparseIRM 80.3 ± 1.1 62.7 ± 0.6

comes up to over ten million parameters in ResNet-18, the
setting becomes extremely overparameterized. Therefore
MRM selects massive spurious and random features during
the first dense training process and then mistakenly discards
invariant features misled by the spurious and random fea-
tures, finally making the model collapsed.

SparseIRM generally beats the baselines by a large mar-
gin and achieves striking results approaching the Oracle in
IRMv1 in ColoredObject dataset. These results validate the
effectivenss of our SparseIRM method in extremely overpa-
rameterized ResNet-18 settings.

5.3. Abalation Studies

In this section, we would like to explicitly verify whether
the spurious features are removed by our SparseIRM in
previous experiments through two experiments. In the first
experiment, the idea is to predict the spurious features from
the representation. If it cannot predict the spurious features
well, it means that the extracted feature representations con-
tain no information about spurious features. Therefore our
claim is verified. In the second experiment, we visualize
the difference of learned feature representations by merely
flipping the value of spurious features, in order to demon-
strate the little influence of spurious features to our learned
representations. The MLP model is learned in the setting
with 640 hidden dimensions and ColoredMNIST50000 and
we take the IRMv1 for example.

[Predicting the Spurious Features from the Represen-
tations] We generate a ColoredMNIST dataset with 50%
correlation across training and testing environments and
then obtain the extracted feature representations by feed-
ing images into the learned MLP model. We train a new
two layer perceptron network to predict the color based on

the extracted representations. Table 4 presents the training
and testing accuracy of the color prediction problem and
we find that the IRM and MRM method can still predict
the color well on the training set and generalize well on
testing set, with accuracy approaching 90% percent. This
implies that there still exists information about the color
in their learned representations. In strikingly contrast, our
SparseIRM achieves nearly optimal performance (both 50%
accuracy in training and testing set) in the color prediction
task, that is, no meaningful information concerning spurious
features is preserved in the learned MLP model. This is con-
sistent with our claim that our SparseIRM can remove the
spurious features successfully through the sparsify-during-
training process.

Table 4. Training and testing accuracy of the color prediction prob-
lem. SparseIRM achieves nearly optimal performance demonstrat-
ing that no information about spurious features exists in learned
representations.

Dataset Training Testing

IRM 89.1± 0.3 89.2± 1.9

MRM 82.8± 1.1 83.4± 0.4

SparseIRM 50.3 ± 0.8 50.0 ± 0.7

[Visualize Difference of Feature Representations by Flip-
ping Spurious Features] We randomly sample a image I
from the ColoredMNIST testing set. We then flip the spu-
rious feature color of I and denote it as I

′
. We feed I and

I
′

into the learned MLP model and then plot absolute value
of difference of feature representations. From Figure 4, we
find that the difference of extracted representations of im-
ages with different colors is largely suppressed through our
SparseIRM network. In contrast, for the baselines, the dif-
ference of extracted feature representations of images with
different colors is still very large considering the relatively
brighter color of the matrix. This means that the models
learned by IRM and MRM can still be affected by spurious
features, while our SparseIRM method is invariant to spuri-
ous features, verifying its success in removing the spurious
features through the sparsify-during-training process.

6. Limitations
In our method, we adopt the weight-level sparsity, which is
difficult to be efficiently implemented in the general deep
neral network training platforms, such as TensorFlow and
PyTorch, to accelerate the training process. In the current
stage of IRM study, the training speed is not a main issue
as the dataset size is not too large. We will explore efficient
training methods (Yuan et al., 2020b; Zhou et al., 2021a;
Chen et al., 2021a) in the future .
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Figure 4. Comparison of absolute value of difference of feature
representations by flipping spurious features. The dimension of
feature representation 640 and we reshape it into 32×20 matrix
for better visualization.

7. Conclusion
In this paper, we propose an effective sparse invariant risk
minimization method named SparseIRM to address the over-
fitting problem in IRM originated from overparameteriza-
tion. We provide some theoretical results to demonstrate the
appealing properties of SparseIRM over the existing meth-
ods. Empirically we achieve surprisingly high performance
on various datasets and vividly verify the effectiveness of
our SparseIRM in removing spurious features in ablation
studies.
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Supplemental Material: Sparse Invariant Risk Minimization
This appendix can be divided into 6 parts. To be precise,

• In Section A, we give detailed descriptions of four datasets.

• In Section B.1, we give more discussion about our theoretical analysis in this work.

• In Section B.2, we verify our claim in Line 512 that Problem (8) is a specific instance of Problem (6).

• In Sections B.3 to B.6, we present the proofs of the three theorems in the main text.

• In section C, we present our detailed algorithm for solving SparseIRM.

• In Section D, we give the experimental configurations.

