
Proceedings of Machine Learning Research vol 167:1–54, 2022 33rd International Conference on Algorithmic Learning Theory

Inductive Bias of Gradient Descent for Weight Normalized Smooth
Homogeneous Neural Nets

Depen Morwani DEPENMORWANI@GMAIL.COM

Harish G. Ramaswamy HARIGURU@CSE.IITM.AC.IN

Department of Computer Science and Engineering, and RBCDSAI,
Indian Institute of Technology Madras, India.

Editors: Sanjoy Dasgupta and Nika Haghtalab

Abstract
We analyze the inductive bias of gradient descent for weight normalized smooth homogeneous neu-
ral nets, when trained on exponential or cross-entropy loss. We analyse both standard weight nor-
malization (SWN) and exponential weight normalization (EWN), and show that the gradient flow
path with EWN is equivalent to gradient flow on standard networks with an adaptive learning rate.
We extend these results to gradient descent, and establish asymptotic relations between weights
and gradients for both SWN and EWN. We also show that EWN causes weights to be updated in
a way that prefers asymptotic relative sparsity. For EWN, we provide a finite-time convergence
rate of the loss with gradient flow and a tight asymptotic convergence rate with gradient descent.
We demonstrate our results for SWN and EWN on synthetic data sets. Experimental results on
simple datasets support our claim on sparse EWN solutions, even with SGD. This demonstrates its
potential applications in learning neural networks amenable to pruning.
Keywords: Deep Learning Theory, Inductive Bias, Gradient Descent, Weight Normalization

1. Introduction

The prevailing hypothesis for explaining the generalization ability of deep neural nets, despite their
ability to fit even random labels (Zhang et al., 2017), is that the optimisation/training algorithms
such as gradient descent have a ‘bias’ towards ‘simple’ solutions. This property is often called
inductive bias, and has been an active research area over the past few years.

It has been shown that gradient descent does indeed seem to prefer ‘simpler’ solutions over more
‘complex’ solutions, where the notion of complexity is often problem/architecture specific. The
predominant line of work typically shows that gradient descent prefers a least norm solution in some
variant of the L2-norm. This is satisfying, as gradient descent over the parameters abides by the
rules of L2 geometry, i.e. the weight vector moves along direction of steepest descent, with length
measured using the Euclidean norm. However, there is nothing special about the Euclidean norm in
the parameter space, and hence several other notions of ‘length’ and ‘steepness’ are equally valid. In
recent years, several alternative parameterizations of the weight vector, such as Batch normalization
and Weight normalization, have seen immense success and these do not seem to respect L2 geometry
in the ‘weight space’. We pose the question of inductive bias of gradient descent for some of these
parameterizations, and demonstrate interesting inductive biases. In particular, it can still be argued
that gradient descent with these reparameterizations prefers simpler solutions, but the notion of
complexity is different.

Our Contributions. The main contributions of the paper are as follows.
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• We establish that the gradient flow path with exponential weight normalization is equal to the
gradient flow path of an unnormalized network using an adaptive neuron dependent learning
rate. This provides a crisp description of the difference between exponential weight normal-
ized networks and unnormalized networks.

• While most of the previous works on the inductive bias of non-linear deep learning archi-
tectures work under the assumption of directional convergence of weights and gradients, we
show that gradient convergence implies weight convergence, even for gradient descent, for
both standard and exponentially weight normalized network (which is not homogeneous in
its parameters)1.

• We establish the asymptotic relations between weights and gradients for gradient descent on
standard weight normalized and exponentially weight normalized networks and show that
exponential weight normalization is likely to lead to asymptotic sparsity in weights. We
demonstrate the relative sparsity of exponential weight normalization on MNIST dataset, by
showing that it leads to networks with better pruning efficacy.

• We establish finite-time convergence rates for gradient flow and tight asymptotic convergence
rates for gradient descent on exponentially weight normalized networks.

2. Related Work

The literature most closely related to this paper can be broadly classified into two categories -
the inductive biases established for neural networks, and the theoretical studies of normalization
methods in deep learning.

2.1. Inductive Bias

Soudry et al. (2018) showed that gradient descent(GD) on the logistic loss with linearly separable
data converges to the L2 maximum margin solution for almost all datasets. These results were
extended to loss functions with super-polynomial tails in Nacson et al. (2019b). Nacson et al.
(2019c) extended these results to hold for stochastic gradient descent(SGD) and Gunasekar et al.
(2018a) extended the results for other optimization geometries. Ji and Telgarsky (2019b) provided
tight convergence bounds in terms of dataset size as well as training time. Ji and Telgarsky (2019a)
provide similar results when the data is not linearly separable.

Ji and Telgarsky (2019c) showed that for deep linear nets, under certain conditions on the ini-
tialization, for almost all linearly separable datasets, the network, in function space, converges to
the maximum margin solution. Gunasekar et al. (2018b) established that for linear convolutional
nets, under certain assumptions regarding convergence of gradients etc, the function converges to a
KKT point of the maximum margin problem in fourier space. Nacson et al. (2019a) shows that for
smooth homogeneous nets, the network converges to a KKT point of the maximum margin problem
in parameter space. Lyu and Li (2020) established these results with weaker assumptions and also
provide asymptotic convergence rates for the loss. Chizat and Bach (2020) explore the inductive bias
for a 2-layer infinitely wide ReLU neural net in function space and show that the function learnt is a

1. The assumptions about weights and gradients converging in direction have been recently shown to hold for gradient
flow on homogeneous neural nets without normalization under some regularity conditions related to o-minimality of
the architecture(Ji and Telgarsky, 2020)
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max-margin classifier for variation norm. Moroshko et al. (2020) established the inductive bias for
linear diagonal networks and showed that the network transitions between maximum L2-norm and
L1-norm margin, depending on the relation between the initialization scale and training accuracy.

2.2. Normalization

Salimans and Kingma (2016) introduced weight normalization and demonstrated that it replicates
the convergence speedup of BatchNorm. Similarly, other normalization techniques have been pro-
posed as well(Ba et al., 2016)(Qiao et al., 2020)(Li et al., 2019), but only a few have been theo-
retically explored. Santurkar et al. (2018) demonstrated that batch normalization makes the loss
surface smoother and L2 normalization in batchnorm can even be replaced by L1 and L∞ normal-
izations. Kohler et al. (2019) showed that for GD, batchnorm speeds up convergence in the case
of GLM by splitting the optimization problem into learning the direction and the norm. Cai et al.
(2019) analyzed GD on BN for squared loss and showed that it converges for a wide range of lr.
Bjorck et al. (2018) showed that the primary reason BN allows networks to achieve higher accuracy
is by enabling higher learning rates. Arora et al. (2019) showed that in case of GD or SGD with
batchnorm, lr for scale-invariant parameters does not affect the convergence rate towards stationary
points. Du et al. (2018) showed that for GD over one-hidden-layer weight normalized CNN, with a
constant probability over initialization, iterates converge to global minima. Qiao et al. (2019) com-
pared different normalization techniques from the perspective of whether they lead to points, where
neurons are consistently deactivated. Wu et al. (2020) established the inductive bias of gradient flow
with weight normalization for overparameterized least squares and showed that for a wider range
of initializations as compared to normal parameterization, it converges to the minimum L2 norm
solution. Dukler et al. (2020) analyzed weight normalization for multilayer ReLU net in the infinite
width regime and showed that it may speedup convergence. Some other papers(Luo et al., 2019;
Roburin et al., 2020) also provide other perspectives to think about normalization techniques.

3. Problem Setup

We use a standard view of neural networks as a collection of nodes/neurons grouped by layers.
Each node u is associated with a weight vector wu, that represents the incoming weight vector for
that node. In case of CNNs, weights can be shared across different nodes. w represents all the
parameters of the network arranged in form of a vector (In general, for any vector v associated
with the entire network, vu represent its components corresponding to the node u). The training
dataset consists (xi, yi) pairs with a total of m points in the dataset. The function represented by the
neural network is denoted by Φ(w, .). The loss for a single data point xi is given by ℓ(yi,Φ(w,xi))
and the loss vector is represented by ℓ. The overall loss is represented by L(w) and is given by
L(w) =

∑m
i=1 ℓ(yi,Φ(w,xi)). We sometimes abbreviate L(w(t)) as L when the context is clear.

In standard weight normalisation (SWN), each weight vector wu is reparameterized as γu vu
∥vu∥ .

This was proposed by Salimans and Kingma (2016), as a substitute for Batch Normalization and
has been practically used in multiple papers such as Sokolic et al. (2017), Dauphin et al. (2017),
Kim et al. (2018) and Hieber et al. (2018). The corresponding update equations for gradient descent
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are given by

γu(t+ 1) = γu(t)− η(t)
vu(t)

⊤∇wuL
∥vu(t)∥

(1)

vu(t+ 1) = vu(t)− η(t)
γu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL (2)

In exponential weight normalisation (EWN), each weight vector wu is reparameterized as eαu vu
∥vu∥ .

This was mentioned in Salimans and Kingma (2016), but to the best of our knowledge, has not been
widely used. The corresponding update equations for gradient descent with learning rate η(t) are
given by

αu(t+ 1) = αu(t)− η(t)eαu(t)vu(t)
⊤∇wuL

∥vu(t)∥
(3)

vu(t+ 1) = vu(t)− η(t)
eαu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL (4)

The update equations for gradient flow are the continuous counterparts for the same. In gradient
flow, for both SWN and EWN, we set ∥vu(0)∥ = 1, to simplify the update equations.

4. Inductive Bias of Weight Normalization

In this section, we state our main results for weight normalized smooth homogeneous models on
exponential loss(ℓ(yi,Φ(w,xi)) = e−yiΦ(w,xi)). The results for cross-entropy loss and proofs have
been deferred to the appendix due to space constraints. First, we state the main proposition that
helps in establishing these results for EWN.

Theorem 1 The gradient flow path with learning rate η(t) for EWN and SWN are given as follows:

EWN:
dwu(t)

dt
= −η(t)∥wu(t)∥2∇wuL (5)

SWN:
dwu(t)

dt
= −η(t)

(
∥wu(t)∥2∇wuL+

(
1− ∥wu(t)∥2

∥wu(t)∥2

)
(wu(t)

⊤∇wuL)wu(t)

)
(6)

Thus, the gradient flow path of EWN can be replicated by an adaptive (neuron dependent)
learning rate given by η(t)∥wu(t)∥2 on the unnormalized network(Unnorm).

4.1. Assumptions

The assumptions in the paper can be broadly divided into loss function/architecture based assump-
tions and trajectory based assumptions. The loss functions/architecture based assumptions are
shared across both gradient flow and gradient descent.

Loss function/Architecture based assumptions

1 ℓ(yi,Φ(w,xi)) = e−yiΦ(w,xi)

2 Φ(.,x) is a C1 function (i.e. continuously differentiable), for any fixed x
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3 Φ(λw,x) = λLΦ(w,x), for some λ > 0 and L > 0

Gradient flow. For gradient flow, we make the following trajectory based assumptions

(A1) There exists a time t0 such that L(w(t0)) < 1.

(A2) limt→∞
−∇wL(w(t))
∥∇wL(w(t))∥ := g̃.

The first trajectory assumption is simply a separability assumption and means that the network
is able to correctly classify the dataset at some point during the training process. This is not a
completely unreasonable assumption, given recent papers demonstrating neural networks with suf-
ficient overparameterization can fit even random labels (Zhang et al., 2017; Jacot et al., 2018). The
second assumption has been used in multiple previous works (Gunasekar et al., 2018b; Chizat and
Bach, 2020; Nacson et al., 2019a), and is standard in the literature related to the inductive bias
of non-linear deep learning architectures. Moreover, we remove one of the assumptions related to
directional convergence of weights used in these works, and instead show that it is implied by the
directional convergence of gradients.

Gradient Descent. For gradient descent, we require the learning rate η(t) to not grow too fast,
and a slightly stronger assumption on loss.

(B1) limt→∞ L(w(t)) = 0 (B2) limt→∞
−∇wL(w(t))
∥∇wL(w(t))∥ := g̃

(B3) limt→∞ η(t)∥wu(t)∥∇wuL(w(t))∥ = 0 for all u in the network.

The assumption (B3) is mild, as the norm of the gradient of the exponential loss goes down
exponentially fast as compared to norm of the weights. We demonstrate that these assumptions hold
for multiple datasets including MNIST in Appendix P.

4.2. Asymptotic relations between weights and gradients

This section contains the main theorems that establish asymptotic relations between weights and
gradients for SWN and EWN. First, we will state a common proposition for both SWN and EWN.

Proposition 2 Under assumption (A1) for gradient flow, for both SWN and EWN, limt→∞ L(w(t)) =
0.

Although the above proposition was established for homogeneous nets by Lyu and Li (2020)2, we
extend it for the non-homogeneous parameterization of EWN. Now, we provide one of our main
theorem that establishes gradient convergence implies weight convergence.

Theorem 3 Consider a node u in the network with ∥g̃u∥ > 0 and limt→∞ ∥wu(t)∥ = ∞. Under
assumptions (A1), (A2) for gradient flow and (B1)-(B3) for gradient descent, for both SWN and
EWN

(i) limt→∞
wu(t)

∥wu(t)∥ := w̃u exists. (ii) w̃u = λg̃u for some λ > 0.

The above theorem relaxes one of the assumptions regarding weight convergence used in many of
the previous works, by showing that even for non-homogeneous parameterization under gradient
descent, gradient convergence implies weight convergence. Moreover, it also shows, that weights
and gradients eventually get aligned opposite to each other.

2. Homogeneous networks in the w space are also homogeneous in the γ,v space. Therefore results regarding con-
vergence rates and monotonic margin hold from Lyu and Li (2020). However, the results for convergence to a KKT
point of the max margin problem do not hold. For details, refer Appendix L
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Figure 1: Demonstration of Results for EWN in Lin-Sep experiment: (a) Evolution of ∥wu∥
- norm of the incoming weights for neuron u (b) Cosine between weights and gradients
for neurons 5, 7 and 8. (c) Weight and gradient norms for weights 5, 7 and 8.

Now, we provide the main theorem that distinguishes SWN and EWN.

Theorem 4 Consider two nodes u and v in the network with ∥g̃u∥ ≥ ∥g̃v∥ > 0, limt→∞ ∥wu(t)∥ =

∞ and limt→∞ ∥wv(t)∥ = ∞. Let ∥g̃u∥
∥g̃v∥ be denoted by c. Under assumptions (A1), (A2) for gradi-

ent flow and (B1)-(B3) for gradient descent,

(i) for SWN, limt→∞
∥wu(t)∥
∥wv(t)∥ = c

(ii) for EWN, limt→∞
∥wu(t)∥
∥wv(t)∥ is either 0,∞ or 1

c

Thus, if ∥wu(t)∥
∥wv(t)∥ converges to a finite non-zero value for EWN, then ∥wu(t)∥∥∇wuL(w(t))∥ =

∥wv(t)∥∥∇wvL(w(t))∥ = k1(t) asymptotically. While, for SWN, ∥wu(t)∥
∥∇wuL(w(t))∥ = ∥wv(t)∥

∥∇wvL(w(t))∥ =

k2(t) asymptotically, where k1(t) and k2(t) are independent of u and v. The exact conditions under
which ∥wu(t)∥

∥wv(t)∥ tends to 0 or ∞ for EWN are provided in Proposition 5.
We demonstrate Theorem 3 and Theorem 4 for EWN on a linearly separable dataset (Lin-Sep)

in Figure 1. In this experiment, a 2-layered neural network, with 8 neurons in the hidden layer and
a ReLU-squared activation function, is trained on a linearly separable dataset. The learning rate
schedule used was O

(
1

L0.97

)
and the network was trained till a loss of e−300. As can be seen in

Figure 1, for weights 5, 7 and 8, whose norms keep on growing, weights and gradients eventually
become oppositely aligned, and their norms are inversely proportional to each other. The results for
SWN, along with results on other datasets including MNIST have been deferred to Appendix N.