• In Section E, we provide some additional experimental results .

• In Section F, we present discussions on future works.

A. Dataset Details
ColoredMNIST (Arjovsky et al., 2019). It contains images from MNIST and the images are labeled as 0 or 1. Each image
is attached with a color as the spurious feature. Correlation tuple is (0.9, 0.8, 0.1). Noise ratio is 25%.

FullColoredMNIST (Ahmed et al., 2020). It extends ColoredMNIST to 10 classes. Correlation tuple is (0.999, 0.7, 0.1).
Noise ratio is 20%.

ColoredObject (Ahmed et al., 2020; Zhang et al., 2021b). It is constructed by extracting 8 classes of objected from
MSCOCO and put them onto colored backgrounds. Correlation tuple is (0.999, 0.7, 0.1). Noise ratio is 5%.

CIFARMNIST (Shah et al., 2020; Lin et al., 2021). It is constructed by concatenating images of CIFAR10 with MNIST.
The CIFAR images are the invariant features and the MNIST images are the spurious features. Correlation tuple is
(0.999, 0.7, 0.1). Noise ratio is 10%.

Table 5. Illustration of each dataset. C/FCMNIST stands for ColoredMNIST and FullColoredMNIST. Invariant and Spurious stand for the
invariant and spurious features, respectively. The spurious features have strong correlations with the labels, as shown in Training samples.
The correlations are reversed in the Testing samples to simulate the distributional shift.

Dataset Invariant Spurious Training Testing

C/FCMNIST Digit Color

ColoredObject Object Background

CIFARMNIST CIFAR MNIST

B. Proofs
B.1. More Discussions on Our Theoretical Analysis

In this paper, we analyze the theoretical properties of our method through a linear model for the following considerations:
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• Our main motivation is to show the superiority of our method over the baseline MRM (Zhang et al., 2021b). We show
that, even for the simple linear case, MRM can be demolished by overfitting caused by overparameterization. Thus, the
superiority of our method over MRM in addressing overfitting is verified.

• We would like to show some intuitive insights of our method instead of presenting thorough rigorous analysis of
SparseIRM.

• Although applying IRM to deep neural networks is possible, it is hard to provide theoretical guarantees in this scenario
(Rosenfeld et al., 2020). The reason is that we need to find and analyze the global optimum in the analysis of IRM,
while theory on the global optimum of deep neural networks is still quite limited, making it not applicable to analyze
IRM directly in the complicated setting.

B.2. The Relationship between Problem (6) and Problem (8)

Below, we will show that Problem (8) is a specific instance of Problem (6) as we claimed in Line 512.

Firstly, recall that Problem (6) takes the form of

min
w,m

L({v,m ◦ Φ}) (10)

s.t. w ∈ Rdw ,m ∈ {0, 1}dΦ , ∥m∥1 ≤ K},

By freezing Φ = 1dΦ , it becomes

min
v,m

L({v,m}) (11)

s.t. v ∈ Rdv ,m ∈ {0, 1}dΦ , ∥m∥1 ≤ K},

Then, we change the notation of m to be Φ, the problem becomes

min
v,Φ
L({v,Φ}) (12)

s.t. v ∈ Rdv ,Φ ∈ {0, 1}dΦ , ∥Φ∥1 ≤ K},

which is actually Problem (8). Thus our claim is verified.

B.3. Basics

In real applications, we always have massive spurious and random features while the invariant features are usually low
dimensional (Sagawa et al., 2020). So it is reasonable to let ds + dr ≫ dinv. We also assume the sample size in
each environment is the same, i.e., ne = n, ∀e ∈ E . For any vector v and linear operator M , let the vector norm be
∥v∥M :=

√
v⊺Mv. When M is omitted, it is assumed to be the identity I , so ∥v∥ =

√
v⊺v. For a linear operator, let ∥M∥

be the spectral(operator) norm, i.e., ∥M∥ := supv ∥Mv∥/∥v∥. Let λmax[M ] and λmin[M ] be the largest and smallest
eigenvalue of M , respectively. We use Ee and Êe to denote the expectation and empirical mean in environment e, e.g.,

Ee[y] =

∫
yedP(ye), Êe[y] =

1

n

n∑
i=1

yei .

Further, we use E and Ê to denote expectation and empirical mean from all environments, e.g.,

E[y] =
1

|E|

|E|∑
e=1

Ee[y], Ê[y] =
1

|E|

|E|∑
e=1

Êe[y].

Given the feature mask Φ, let ΣΦ denote the design matrix for the environment mixture, i.e.,

ΣΦ = E[Φ(x)Φ(x)⊺]



Sparse Invariant Risk Minimization

We further let Σe
Φ be the design matrix in environment e and Σ̂Φ be the empirical design matrix. When it is clear from the

context, we drop the subscript Φ for simplicity. Let β achieve the minimum mean square error over all linear function, i.e.,

β = argmin
v

E[(y − v⊺Φ(x))2] (13)

We also use βe and β̂ to denote the counterparts of β similarly as defined above.