4.3. Sparsity Inductive Bias for Exponential Weight Normalisation

The inverse relation between ∥wu(t)∥ and ∥∇wuL(w(t))∥ in the EWN trajectory results in an
interesting inductive bias that favours movement along sparse directions.

Proposition 5 Consider two nodes u and v in the network such that ∥g̃v∥ ≥ ∥g̃u∥ > 0 and
∥wu(t)∥, ∥wv(t)∥ → ∞. Let ∥g̃u∥

∥g̃v∥ be denoted by c (note that g̃ and c will be different for SWN and
EWN trajectory). Consider any ϵ, δ such that 0 < ϵ < c and 0 < δ < π

2 . Then, the following holds:
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Figure 2: (a) Network architecture for the Simple-Traj experiment . (b) Trajectories of the two
weights for EWN and Unnorm, starting from 5 different initialization points.

(i) There exists a time t1, such that for all t > t1 both SWN and EWN trajectories have the
following properties:

(a) ∥∇wuL(w(t))∥
∥∇wvL(w(t))∥ ∈ [c− ϵ, c+ ϵ] (b)

(
wu(t)

∥wu(t)∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(δ)

(c)
(

wv(t)
∥wv(t)∥

)⊤ ( −∇wvL(w(t))
∥∇wvL(w(t))∥

)
≥ cos(δ).

(ii) for SWN, limt→∞
∥wu(t)∥
∥wv(t)∥ = c

(iii) for EWN, if at some time t2 > t1,

(a) ∥wu(t2)∥
∥wv(t2)∥ > 1

(c−ϵ) cos(δ) =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞

(b) ∥wu(t2)∥
∥wv(t2)∥ < cos(δ)

c+ϵ =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = 0

The above proposition shows that the limit property of the weights in Theorem 4, makes non-sparse
w an unstable convergent direction for EWN. But that is not the case for SWN. We demonstrate the
relative sparsity between EWN, SWN and Unnorm through two toy experiments – Simple-Traj
and XOR.

In the Simple-Traj experiment, we illustrate the notion of asymptotic relative sparsity oc-
curing in the EWN parameterization. In this dataset, we have a single data point at (2, 1), that is
labelled positive and train a network with linear activations. The architecture is shown in Figure 2,
where weights in blue and red are frozen to values 1 and 0 respectively. Thus, there are effectively
only two scalar parameters- w1 and w2. The network is trained till a loss value of e−50 starting
from 5 different initialization points. The weight trajectories in Figure 2 shows that EWN prefers
to converge either along the x or y axis, and hence has an asymptotic relative sparsity property. We
provide a theoretical proof for the same in the general d-dimensional case.

Proposition 6 Consider a linear model over Rd given by f(x) = w⊤x, where each wi is further
reparameterized as eαi . Consider a dataset consisting of a single data point z ≻ 0, that is labelled
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Figure 3: (a), (b) and (c) demonstrate the evolution of weight norms for each neuron in the XOR
experiment. EWN weights grow sparsely when compared to Unnorm and SWN
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Figure 4: Variation of convergence rate of train loss with number of layers for multilayer linear nets
on a linearly separable dataset

as +1. According to the initialization of α, define a relation R on {1, . . . , d}, given by i ∼ j if
wi(0)zi = wj(0)zj . Then, R is an equivalence relation on {1, . . . , d}. Let these equivalent sets be
denoted by I1, I2, ..., Ik. Define a total order on these sets given by Ia > Ib if ∃i ∈ Ia, j ∈ Ib such
that wi(0)zi > wj(0)zj . Let the maximum set according to this order be denoted by I∗. Then, for
gradient flow on exponential loss, the following holds

(i) For any i ∈ I∗, limt→∞wi(t) = ∞

(ii) For i, j ∈ I∗, wi(t)
wj(t)

=
xj

xi
.

(iii) For any i /∈ I∗, limt→∞wi(t) =
(

1
wi(0)

− xi
wj(0)xj

)−1
, where j is any element in I∗.

Thus, if w is initialized from a continuous distribution, then with probability 1, the cardinality of I∗

is 1 and hence w(t)/∥w(t)∥ will approach a sparse vector.
In the XOR experiment, we train a 2-layer ReLU network with 20 hidden neurons on XOR

dataset, till a loss value of e−50. The second layer is fixed to the values 1 or -1 randomly. For
attaining 100% accuracy on this dataset with this architecture, at least 4 hidden units are needed. As
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can be seen in Figure 3, EWN asymptotically uses exactly 4 neurons out of 20, while Unnorm and
SWN use almost all the 20 neurons.

5. Convergence Rates

In this section, we provide convergence rate of loss for EWN.

Gradient Flow: We provide a finite-time convergence rate of loss for gradient flow in case of
EWN.

Theorem 7 For Exponential Weight Normalization, under assumption (A1), the following hold for
t > t0 in case of gradient flow

(i) ∥w(t)∥ grows with t as o((log t)
1
L ) (ii) L(t) goes down with t as O

(
1
t

)
Gradient Descent: For establishing convergence rates for gradient descent, we are going to make
an additional assumption that the overall weight vector converges in direction, i.e, limt→∞

w(t)
∥w(t)∥

exists (B4). Although we have already shown this is indeed true for nodes with ∥g̃u∥ > 0, we
need this assumption to take into account the nodes with ∥g̃u∥ = 0. Under this assumption, w
can be represented as w = g(t)w̃ + r(t), where limt→∞

∥r(t)∥
g(t) = 0. Let d : N → R, given by

d(t) =
∑t−1

τ=0 η(τ) denote total step size. Let ρ = mini yiΦ(w̃,xi) be the normalized margin at
convergence.

The asymptotic convergence rate of loss for SWN and Unnorm have already been established

in Lyu and Li (2020) as Θ

(
1

d(t)(log d(t))2−
2
L

)
. For EWN, the corresponding theorem is provided

below

Theorem 8 For Exponential Weight Normalization, under Assumptions (B1)-(B4), ρ > 0, η(t) =
O
((
log 1

L
)c) for c < 1 and limt→∞

∥r(t+1)−r(t)∥
g(t+1)−g(t) = 0, the following hold

(i) ∥w(t)∥ asymptotically grows with t as Θ
(
(log d(t))

1
L

)
(ii) L(w(t)) asymptotically goes down with t as Θ

(
1

d(t)(log d(t))2

)
.

Although the additional assumption limt→∞
∥r(t+1)−r(t)∥
g(t+1)−g(t) = 0 is not standard, we empirically

demonstrate that, for EWN, the convergence rate is almost independent of the number of layers.
Moreover, the learning rate assumption used still covers the constant η(t) case, that is generally
used in practice.

For multilayer linear nets, the variation of convergence rate with number of layers for a linearly
separable dataset is illustrated in Figure 4. All of these networks were explicitly initialized to
represent the same point in function space. It can be seen that EWN, SWN and unnormalized
networks all converge faster with more layers, but the effect is much less pronounced for EWN.

6. Pruning Experiments

As EWN leads to asymptotically sparse solutions, it is likely that a sufficiently trained EWN network
would be comparatively robust to pruning. In this section, we compare the pruning efficacy of

9



INDUCTIVE BIAS OF WEIGHT NORMALIZATION

0 20 40 60 80
Percentage of neurons pruned

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Unnorm
EWN
SWN

(a) L = e−10

0 20 40 60 80
Percentage of neurons pruned

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Unnorm
EWN
SWN

(b) L = e−100

0 20 40 60 80
Percentage of neurons pruned

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Unnorm
EWN
SWN

(c) L = e−300

Figure 5: Variation of test accuracy vs percentage of neurons pruned in first layer at different loss
values for MNIST experiment

EWN, SWN and Unnorm on MNIST (LeCun et al., 2010) dataset. We use a 2-layer ReLU network
with 1024 neurons in the hidden layer. In case of EWN and SWN, only the first layer is weight
normalized as only this layer needs to be pruned.

Pruning Strategy: The natural pruning strategy of removing neurons u with least ∥wu∥ gives
inordinate importance to the initialisation and the initial optimization epochs. In order to minimize
the effect of initialization and initial movement of weights, we prune according to the weight norm
increase from a reference point. For example, when pruning at a loss value of e−300 we consider 4
reference points - 0, weight at initialization, weight when L = e−10 and L = e−100. We then choose
the pruning strategy that gives maximum testing accuracy for a given level of pruning. Similarly,
for pruning at a loss value of e−100, we consider three reference points - 0, weight at initialization
and weight when L = e−10, and for pruning at a loss value of e−10, we consider 0, weight at
initialization and weight when L = e−5. More detailed description of the pruning strategy is
provided in Appendix Q.

The pruning graphs for MNIST at different loss values averaged across multiple seeds are shown
in Figure 5. It can be seen that when the loss levels are sufficiently low, the EWN network becomes
better adapted for pruning, significantly outperforming SWN and the unnormalized network in terms
of test accuracy for a given level of pruning. Further details along with convergence rate plots are
provided in Appendix O.

6.1. Combining EWN with other sparsity regularizers

EWN by itself has a sparsifying effect, and in addition it can be combined with other sparsity
regularizers. e.g. the neural net can be trained using any existing sparsity regularizer with standard
parameterization for the initial few epochs, and use EWN (without the regularizer) for the later
phase.

We conducted experiment on MNIST dataset, by initially training the network till convergence
with ℓ2,1 group sparsity regularizer (

∑
u∈nodes of network ∥wu∥), and later on using EWN till a loss

value of e−30. In this case, the pruning strategy is based on the final norms of the weights as the
sparsity regularizer already induces an asymmetry among different neurons. The pruning results are

10
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Figure 6: (a) Variation of test accuracy vs percentage of neurons pruned on MNIST dataset after
training the network initially with ℓ2,1 regularizer and later on continuing training with
either EWN, SWN or unnormalized net till L = e−30 (b) Zoomed in view on EWN

shown in Figure 6. As can be seen, training further with EWN improves the pruning efficacy of the
network.

7. Proof Sketch

In this section, we provide the proof for part (iii)a of Proposition 5 for gradient flow, i.e, for EWN,
∥wu(t2)∥
∥wv(t2)∥ > 1

(c−ϵ) cos(δ) =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞. Remaining proofs are given in appendix.

The update equations for αu and vu in case of gradient flow for EWN are given by

dαu(t)

dt
= −η(t)eαu(t)vu(t)

⊤∇wuL
∥vu(t)∥

(7)

dvu(t)

dt
= −η(t)

eαu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL (8)

Using Equation (7) (along with the fact that ∥vu(t)∥ does not change with time and ∥vu(0)∥ =
1),

d∥wu(t)∥
dt

=
deαu(t)

dt
= −η(t)∥wu(t)∥2(vu(t)

⊤∇wuL(w(t)) (9)

Using Equation (9) and part 1 of Proposition 5, we can say for t > t1,

d∥wu(t)∥
∥wv(t)∥

dt
=

∥wv(t)∥d∥wu(t)∥
dt − ∥wu(t)∥d∥wv(t)∥

dt

∥wv(t)∥2

≥ η(t)
∥wu(t)∥
∥wv(t)∥

(∥wu(t)∥∥∇wuL(w(t))∥ cos(δ)− ∥wv(t)∥∥∇wvL(w(t))∥)

≥ η(t)∥wu(t)∥∥∇wuL(w(t))∥
(
∥wu(t)∥
∥wv(t)∥

cos(δ)− 1

c− ϵ

)
(10)

11
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In this case, using Equation (10), we can see
d
∥wu(t)∥
∥wv(t)∥
dt > 0 at t2. Thus, ∥wu(t)∥

∥wv(t)∥ always remains

greater than 1
(c−ϵ) cos(δ) and keeps on increasing. Let’s denote ∥wu(t2)∥

∥wv(t2)∥ by ∆. Then, for t > t2,

d∥wu(t)∥
∥wv(t)∥

dt
≥
(
∆cos(δ)− 1

c− ϵ

)
η(t)∥wu(t)∥∥∇wuL(w(t))∥

As αu → ∞,
∫∞
t2

η(t)∥wu(t)∥∥∇wuL(w(t))∥dt = ∞ using Equation (7). Thus, integrating both
the sides of the equation above from t2 to ∞, we get

∫ ∞

t2

d∥wu(t)∥
∥wv(t)∥

dt
dt ≥ ∞

Thus limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞. A similar proof works for the part (iii)b of Proposition 5 as well.

8. Conclusion

In this paper, we analyze the inductive bias of weight normalization for smooth homogeneous neural
nets and show that exponential weight normalization is likely to lead to asymptotically sparse solu-
tions and has a faster convergence rate than unnormalized or standard weight normalized networks.

The smooth homogeneity assumptions made in the paper are satisfied by any positive power of
ReLU greater than 1. The primary issue with ReLU is that the assumption of gradients converging in
direction does not make sense for the non-smooth case. However, as our experiments demonstrate,
the implication of relative sparsity holds for ReLU activation as well. Therefore, extending the
results in the paper for the non-smooth case is a promising research direction.

Although the trajectory based assumptions have been shown to hold for gradient flow on unnor-
malized nets under certain regularity conditions, establishing similar conditions for weight normal-
ized networks remains an open question. Moreover, extending the directional convergence results
from gradient flow to gradient descent is also an interesting research direction.
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Appendix A. Proof of Theorem 1

Theorem The gradient flow path with learning rate η(t) for EWN and SWN are given as follows:

EWN:
dwu(t)

dt
= −η(t)∥wu(t)∥2∇wuL

SWN:
dwu(t)

dt
= −η(t)

(
∥wu(t)∥2∇wuL+

(
1− ∥wu(t)∥2

∥wu(t)∥2

)
(wu(t)

⊤∇wuL)wu(t)

)
The proof for the two parts will be provided in different subsections, where the corresponding part
will be restated for ease of the reader.

A.1. Exponential Weight Normalization

Theorem The gradient flow path with learning rate η(t) for EWN is given by:

dwu(t)

dt
= −η(t)∥wu(t)∥2∇wuL

Proof In case of EWN, weights are reparameterized as wu = eαu vu
∥vu∥ . Then

∇αuL = eαu
v⊤
u∇wuL
∥vu∥

∇vuL =
eαu

∥vu∥

(
I − vuv

⊤
u

∥vu∥2

)
∇wuL

Now, in case of gradient flow with learning rate η(t), we can say

dαu(t)

dt
= −η(t)∇αuL = −η(t)eαu(t)vu(t)

⊤∇wuL
∥vu(t)∥

dvu(t)

dt
= −η(t)∇vuL = −η(t)

eαu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL

Now, using these equations, we can say

d∥vu(t)∥2

dt
= 2vu(t)

⊤
(
dvu(t)

dt

)
= 0

Thus, ∥vu(t)∥ does not change with time. As we assumed ∥vu(0)∥ to be 1, therefore for any t,
∥vu(t)∥ = 1. Using this simplification, we can write

dwu(t)

dt
=

d(eαu(t)vu(t))

dt

= eαu(t)(−η(t)eαu(t)(I − vu(t)vu(t)
⊤)∇wuL)− η(t)e2αu(t)(vu(t)

⊤∇wuL)vu(t)

= −η(t)e2αu(t)∇wuL
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Thus, the gradient flow path with exponential weight normalization can be replicated by an adaptive
learning rate given by η(t)∥wu(t)∥2.

A.2. Standard Weight Normalization

Theorem The gradient flow path with learning rate η(t) for SWN is given by:

dwu(t)

dt
= −η(t)

(
∥wu(t)∥2∇wuL+

(
1− ∥wu(t)∥2

∥wu(t)∥2

)
(wu(t)

⊤∇wuL)wu(t)

)
Proof In case of SWN, weights are reparameterized as wu = γu

vu
∥vu∥ . Then

∇γuL =
v⊤
u∇wuL
∥vu∥

∇vuL =
γu

∥vu∥

(
I − vuv

⊤
u

∥vu∥2

)
∇wuL

Now, in case of gradient flow with learning rate η(t), we can say

dγu(t)

dt
= −η(t)∇αuL = −η(t)

vu(t)
⊤∇wuL

∥vu(t)∥

dvu(t)

dt
= −η(t)∇vuL = −η(t)

γu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL

Now, similar to EWN, ∥vu(t)∥ does not change with time. Using the fact that ∥vu(t)∥ = 1 for all
t, we can say

dwu(t)

dt
=

d(γu(t)vu(t))

dt

= γu(t)(−η(t)γu(t)(I − vu(t)vu(t)
⊤)∇wuL)− η(t)(vu(t)

⊤∇wuL)vu(t)

= −η(t)(γu(t)
2∇wuL+ (1− γu(t)

2)(vu(t)
⊤∇wuL)vu(t))

= −η(t)

(
γu(t)

2∇wuL+

(
1− γu(t)

2

γu(t)2

)
(wu(t)

⊤∇wuL)wu(t)

)
Replacing γu(t) by ∥wu(t)∥ gives the required expression.