Before providing the proofs , we first introduce the extension of IRMv1 to the minimax formulation:

min
v,Φ

max
ve

∑
e

Re(v,Φ) + λ[Re(v,Φ)−Re(ve,Φ)] (14)

Then the loss for a feature representation Φ is

L(Φ) =
∑
e

Re(β,Φ) + λ(Re(β,Φ)−Re(βe,Φ)), (15)

where β and βe are defined in Eqn. (13). Further, we have:

∇vRe(v,Φ)
∣∣
v=βe = Ee[Φ(x)(y − Φ(x))] = 0.

We then have into the following:

Re(v,Φ)

=Ee
(
y − Φ(x)⊤(v − βe + βe)

)2
=Ee

(
Φ(x)⊤(v − βe)

)2
+ Ee

(
(v − βe)⊤Φ(x)

)
(y − Φ(x)⊤βe) + Ee

(
y − Φ(x)⊤βe)

)2
=Ee

(
Φ(x)⊤(v − βe)

)2
+Re(βe,Φ)

So the penalty term in Eq. (14) translates into the following:

Re(v,Φ)−Re(βe,Φ) = Ee
(
Φ(x)⊤(v − βe)

)2
(16)

Then IRM loss in Eq. (14) is ∑
e

Re(β,Φ) + λ(Re(β,Φ)−Re(βe,Φ))

=
∑
e

Ee(y − Φ(x)⊤β)2 + λ
(
Φ(x)⊤(β − βe)

)2
. (17)

Comparing IRMv1 defined in Eq. (J-IRMv1) and Eq. (14), we can see that Eq. (J-IRMv1) is the first order approximation
of Eq. (14) by initializing ve with β and then taking a gradient step onRe(v,Φ) by ve ← β− η∇veRe(ve,Φ)|ve=v . Then

Re(v,Φ)−Re(v − η∇vRe(v,Φ),Φ) = η∥∇vRe(v,Φ)∥2 +O(η2)

In the later part, we provide the proof of our results based on the formulation in Eq. (14).

B.4. Proof for Proposition 1

Proof. Because of the condition dinv + ds + dr > ne1 + ne2 , we have

R̂e(β̂,Φall) = 0, R̂e(β̂e,Φall) = 0,∀e ∈ {e1, e2}.

Putting these into Eq. (15), we have

L̂(Φall) = 0. (18)
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On the other hand, we have the following,

L̂(Φinv) =
∑
e

R̂e(Φinv) +
1

ne

ne∑
i=1

(
Φ(x)⊤(β̂ − β̂e)

)2
≥
∑
e

R̂e(Φinv)

≥0 (19)

The first and second inequality are due to the non-negativity of the penalty and risk. Putting Eq. (18) and Eq. (19) together,
we finish the proof.

B.5. Proof of Corollary 1

Proof. The proof follows directly from that of Theorem 1 but replacing Φall with Φsr. When spurious and random feature
has large dimension, ds + dr > ne1 + ne2 , L(Φsr) will be already 0.

B.6. Proof of Theorem 1

B.6.1. PRELIMINARIES

Recall the data generation process in Section 3.2, by simple algebra, we know that Ee[Φ(x)y] = E[Φ(x)y],
Ee[Φ(x)⊺inv,rΦ(x)inv,r] = E[Φ(x)⊺inv,rΦ(x)inv,r], Ee[Φ(x)⊺inv,rΦ(x)s] = E[Φ(x)⊺inv,rΦ(x)s] and Ee[Φ(x)⊺sΦ(x)s] =

Ee[Φ(x)⊺sΦ(x)s] + Diag
(
..., (αe

i )
2 − (αi)

2, ...
)

, where αi =
√∑

e(α
e
i )

2,∀i ∈ [ds]. Specifically, we have

Σe
Φ =

(
Ee[Φ(x)⊺inv,rΦ(x)inv,r] Ee[Φ(x)⊺inv,rΦ(x)s]

Ee[Φ(x)⊺sΦ(x)inv,r] Ee[Φ(x)⊺sΦ(x)s]

)

=


E[Φ(x)⊺inv,rΦ(x)inv,r] E[Φ(x)⊺inv,rΦ(x)s]

E[Φ(x)⊺sΦ(x)inv,r] E[Φ(x)⊺sΦ(x)s] +


(αe

1)
2 − (α1)

2 0 · · · 0
0 (αe

2)
2 − (α2)

2 · · · 0
...

...
. . .

...
0 0 · · · (αe

(ds(Φ)))
2 − (αds(Φ))

2




=ΣΦ + Diag[ 0, ..., 0︸ ︷︷ ︸

dinv,s(Φ)

, (αe
1)

2 − (α1)
2, ..., (αe

ds(Φ))
2 − (αds(Φ))

2]

So Σe and Σ only differ by some diagonal elements corresponding to the spurious feature. Let {λi}di=1 and {λe
i}di=1 be the

eigenvalues of Σ and Σe, respectively. Their corresponding eigenvectors are {vi}di=1 and {ve
i}di=1. It is easy to see that Σ

and Σe share the same orthonormal basis Π, indicating vi = ve
i ,∀i ∈ [K].

λe
i =

{
λi, if i ∈ [dinv(Φ)]

⋃
[dr(Φ)],

λi + (αe
i )

2 − α2
i , if i ∈ [ds(Φ)].

(20)

Assume the maximum and minimum possible eigenvalue to be λmax and λmin > 0, i.e.,

∀e ∈ E , λmin ≤ λe
i ≤ λmax,

and λmin ≤ λi ≤ λmax.

Let Φinv denote the feature mask that merely selects K invariant features, Φinv,r be the feature mask that selects random
features but no spurious features(the number of spurious features can be arbitrary), Φinv,r,s be the feature mask that selects
spurious features (the number of random and invariant features can be arbitrary). Our goal is to show L̂(Φinv) < L̂(Φinv,r,s)

and L̂(Φinv) < L̂(Φinv,r) holds with high probability.

B.6.2. ASSUMPTIONS AND TECHNICAL LEMMAS

In this paper, we adopt the following standard assumptions from the existing methods (Arjovsky et al., 2019; Rosenfeld
et al., 2020):
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Assumption 1. For each feature mask Φ, there exists ρ such that, almost surely,

∥(Σe
Φ)

−1/2Φ(x)∥√
Ee[∥(Σe

Φ)
−1/2Φ(x)∥2]

≤ ρ,∀e ∈ E , and
∥(ΣΦ)

−1/2Φ(x)∥√
E[∥(ΣΦ)−1/2Φ(x)∥2]

≤ ρ.

Assumption 2. There exists finite σ > 0 such that, almost surely,

E[exp(ηϵinv)] ≤ exp(η2σ2),∀η ∈ R.

Assumption 3. There exists s and γ̄, such that:

∀i ∈ [dinv], |γi| ≥ γ̄, and V[xinv,i] ≥ s.

Assumption 1 and 2 are a standard statistical assumption which can also be found in (Hsu et al., 2012). They can be satisfied
when each xinv,i and ϵinv are bounded sub-Gaussian variables. Assumption 3 requires each xinv should explain sufficient
amount of variance of y

Assumption 4. For ith spurious feature, let αi =
√∑

e(α
e
i )

2,∀i ∈ [ds]. There exists a constant ∆ > 0, the following
inequality holds for each spurious feature,

∀i ∈ [ds],∃e ∈ E , |α2
i − (αe

i )
2| ≥ ∆.

Assumption 5. For each K subset of feature x that is selected by Φ, the projection of E[Φ(x)⊺y] on each basis corresponding
to spurious feature is non zero, i.e., there exists a constant C such that, if Φ(x)i is a spurious feature, then

∃e ∈ E , |Ee[Φ(x)y]⊺vi| ≥ C > 0.

Assumption 4 requires that the coefficient of each spurious feature exhibits a certain level of variation among the two
environments. This is reasonable according to the definition of spurious feature that the conditional of target xs on y varies
in different environments, otherwise there is no way to differentiate a spurious feature from the invariant feature (Arjovsky
et al., 2019; Rosenfeld et al., 2020). Assumption 5 ensures that the coefficients of a spurious feature can not be always 0,
otherwise IRM can not differentiate betwee the spurious and invariant features, neither.

We first present some useful lemmas from (Hsu et al., 2012).

Lemma 1 (Excess mean squared error, Proposition 5 of (Hsu et al., 2012)). For any v,

E[(y − v⊺Φ(x))
2
]− E[(y − β⊺Φ(x))

2
] = E[((v − β)⊺Φ(x))

2
] = ∥v − β∥Σ

Ê[(y − v⊺Φ(x))
2
]− Ê[(y − β̂⊺Φ(x))2] = ∥v − β̂∥Σ̂.

The same arguments also hold for environment e.

Lemma 2 (Effect of errors in Σ̂, Lemma 2 and 3 of (Hsu et al., 2012)). With Assumption 1, for any δ ≤ min{1, de−2.6},
with probability at least 1− δ,

∥Σ−1/2(Σ̂− Σ)Σ−1/2∥ ≤
√

4ρ2d(ln d+ ln(1/δ))

n
+

2ρ2d(ln d+ ln(1/δ))

3n
.