Appendix B. Proof of Proposition 2

Proposition Under assumption (A1) for gradient flow, for both SWN and EWN, limt→∞ L(w(t)) =
0.

The proof for SWN, as it is homogeneous in its parameters, was provided by Lyu and Li (2020).
We provide the proof for EWN.

17



INDUCTIVE BIAS OF WEIGHT NORMALIZATION

First of all, for exponential loss

dL(t)
dw

= −
∑
i

e−yiΦ(w(t),xi)yi∇wΦ(w(t),xi) (11)

Now, using Theorem 1,

dL(t)
dt

=

(
dL(t)
dw

)⊤ dw(t)

dt
= −

∑
u

∥wu(t)∥2
∥∥∥∥dL(t)dwu

∥∥∥∥2
Let k be the total number of neurons in the network. Then using the elementary inequality, (

∑n
i=1 ai)

2 ≤
n
∑n

i=1 a
2
i , we get

dL(t)
dt

≤ −1

k

(∑
u

∥wu(t)∥
∥∥∥∥dL(t)dwu

∥∥∥∥
)2

Again using the fact that
∣∣∣w(t)⊤ dL(t)

dw

∣∣∣ ≤∑u ∥wu(t)∥
∥∥∥dL(t)

dwu

∥∥∥, we get

dL(t)
dt

≤ −1

k

(
w(t)⊤

dL(t)
dw

)2

(12)

Taking the dot product with w on both sides of Equation (11) and using w⊤∇wΦ(w,xi) =
LΦ(w,xi) (Euler’s homogeneity theorem), we get

w(t)⊤
dL(t)
dw

= −L
∑
i

e−yiΦ(w(t),xi)yiΦ(w(t),xi)

Now, using the fact, that at time t0, L(t0) < 1, which means mini yiΦ(w(t0),xi) = ϵ > 0. Also, as
we know, for gradient flow, the loss cannot go up, therefore, for any time t > t0, mini yiΦ(w(t),xi) >
ϵ > 0. Using this, we can say, for any t > t0,

w(t)⊤
dL(t)
dw

≤ −LϵL(t))

Substituting this in Equation (12), we get

dL(t)
dt

≤ −L2ϵ2

k
L(t)2

Integrating this equation from t0 to t, we get

1

L(t)
≥ 1

L(t0)
+

L2ϵ2

k
(t− t0) (13)

Clearly as t tends to ∞, RHS tends to ∞ and thus L tends to 0.
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INDUCTIVE BIAS OF WEIGHT NORMALIZATION

Appendix C. Proof of Theorem 3

Theorem Consider a node u in the network with ∥g̃u∥ > 0 and limt→∞ ∥wu(t)∥ = ∞. Under
assumptions (A1), (A2) for gradient flow and (B1)-(B3) for gradient descent, for both SWN and
EWN

(i) limt→∞
wu(t)

∥wu(t)∥ := w̃u exists. (ii) w̃u = λg̃u for some λ > 0.

The proof for different cases will be split into different subsections and corresponding theorem will
be stated there for ease of the reader. The proof will depend on the Stolz Cesaro theorem(stated
in Appendix K),Integral Form of Stolz-Cesaro Theorem(stated and proved in Appendix K) and
following lemmas that have been proved in Appendix J.

Lemma 9 Consider sequence a satisfying the following properties

1. ak > 0

2.
∑∞

k=0 ak = ∞

3. limk→∞ ak = 0

Then
∑∞

k=0
ak√∑k
j=0 a

2
j

= ∞

Lemma 10 Consider two sequences a and b satisfying the following properties

1. ak > 0,
∑∞

k=0 ak = ∞ and limk→∞ ak = 0

2. b0 > 0, b is increasing and b2k+1 ≤ b2k +
(
ak
bk

)2
Then

∑∞
k=0

ak
bk

= ∞.

C.1. Exponential Weight Normalization

In this section, we will use eαu(t) and ∥wu(t)∥ interchangeably.

C.1.1. GRADIENT FLOW

Theorem Consider a node u in the network with ∥g̃u∥ > 0 and limt→∞ ∥wu(t)∥ = ∞. Under
assumptions (A1), (A2) for gradient flow, for EWN

(i) limt→∞
wu(t)

∥wu(t)∥ := w̃u exists. (ii) w̃u = λg̃u for some λ > 0.

Update Equations:
dαu(t)

dt
= −η(t)eαu(t)(vu(t)

⊤∇wuL(w(t))) (14)

dvu(t)

dt
= −η(t)eαu(t)(I − vu(t)vu(t)

⊤)∇wuL(w(t)) (15)

Proof As ∥g̃u∥ > 0, therefore ∇wuL(w(t)) converges in direction. Therefore, for every τ satisfy-

ing 0 < τ < 2π, there exists a time t1(τ), such that for t > t1,
(

−∇wuL(w(t))
∥∇wuL(w(t))∥

)⊤ (
g̃u

∥g̃u∥

)
≥ cos(τ).
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INDUCTIVE BIAS OF WEIGHT NORMALIZATION

Now, Let’s assume that wu(t) does not converge in the direction of g̃u. Then, there must ex-
ist a τ satisfying 0 < τ < 2π, such that for this τ , there exists a time t2 > t1(τ) satisfying
vu(t2)

⊤
(

g̃u

∥g̃u∥

)
= cos(∆), where ∆ > τ .

Now, we are going to show that for any κ satisfying τ < κ < ∆, there exists a time t3 > t2

such that vu(t3)
⊤
(

g̃u

∥g̃u∥

)
> cos(κ). Let’s say for a given κ, no such t3 exists. Then, taking dot

product with g̃u

∥g̃u∥ on both sides of Equation (15), we can say(
g̃u
∥g̃u∥

)⊤ dvu(t)

dt
= η(t)eαu(t)∥∇wuL(w(t))∥

(
g̃u

∥g̃u∥

)⊤
(I−vu(t)vu(t)

⊤)

(
−∇wuL(w(t))

∥∇wuL(w(t))∥

)
Now, as

(
g̃u

∥g̃u∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(τ) and

(
g̃u

∥g̃u∥

)⊤
vu ≤ cos(κ), we can say(

g̃u
∥g̃u∥

)⊤ dvu(t)

dt
≥ η(t)eαu(t)∥∇wuL(w(t))∥(cos(τ)− cos(κ)) (16)

Now, using the fact that αu → ∞ and using Equation (14), we can say∫ ∞

t=t2

η(t)eαu(t)∥∇wuL(w(t))∥dt = ∞

Using this fact and integrating the Equation (16) on both the sides from t2 to ∞, we get a contra-
diction as vectors on LHS have a finite norm while RHS tends to ∞. Thus, for every κ between τ

and ∆, there must exist a t3, such that vu(t3)
⊤
(

g̃u

∥g̃u∥

)
> cos(κ).

Now, we are going to show for all t ≥ t3, vu(t)
⊤
(

g̃u

∥g̃u∥

)
> cos(κ). Now, consider any β

such that τ < β < κ. Using similar argument as in Equation (16), we can say, if for any t4 > t3,
vu(t4)

⊤
(

g̃u

∥g̃u∥

)
< cos(β), then(
g̃u
∥g̃u∥

)⊤ dvu(t4)

dt
≥ η(t4)e

αu(t4)∥∇wuL(w(t4))∥(cos(τ)− cos(β)) (17)

This means that the dot product between
(

g̃u

∥g̃u∥

)
and vu(t) goes up, whenever

(
g̃u

∥g̃u∥

)⊤
vu(t) <

cos(τ). Therefore, its not possible that vu(t)
⊤
(

g̃u

∥g̃u∥

)
≤ cos(κ) for any t > t3. As κ can be

arbitrarily chosen between τ and ∆, wu(t) converges in the direction of g̃u.