Further, if ∥Σ−1/2(Σ̂− Σ)Σ−1/2∥ < 1, then

∥Σ1/2Σ̂−1Σ1/2∥ ≤ 1

1− ∥Σ−1/2(Σ̂− Σ)Σ−1/2∥
.

Lemma 3 (Regret Error of Empirical OLS Solution, Theorem 1 and Remark 9 of (Hsu et al., 2012)). Pick any δ ≤
min{1, de−2.6}, by Assumption 1 and 2, with probability at least 1− δ, the following holds:

∥β̂ − β∥2Σ ≤
σ2(d+ 2

√
d ln (3/δ) + 2 ln (3/δ))

n
+ o(1/n),

where o(1/n) means higher order term.
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B.6.3. PROOF OF THE MAIN THEOREM

Proof. The Eq. (14) can be translated into

L̂(Φ) = min
v

max
ve

∑
e

Re(v,Φ) + λ[Re(v,Φ)−Re(ve,Φ)]

= min
v

max
ve

∑
e

Êe(y − ⟨v,Φ(x)⟩)2 + λ
[
Êe(y − ⟨v,Φ(x)⟩)2 − Êe(y − ⟨ve,Φ(x)⟩)2

]
=
∑
e

Êe(y − ⟨β̂,Φ(x)⟩)2 + λ
[
Êe(y − ⟨β̂,Φ(x)⟩)2 − Êe(y − ⟨β̂e,Φ(x)⟩)2

]
,

where β̂ and β̂e is defined as Eq. (13). The penalty term above is∑
e

Êe(y − ⟨β̂,Φ(x)⟩)2 − Êe(y − ⟨β̂e,Φ(x)⟩)2

=
∑
e

Êe(y − ⟨β̂,Φ(x)⟩)2 − Ee(y − ⟨β,Φ(x)⟩)2︸ ︷︷ ︸
ξa(Φ)

−
∑
e

(
Êe(y − ⟨β̂e,Φ(x)⟩)2 − Ee(y − ⟨βe,Φ(x)⟩)2

)
︸ ︷︷ ︸

ξb(Φ)

+
∑
e

Ee(y − ⟨β,Φ(x)⟩)2 − Ee(y − ⟨βe,Φ(x)⟩)2︸ ︷︷ ︸
ξc(Φ)

We will tackle (a) - (c) one by one. First,

|ξb(Φ)| =
∑
e

|Êe(y − ⟨β̂e,Φ(x)⟩)2 − Êe(y − ⟨βe,Φ(x)⟩)2 + Êe(y − ⟨βe,Φ(x)⟩)2 − Ee(y − ⟨βe,Φ(x)⟩)2|

≤
∑
e

|Êe(y − ⟨β̂e,Φ(x)⟩)2 − Êe(y − ⟨βe,Φ(x)⟩)2|+ |Êe(y − ⟨βe,Φ(x)⟩)2 − Ee(y − ⟨βe,Φ(x)⟩)2|

One on hand, by Hoeffding’s Inequality, we have with probability at least 1− δ/3,

|Êe(y − ⟨βe,Φ(x)⟩)2 − Ee(y − ⟨βe,Φ(x)⟩)2| ≤
√
ln(3/δ)/n. (21)

On the other hand, we have

|Êe(y − ⟨β̂e,Φ(x)⟩)2 − Êe(y − ⟨βe,Φ(x)⟩)2|

=∥βe − β̂e∥Σ̂e

=|(βe − β̂e)⊺Σe,−1/2Σe,1/2Σ̂e,−1Σe,1/2Σe,−1/2(βe − β̂e)|

≤∥(βe − β̂e)⊺Σe,−1/2∥22∥Σe,1/2Σ̂e,−1Σe,1/2∥2

The first equality is due to Lemma 1. Further, by Lemma 2 with probability at least 1− δ/3,

∥Σe,1/2Σ̂e,−1Σe,1/2∥2 ≤
1

1− κ
, (22)

where κ =
√

4ρ2K(lnK+ln(3/δ))
n + 2ρ2K(lnK+ln(3/δ))

3n . Further, if we have

n > 8/3ρ2K(lnK + ln(3/δ)), (23)

then

κ =

√
2ρ2K(lnK + ln(3/δ))

3n
+

2ρ2K(lnK + ln(3/δ))

3n
≤ 1/2 + 1/2 ∗ 1/6 < 3/4
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By Lemma 1, with have with probability at least 1− δ/3,

∥(βe − β̂e)⊺Σe,−1/2∥22 (24)

=∥βe − β̂e∥Σe (25)

≤
σ2(K + 2

√
K ln (9/δ) + 2 ln (9/δ))

ne
+ o(1/n)

≤σ2(2K + 3 ln (9/δ))

n
+ o(1/n). (26)

Puting Eq. (21), (22) and (24) together, we have with probability at least 1− δ, for all e ∈ E ,

|ξb(Φ)| ≤
1

1− κ

σ2|E|(2K + 3 ln (9|E|/δ))
n

+ |E|
√
ln(3|E|/δ)/n︸ ︷︷ ︸

ζ

. (27)

Similarly, we have with probability at least 1− δ,

|ξa(Φ)| ≤
1

1− κ

σ2(2K + 3 ln (9/δ))

n|E|
+
√
ln(3/δ)/n|E| < ζ. (28)

by noticing that the mixture of environments can be regarded as one environment with n|E| samples.

To bound ξc(Φ), we have

ξc(Φ) =
∑
e

(β − βe)⊺Σe(β − βe)

=
∑
e

(Σ−1E[Φ(x)y]− Σe,−1Ee[Φ(x)y])⊺Σe(Σ−1E[Φ(x)y]− Σe,−1Ee[Φ(x)y])

=
∑
e

Ee[Φ(x)y]⊺(Σ−1 − Σe,−1)⊺Σe(Σ−1 − Σe,−1)Ee[Φ(x)y]

=
∑
e

Ee[Φ(x)y]⊺Π(Λ−1 − Λe,−1)⊺Λe(Λ−1 − Λe,−1)Π⊺Ee[Φ(x)y]

=
∑
e

K∑
i

(Ee[Φ(x)y]⊺vi)
2λi(

1

λe
i

− 1

λi
)2

The first equality is due to Lemma 1, the forth equality is by the fact that Ee[Φ(x)y] = E[Φ(x)y]. So by Assumption 4 and
Eq. 20, we have

ξc(Φ)

{
= 0, if ds(Φ) = 0,

≥ ds(Φ)C2λmin∆
2

λ4
max

≥ C2λmin∆
2

λ4
max

, if ds(Φ) ≥ 1.
(29)

Step 1) Comparing L̂(Φinv) with L̂(Φinv,r,s). We have the following:

L̂(Φinv,r,s)− L̂(Φinv)

=
∑
e

Êe(y − ⟨β̂,Φinv,r,s(x)⟩)2 + λ
[
Êe(y − ⟨β̂,Φinv,r,s(x)⟩)2 − Êe(y − ⟨β̂e,Φinv,r,s(x)⟩)2

]
−

(∑
e

Êe(y − ⟨β̂,Φinv(x)⟩)2 + λ
[
Êe(y − ⟨β̂,Φinv(x)⟩)2 − Êe(y − ⟨β̂e,Φinv(x)⟩)2

])
≥λ [ξa(Φinv,r,s) + ξb(Φinv,r,s) + ξc(Φinv,r,s)]

− [ξa(Φinv) + V(ϵ)]− λ [ξa(Φinv)− ξb(Φinv) + ξc(Φinv)]

≥− (4λ+ 1)ζ + λξc(Φinv,r,s)− V(ϵ)
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The first inequality is due to Êe(y − ⟨β̂,Φinv(x)⟩)2 ≥ 0 and the definition of ξa, ξb and ξc. The second inequality is due to
|ξa(Φ)|, |ξb(Φ)| ≤ ζ (see Eq. (28) and (27)) and ξc(Φinv) = 0 (see Eq. (29)).

Then, by taking

λ =
2V(ϵ)

KsC2λmin∆2/λ4
max

≥ 2V(ϵ)
ξc(Φinv,r,s)

,

we have

L̂(Φinv,r,s)− L̂(Φinv) > −(4λ+ 1)
( 1

1− κ

2σ2(2K + 3 ln (36/δ))

n
+
√
4 ln(12/δ)/n

)
+ V(ϵ) > 0

when the following holds

n > max{ (32λ+ 8)σ2(2K + 3 ln (36/δ))

V(ϵ)
,
(8λ+ 2)2 ln(36/δ)

V(ϵ)2
}. (30)

Step 2) Comparing L̂(Φinv) with L̂(Φinv,r). Assume the absolute value of each element of γ is lower bounded as
|γi| ≥ γ̄,∀i ∈ [dr]. The variance of each invariant feature is lower bounded as V(xinv,i) ≥ s,∀i ∈ [dr].

First, by simple algebra, we have∑
e

Ee(y − ⟨β,Φinv,r(x)⟩)2 − Ee(y − ⟨β,Φinv(x)⟩)2 =
∑

i∈[dr(Φ)]

riV(xinv,i)

Intuitively, to replace a feature xinv,i by a random feature lost a explanation component of y, thus resulting in larger loss
(which is equal to the variance of explanation component, xinv,i).