C.1.2. GRADIENT DESCENT

Theorem Consider a node u in the network with ∥g̃u∥ > 0 and limt→∞ ∥wu(t)∥ = ∞. Under
assumptions (B1)-(B3) for gradient descent, for EWN

(i) limt→∞
wu(t)

∥wu(t)∥ := w̃u exists. (ii) w̃u = λg̃u for some λ > 0.

Update Equations:

αu(t+ 1) = αu(t)− η(t)eαu(t)vu(t)
⊤∇wuL(w(t))

∥vu(t)∥
(18)
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INDUCTIVE BIAS OF WEIGHT NORMALIZATION

vu(t+ 1) = vu(t)− η(t)
eαu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL(w(t)) (19)

Proof
As ∥g̃u∥ > 0, therefore ∇wuL(w(t)) converges in direction. Therefore, for every τ satisfying

0 < τ < 2π, there exists a time t1(τ), such that for t > t1(τ),
(

−∇wuL(w(t))
∥∇wuL(w(t))∥

)⊤ (
g̃u

∥g̃u∥

)
≥

cos(τ). Now, Let’s assume that wu(t) does not converge in the direction of g̃u. Then, there must
exist a τ satisfying 0 < τ < 2π, such that for this τ , there exists a time t2 > t1(τ) satisfying
vu(t2)

⊤
(

g̃u

∥g̃u∥

)
= cos(∆), where ∆ > τ .

Now, we are going to show that for any κ satisfying τ < κ < ∆, there exists a time t3 > t2

such that
(

vu(t3)
∥vu(t3)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ). Let’s say for a given κ, no such t3 exists. Then, taking

dot product with g̃u

∥g̃u∥ on both sides of Equation (19), we can say

vu(t+ 1)⊤g̃u
∥g̃u∥

=
vu(t)

⊤g̃u
∥g̃u∥

+

η(t)
eαu(t)

∥vu(t)∥
∥∇wuL(w(t))∥

(
g̃u
∥g̃u∥

)⊤(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)(
−∇wuL(w(t))

∥∇wuL(w(t))∥

)
Now, as

(
g̃u

∥g̃u∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(τ) and

(
g̃u

∥g̃u∥

)⊤ (
vu(t)

∥vu(t)∥

)
≤ cos(κ), we can say

vu(t+ 1)⊤g̃u
∥g̃u∥

≥ vu(t)
⊤g̃u

∥g̃u∥
+ (cos(τ)− cos(κ))

(
η(t)

eαu(t)

∥vu(t)∥
∥∇wuL(w(t))∥

)
(20)

However, in this case, ∥vu(t)∥ doesn’t stay constant and thus increase in dot product doesn’t
directly correspond to an increase in angle. Now, using Equation (19), we can say

∥vu(t+ 1)∥2 ≤ ∥vu(t)∥2 +

(
η(t)

eαu(t)

∥vu(t)∥
∥∇wuL(w(t))∥

)2

(21)

Using the above two equations, we can say, for time t > t2,

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥
vu(t)⊤g̃u

∥g̃u∥ + (cos(τ)− cos(κ))
(
η(t) eαu(t)

∥vu(t)∥∥∇wuL(w(t))∥
)

√
∥vu(t)∥2 +

(
η(t) eαu(t)

∥vu(t)∥∥∇wuL(w(t))∥
)2

Unrolling the equation above, we get

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥
vu(t2)⊤g̃u

∥g̃u∥ +
∑k=t

k=t2
(cos(τ)− cos(κ))

(
η(k) eαu(k)

∥vu(k)∥∥∇wuL(w(k))∥
)

√
∥vu(t2)∥2 +

∑k=t
k=t2

(
η(k) eαu(k)

∥vu(k)∥∥∇wuL(w(k))∥
)2 (22)

Now, as αu(t) → ∞, therefore, using Equation (18), we can say

k=∞∑
k=t2

η(k)eαu(k)∥∇wuL(w(k))∥ = ∞
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INDUCTIVE BIAS OF WEIGHT NORMALIZATION

Now, using this identity, along with the Assumption (A5), Equation (21) and Lemma 10, we can
say

∞∑
k=t2

η(k)
eαu(k)

∥vu(k)∥
∥∇wuL(w(k))∥ = ∞

Using this along with Equation (22) and Lemma 9, we can say

lim
t→∞

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥ ∞

However, this is not possible as the vectors on LHS have bounded norm. This contradicts. Thus

there must exist a t3 such that
(

vu(t3)
∥vu(t3)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ).

Now, we are going to show that there exists a t4 > t3, such that for all t > t4,
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
>

cos(κ). Consider a β such that τ < β < κ. Now, if at any time t,
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
< cos(β),

then, similar to Equation (20), we can say

vu(t+ 1)⊤g̃u
∥g̃u∥

≥ vu(t)
⊤g̃u

∥g̃u∥
+ (cos(τ)− cos(β))

(
η(t)

eαu(t)

∥vu(t)∥
∥∇wuL(w(t))∥

)

Using the upper bound on ∥vu(t+ 1)∥ from Equation (21), we can say

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥
vu(t)⊤g̃u

∥g̃u∥ + (cos(τ)− cos(β))
(
η(t) eαu(t)

∥vu(t)∥∥∇wuL(w(t))∥
)

√
∥vu(t)∥2 +

(
η(t) eαu(t)

∥vu(t)∥∥∇wuL(w(t))∥
)2 (23)

Let η(t) eαu(t)

∥vu(t)∥∥∇wuL(w(t))∥ be denoted by χ(t). Then, the above equation can be rewritten as

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥ vu(t)
⊤g̃u

∥vu(t)∥∥g̃u∥
∥vu(t)∥√

∥vu(t)∥2 + χ(t)2
+ (cos(τ)− cos(β))

χ(t)√
∥vu(t)∥2 + χ(t)2

Now, we are going to show that for a small enough χ(t), RHS is greater than vu(t)⊤g̃u

∥vu(t)∥∥g̃u∥ .

vu(t)
⊤g̃u

∥vu(t)∥∥g̃u∥
∥vu(t)∥√

∥vu(t)∥2 + χ(t)2
+ (cos(τ)− cos(β))

χ(t)√
∥vu(t)∥2 + χ(t)2

>
vu(t)

⊤g̃u
∥vu(t)∥∥g̃u∥

=⇒ (cos(τ)− cos(β))
χ(t)√

∥vu(t)∥2 + χ(t)2
>

vu(t)
⊤g̃u

∥vu(t)∥∥g̃u∥

(
1− ∥vu(t)∥√

∥vu(t)∥2 + χ(t)2

)

=⇒ (cos(τ)− cos(β)) >
vu(t)

⊤g̃u
∥vu(t)∥∥g̃u∥

(√
∥vu(t)∥2 + χ(t)2 − ∥vu(t)∥

χ(t)

)

Clearly as χ(t) → 0, the RHS tends to 0, therefore the equation is satisfied. Thus for a small
enough χ(t), RHS of Equation (23) is greater than vu(t)⊤g̃u

∥vu(t)∥∥g̃u∥ . As ∥vu(t)∥ keeps on increasing and
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INDUCTIVE BIAS OF WEIGHT NORMALIZATION

by Assumption (B3), limt→∞ η(t)∥wu(t)∥∥∇wuL(w(t))∥ = 0, we can say there exists a time t5,

such that for any t > t5, vu(t)⊤g̃u

∥vu(t)∥∥g̃u∥ goes up whenever
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
< cos(β).

Also, by using Equation (19) and Assumption (B3), we can say, that there exists a time t6,

such that for t > t6,
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(β) =⇒

(
vu(t+1)

∥vu(t+1)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ),

as the RHS of Equation (19) goes to 0 norm in limit. Now, define t4 > max(t5, t6) such that(
vu(t4)

∥vu(t4)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ) (must exist from previous arguments). Then, as the dot product

always goes up when between cos(β) and cos(κ), and can’t go in a single step from being greater

than cos(β) to less than cos(κ), therefore, for every t > t4,
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ).

Now as the above argument holds for any κ between τ and ∆, and for any τ > 0, we can say
that wu(t) converges in direction of g̃u.

C.2. Standard Weight Normalization

C.2.1. GRADIENT FLOW

Theorem Consider a node u in the network with ∥g̃u∥ > 0 and limt→∞ ∥wu(t)∥ = ∞. Under
assumptions (A1), (A2) for gradient flow, for SWN

(i) limt→∞
wu(t)

∥wu(t)∥ := w̃u exists. (ii) w̃u = λg̃u for some λ > 0.

Update Equations:
dγu(t)

dt
= −η(t)

vu(t)
⊤∇wuL(w(t))

∥vu(t)∥
(24)

dvu(t)

dt
= −η(t)

γu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL(w(t)) (25)

Proof The proof will be given for γu → ∞. The one for γu → −∞ can be handled similarly.
As ∥g̃u∥ > 0, therefore ∇wuL(w(t)) converges in direction. Therefore, for every τ satisfying

0 < τ < 2π, there exists a time t1(τ), such that for t > t1(τ),
(

−∇wuL(w(t))
∥∇wuL(w(t))∥

)⊤ (
g̃u

∥g̃u∥

)
≥

cos(τ). Now, Let’s assume that wu(t) does not converge in the direction of g̃u. Then, there must
exist a τ satisfying 0 < τ < 2π, such that for this τ , there exists a time t2 > t1(τ) satisfying
vu(t2)

⊤
(

g̃u

∥g̃u∥

)
= cos(∆), where ∆ > τ .

Now, we are going to show that for any κ satisfying τ < κ < ∆, there exists a time t3 > t2

such that vu(t3)
⊤
(

g̃u

∥g̃u∥

)
> cos(κ). Let’s say for a given κ, no such t3 exists. Then, taking dot

product with g̃u

∥g̃u∥ on both sides of Equation (25), we can say(
g̃u
∥g̃u∥

)⊤ dvu(t)

dt
= η(t)γu(t)∥∇wuL(w(t))∥

(
g̃u

∥g̃u∥

)⊤
(I−vu(t)vu(t)

⊤)

(
−∇wuL(w(t))

∥∇wuL(w(t))∥

)
Now, as

(
g̃u

∥g̃u∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(τ) and

(
g̃u

∥g̃u∥

)⊤
vu ≤ cos(κ), we can say(

g̃u
∥g̃u∥

)⊤ dvu(t)

dt
≥ η(t)γu(t)∥∇wuL(w(t))∥(cos(τ)− cos(κ)) (26)
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Now, using the fact that γu → ∞ and using Equation (24), we can say∫ ∞

t=t2

η(t)∥∇wuL(w(t))∥dt = ∞

Using this fact and integrating the Equation (26) on both the sides from t2 to ∞, we get a contra-
diction as vectors on LHS have a finite norm while RHS tends to ∞. Thus, for every κ between τ

and ∆, there must exist a t3, such that vu(t3)
⊤
(

g̃u

∥g̃u∥

)
> cos(κ).

Now, we are going to show for all t ≥ t3, vu(t)
⊤
(

g̃u

∥g̃u∥

)
> cos(κ). Now, consider any β

such that τ < β < κ. Using similar argument as in Equation (26), we can say, if for any t4 > t3,
vu(t4)

⊤
(

g̃u

∥g̃u∥

)
< cos(β), then

(
g̃u
∥g̃u∥

)⊤ dvu(t4)

dt
≥ η(t4)γu(t4)∥∇wuL(w(t4))∥(cos(τ)− cos(β)) (27)

This means that the dot product between
(

g̃u

∥g̃u∥

)
and vu(t) goes up, whenever

(
g̃u

∥g̃u∥

)⊤
vu(t) <

cos(τ). Therefore, its not possible that vu(t)
⊤
(

g̃u

∥g̃u∥

)
≤ cos(κ) for any t > t3. As κ can be

arbitrarily chosen between τ and ∆, wu(t) converges in the direction of g̃u

C.2.2. GRADIENT DESCENT

Theorem Consider a node u in the network with ∥g̃u∥ > 0 and limt→∞ ∥wu(t)∥ = ∞. Under
assumptions (B1)-(B3) for gradient descent, for SWN

(i) limt→∞
wu(t)

∥wu(t)∥ := w̃u exists. (ii) w̃u = λg̃u for some λ > 0.

Update Equations:

γu(t+ 1) = γu(t)− η(t)
vu(t)

⊤∇wuL(w(t))

∥vu(t)∥
(28)

vu(t+ 1) = vu(t)− η(t)
γu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL(w(t)) (29)

Proof The proof will be given for γu → ∞. The one for γu → −∞ can be handled similarly.
As ∥g̃u∥ > 0, therefore ∇wuL(w(t)) converges in direction. Therefore, for every τ satisfying

0 < τ < 2π, there exists a time t1(τ), such that for t > t1(τ),
(

−∇wuL(w(t))
∥∇wuL(w(t))∥

)⊤ (
g̃u

∥g̃u∥

)
≥

cos(τ). Now, Let’s assume that wu(t) does not converge in the direction of g̃u. Then, there must
exist a τ satisfying 0 < τ < 2π, such that for this τ , there exists a time t2 > t1(τ) satisfying
vu(t2)

⊤
(

g̃u

∥g̃u∥

)
= cos(∆), where ∆ > τ .

Now, we are going to show that for any κ satisfying τ < κ < ∆, there exists a time t3 > t2

such that
(

vu(t3)
∥vu(t3)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ). Let’s say for a given κ, no such t3 exists. Then, taking
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dot product with g̃u

∥g̃u∥ on both sides of Equation (29), we can say

vu(t+ 1)⊤g̃u
∥g̃u∥

=
vu(t)

⊤g̃u
∥g̃u∥

+

η(t)
γu(t)

∥vu(t)∥
∥∇wuL(w(t))∥

(
g̃u
∥g̃u∥

)⊤(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)(
−∇wuL(w(t))

∥∇wuL(w(t))∥

)

Now, as
(

g̃u

∥g̃u∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(τ) and

(
g̃u

∥g̃u∥

)⊤ (
vu(t)

∥vu(t)∥

)
≤ cos(κ), we can say

vu(t+ 1)⊤g̃u
∥g̃u∥

≥ vu(t)
⊤g̃u

∥g̃u∥
+ (cos(τ)− cos(κ))

(
η(t)

γu(t)

∥vu(t)∥
∥∇wuL(w(t))∥

)
(30)

However, in this case, ∥vu(t)∥ doesn’t stay constant and thus increase in dot product doesn’t directly
correspond to an increase in angle. Now, using Equation (29), we can say

∥vu(t+ 1)∥2 ≤ ∥vu(t)∥2 +
(
η(t)

γu(t)

∥vu(t)∥
∥∇wuL(w(t))∥

)2

(31)

Using the above two equations, we can say, for time t > t2,

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥
vu(t)⊤g̃u

∥g̃u∥ + ϵ
(
η(t) γu(t)

∥vu(t)∥∥∇wuL(w(t))∥
)

√
∥vu(t)∥2 +

(
η(t) γu(t)

∥vu(t)∥∥∇wuL(w(t))∥
)2

Unrolling the equation above, we get

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥
vu(t2)⊤g̃u

∥g̃u∥ +
∑k=t

k=t2
ϵ
(
η(k) γu(k)

∥vu(k)∥∥∇wuL(w(k))∥
)

√
∥vu(t2)∥2 +

∑k=t
k=t2

(
η(k) γu(k)

∥vu(k)∥∥∇wuL(w(k))∥
)2 (32)

Now, as γu(t) → ∞, therefore, using Equation (29), we can say

k=∞∑
k=t2

η(k)∥∇wuL(w(k))∥ = ∞

Now, using this identity, along with the assumption (A5), Equation (31) and Lemma 10, we can say

∞∑
k=t2

η(k)
γu(k)

∥vu(k)∥
∥∇wuL(w(k))∥ = ∞

Using this along with Equation (32) and Lemma 9, we can say

lim
t→∞

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥ ∞
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However, this is not possible as the vectors on LHS have bounded norm. This contradicts. Thus

there must exist a t3 such that
(

vu(t3)
∥vu(t3)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ).