So with probability at least 1− δ, we have

L̂(Φinv,r)− L̂(Φinv)

=
(
ξa(Φinv,r) + V(ϵ) +

∑
i∈[dr(Φ)]

riV(xinv,i)
)
+ λ

(
ξa(Φinv,r) + ξb(Φinv,r) + ξc(Φinv,r)

)
−
(
ξa(Φinv) + V(ϵ)

)
− λ

(
ξa(Φinv)− ξb(Φinv) + ξc(Φinv)

)
=
(
(λ+ 1)ξa(Φinv,r) + λξb(Φinv,r)− (λ+ 1)ξa(Φinv)− λξb(Φinv)

)
+

∑
i∈[dr(Φ)]

riV(xi)

≥− (4λ+ 1)ζ + γ̄s

The second inequality is because ξc(Φinv) = ξc(Φinv,r) = 0. The first inequality is due to the definition of γ̄ and s in
Assumption 3. The second inequality is due to |ξa(Φ)|, |ξb(Φ)| ≤ ζ (see Eq. (28) and (27)) and ξc(Φinv) = 0 (see Eq.
(29)). So if

n > max{ (32λ+ 16)σ2(2K + 3 ln (36/δ))

γ̄s
,
(8λ+ 4)2 ln(36/δ)

γ̄2s2
}, (31)

then L̂(Φinv,r)− L̂(Φinv) > 0. Putting Eq. (23), (30) and (31) together, we have with probability at least 1− δ such if the
following holds:

n >

(
2Kσ2(32λ+ 16)(

1

γ̄s
+

1

V[ϵ]
) + 8ρ2K lnK

)
︸ ︷︷ ︸

Q1

+

(
3(32λ+ 16)2(

1

γ̄s
+

1

γ̄2s2
++

1

V[ϵ]
+

1

V[ϵ]2
) + 8ρ2K

)
︸ ︷︷ ︸

Q̃2

ln(36/δ)

=Q1 + Q̃2 ln(36/δ)

Finally, noticing that the choices of Φinv,r and Φinv,r are no more than 2dK , we then conclude that have that sparse IRM
can uniquely identify Φinv if

n > Q̃1 + Q̃2 ln(72d
K/δ) > Q1 +Q2 ln(d/δ),
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where

Q̃1 =2Kσ2(32λ+ 16)(
1

γ̄s
+

1

V[ϵ]
) + 8ρ2K lnK,

Q̃2 =3(32λ+ 16)2(
1

γ̄s
+

1

γ̄2s2
++

1

V[ϵ]
+

1

V[ϵ]2
)K + 8ρ2K2,

Q1 =Q̃1 + Q̃2 ln(72),

Q2 =Q̃2K,

λ =
2V(ϵ)

KsC2λmin∆2/λ4
max

.

C. Algorithm
We present our training method for solving Problem (7) in Algorithm 1, which is adapted from the algorithm in (Zhou et al.,
2021b).

Algorithm 1 Sparse Invariant Risk Minimization (SparseIRM)
Input: target remaining ratio kf = 0.5, a dense network w.
1: Initialize w, assign probabilities s to weights w, let s = 1, K = kfdw and τ = 1.
2: for training epoch t = 1, 2 . . . T do
3: for each training iteration do
4: Sample mini batch of data B = ∪e∈Etr

Be, with Be = {(xe
1,y

e
1) , . . . , (x

e
B ,y

e
B)}.

5: Generate g1 and g0 with each element sampled from Gumbel(0, 1).
6: s← projC(z),with z = s− η∇sLB

(
v, σ

( ln( s
1−s )+g1−g0

τ

)
◦ Φ
)
.

7: w ← w − η∇wLB

(
v, σ

( ln( s
1−s )+g1−g0)

τ

)
◦ Φ
)

8: end for
9: end for

output A sparse network {v,m ◦ Φ} by sampling a mask m from the distribution p(m|s).

D. Experimental Configurations

Dataset C/FCM CM CO

GPUs 1 1 1

Epochs 1500 50 75

Weight Optimizer Adam SGD SGD

Weight Learning Rate 0.0004 0.01 0.01

Weight Momentum - 0.9 0.9

Probability Optimizer Adam Adam Adam

Probability Learning
Rate

6e-3 6e-3 6e-3

Penalty Weight 10000 10000 10000

Learning Rate
Scheduler

Cosine Cosine Cosine

Table 6. C/FCM stands for ColoredMNIST and FullColoredMNIST. CM stands for CIFARMNIST. CO stands for ColoredObject.
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Dataset Training Accuracy Testing Accuracy

Dim 64 160 256 390 512 640 64 160 256 390 512 640

Oracle 74.64 76.80 77.85 78.63 79.24 79.67 76.38 76.61 76.12 75.80 75.64 75.72

ERM 84.41 85.21 85.61 86.31 86.70 86.94 25.25 26.27 27.50 27.67 27.93 28.10

IRM 77.04 78.15 80.54 83.46 86.33 89.75 56.36 63.36 64.97 60.62 59.75 57.51

IRMv1 MRM 76.56 76.57 78.19 84.52 87.5 90.04 62.5 64.69 65.49 62.23 59.47 55.91

SparseIRM 77.27 76.74 78.13 78.43 78.09 79.16 65.06 67.30 68.24 68.88 69.20 69.47

IRM 72.87 66.54 76.18 79.74 83.42 85.93 46.08 55.59 60.22 62.83 64.18 60.96

REx MRM 68.77 69.49 74.62 74.86 72.71 70.22 53.44 59.33 66.77 67.08 66.53 61.79

SparseIRM 65.83 74.69 75.31 76.74 76.27 77.28 63.50 71.26 71.54 71.61 72.37 72.83
Table 7. Comparison of Training and Testing Accuracy of MLP on FullColoredMNIST50000 with varying hidden dimensions.

[MLP and ResNet-18 Architectures] MLP consists of three linear layers, with weights of shape (392, hidden dimensions),
(hidden dimensions, hidden dimensions) and (hidden dimensions, 1), respectively. The activation layer between linear layers
is ReLU. Regular ResNet-18(He et al., 2016) architecture is adopted.

Dataset ColoredMNIST20000 FullColoredMNIST20000

Dim 64 160 256 390 512 640 64 160 256 390 512 640

Oracle 66.89 67.26 68.96 69.97 70.31 71.62 68.34 69.07 69.43 70.50 70.97 71.27

ERM 23.50 25.56 24.32 25.38 24.76 24.83 27.84 30.29 31.09 31.43 31.16 31.45

IRM 55.62 62.42 53.62 47.28 45.73 36.80 51.37 54.19 52.13 46.81 43.21 41.18

IRMv1 MRM 60.69 65.00 66.17 65.52 62.56 53.58 52.39 55.47 58.66 52.53 46.89 43.42

SparseIRM 64.66 65.91 66.54 67.92 68.24 68.54 57.94 59.34 59.94 61.11 62.37 63.26

IRM 51.90 62.51 62.57 56.09 52.08 47.43 45.71 55.77 56.30 51.48 44.76 43.21

REx MRM 59.36 63.49 65.17 65.24 64.62 64.52 50.96 56.74 59.46 59.54 58.93 58.39

SparseIRM 64.62 67.16 69.01 69.71 70.10 70.45 61.25 63.08 63.35 63.53 63.62 63.74
Table 8. Comparison of MLP on ColoredMNIST20000 and FullColoredMNIST20000 with varying hidden dimensions.

E. Additional Experimental Results
E.1. Training and Testing Accuracy of MLP on FullColoredMNIST50000 with varying hidden dimensions

Following we present additional experimental results on training accuracy, in order to present the superior power of
SparseIRM in preventing overfitting caused by overparameterization. From Table 7, we find that besides the better testing
accuracy of SparseIRM, our method also achieves lower training accuracy than Oracle, ERM and IRM. The gap between
training and testing accuracy of IRM and MRM is far larger than that of our MRM in all settings. The experimental
results on training and testing accuracy further demonstrate the power of SparseIRM in reducing overfitting caused by
overparameterization.

E.2. MLP on ColoredMNIST20000 and FullColoredMNIST20000 with Varying Hidden Dimensions

Table 8 presents the detailed testing accuracy of MLP on ColoredMNIST20000 and FullColoredMNIST20000 with varying
hidden dimensions, which are also presented in Figure 3. The results on ColoredMNIST20000 and FullColoredMNIST20000
demonstrate more superior performance compared with MRM.

F. Future Directions
SparseIRM stills needs to demonstrate its applicability to NLP tasks especially on today’s large pretraining language models
(Devlin et al., 2018; Radford et al., 2019; Liu et al., 2019; Diao et al., 2019; Brown et al., 2020), cross-modal tasks (Gu et al.,
2018; Gao et al., 2022; Zhou et al., 2022a), domain adaptation tasks (Diao et al., 2021; Huang et al., 2022), self-supervised
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learning tasks (He et al., 2020; Grill et al., 2020; Chen et al., 2021b; Liu et al., 2022). It is also interesting to explore how
SparseIRM interacts with other parallel domain generalization methods (Luo et al., 2018; Bai et al., 2021a;b) , how it
performs when applied with other sparse training methods (Shao et al., 2019; Kusupati et al., 2020) and how it performs on
more challenging benchmarks (Ye et al., 2022).