Now, we are going to show that there exists a t4 > t3, such that for all t > t4,
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
>

cos(κ). Consider a β such that τ < β < κ. Now, if at any time t,
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
< cos(β),

then, similar to Equation (30), we can say

vu(t+ 1)⊤g̃u
∥g̃u∥

≥ vu(t)
⊤g̃u

∥g̃u∥
+ (cos(τ)− cos(β))

(
η(t)

γu(t)

∥vu(t)∥
∥∇wuL(w(t))∥

)
Using the upper bound on ∥vu(t+ 1)∥ from Equation (31), we can say

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥
vu(t)⊤g̃u

∥g̃u∥ + (cos(τ)− cos(β))
(
η(t) γu(t)

∥vu(t)∥∥∇wuL(w(t))∥
)

√
∥vu(t)∥2 +

(
η(t) γu(t)

∥vu(t)∥∥∇wuL(w(t))∥
)2 (33)

Let η(t) γu(t)
∥vu(t)∥∥∇wuL(w(t))∥ be denoted by χ(t). Then, the above equation can be rewritten as

vu(t+ 1)⊤g̃u
∥vu(t+ 1)∥∥g̃u∥

≥ vu(t)
⊤g̃u

∥vu(t)∥∥g̃u∥
∥vu(t)∥√

∥vu(t)∥2 + χ(t)2
+ (cos(τ)− cos(β))

χ(t)√
∥vu(t)∥2 + χ(t)2

Now, we are going to show that for a small enough χ(t), RHS is greater than vu(t)⊤g̃u

∥vu(t)∥∥g̃u∥ .

vu(t)
⊤g̃u

∥vu(t)∥∥g̃u∥
∥vu(t)∥√

∥vu(t)∥2 + χ(t)2
+ (cos(τ)− cos(β))

χ(t)√
∥vu(t)∥2 + χ(t)2

>
vu(t)

⊤g̃u
∥vu(t)∥∥g̃u∥

=⇒ (cos(τ)− cos(β))
χ(t)√

∥vu(t)∥2 + χ(t)2
>

vu(t)
⊤g̃u

∥vu(t)∥∥g̃u∥

(
1− ∥vu(t)∥√

∥vu(t)∥2 + χ(t)2

)

=⇒ (cos(τ)− cos(β)) >
vu(t)

⊤g̃u
∥vu(t)∥∥g̃u∥

(√
∥vu(t)∥2 + χ(t)2 − ∥vu(t)∥

χ(t)

)

Clearly as χ(t) → 0, the RHS tends to 0, therefore the equation is satisfied. Thus for a small
enough χ(t), RHS of Equation (33) is greater than vu(t)⊤g̃u

∥vu(t)∥∥g̃u∥ . As ∥vu(t)∥ keeps on increasing
and by Assumption (A5), limt→∞ η(t)γu(t)∥∇wuL(w(t))∥ = 0, we can say there exists a time t5,

such that for any t > t5, vu(t)⊤g̃u

∥vu(t)∥∥g̃u∥ goes up whenever
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
< cos(β).

Also, by using Equation (29) and Assumption (A5), we can say, that there exists a time t6,

such that for t > t6,
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(β) =⇒

(
vu(t+1)

∥vu(t+1)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ),

as the RHS of Equation (29) goes to 0 norm in limit. Now, define t4 > max(t5, t6) such that(
vu(t4)

∥vu(t4)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ) (must exist from previous arguments). Then, as the dot product

always goes up when between cos(β) and cos(κ), and can’t go in a single step from being greater

than cos(β) to less than cos(κ), therefore, for every t > t4,
(

vu(t)
∥vu(t)∥

)⊤ (
g̃u

∥g̃u∥

)
> cos(κ).
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Now as the above argument holds for any κ between τ and ∆, and for any τ > 0, we can say
that wu(t) converges in direction of g̃u.

Appendix D. Proof of Theorem 4

Theorem Consider two nodes u and v in the network with ∥g̃u∥ ≥ ∥g̃v∥ > 0, limt→∞ ∥wu(t)∥ =

∞ and limt→∞ ∥wv(t)∥ = ∞. Let ∥g̃u∥
∥g̃v∥ be denoted by c. Under assumptions (A1), (A2) for

gradient flow and (B1)-(B3) for gradient descent,

(i) for SWN, limt→∞
∥wu(t)∥
∥wv(t)∥ = c

(ii) for EWN, limt→∞
∥wu(t)∥
∥wv(t)∥ is either 0,∞ or 1

c

Proof for different cases will be split into different subsections and the corresponding case will be
restated there for ease of the reader.

D.1. Exponential Weight Normalization

D.1.1. GRADIENT FLOW

Theorem Consider two nodes u and v in the network with ∥g̃u∥ ≥ ∥g̃v∥ > 0, limt→∞ ∥wu(t)∥ =

∞ and limt→∞ ∥wv(t)∥ = ∞. Let ∥g̃u∥
∥g̃v∥ be denoted by c. Under assumptions (A1), (A2) for

gradient flow, for EWN, limt→∞
∥wu(t)∥
∥wv(t)∥ is either 0,∞ or 1

c

Proof Using Theorem 3 and the fact that limt→∞
∥∇wuL(w(t))∥
∥∇wvL(w(t))∥ = c, for any 0 < ϵ < c and

0 < δ < 2π, there exists a time t1, such that for t > t1, the following hold

(i) ∥∇wuL(w(t))∥
∥∇wvL(w(t))∥ ∈ [c− ϵ, c+ ϵ] (ii)

(
wu(t)

∥wu(t)∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(δ)

(iii)
(

wv(t)
∥wv(t)∥

)⊤ ( −∇wvL(w(t))
∥∇wvL(w(t))∥

)
≥ cos(δ).

Now, we will provide the proof of part (iii) of Proposition 5, i.e, for EWN, if at some time
t2 > t1,

(a) ∥wu(t2)∥
∥wv(t2)∥ > 1

(c−ϵ) cos(δ) =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞

(b) ∥wu(t2)∥
∥wv(t2)∥ < cos(δ)

c+ϵ =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = 0

(a) ∥wu(t2)∥
∥wv(t2)∥ > 1

(c−ϵ) cos(δ) =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞

Using Equation (14),

d∥wu(t)∥
dt

=
deαu(t)

dt
= −η(t)∥wu(t)∥2(vu(t)

⊤∇wuL(w(t)) (34)
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Using the equation above, we can say for t > t1,

d∥wu(t)∥
∥wv(t)∥

dt
=

∥wv(t)∥d∥wu(t)∥
dt − ∥wu(t)∥d∥wv(t)∥

dt

∥wv(t)∥2

≥ η(t)
∥wu(t)∥
∥wv(t)∥

(∥wu(t)∥∥∇wuL(w(t))∥ cos(δ)− ∥wv(t)∥∥∇wvL(w(t))∥)

≥ η(t)∥wu(t)∥∥∇wuL(w(t))∥
(
∥wu(t)∥
∥wv(t)∥

cos(δ)− 1

c− ϵ

)
(35)

In this case, using Equation (35), we can see
d
∥wu(t)∥
∥wv(t)∥
dt > 0 at t2. Thus, ∥wu(t)∥

∥wv(t)∥ always remains

greater than 1
(c−ϵ) cos(δ) and keeps on increasing. Let’s denote ∥wu(t2)∥

∥wv(t2)∥ by ∆. Then, for t > t2,

d∥wu(t)∥
∥wv(t)∥

dt
≥
(
∆cos(δ)− 1

c− ϵ

)
η(t)∥wu(t)∥∥∇wuL(w(t))∥

As αu → ∞, therefore using Equation (14), we can say
∫∞
t2

η(t)∥wu(t)∥∥∇wuL(w(t))∥dt → ∞.
Thus, integrating both the sides of the equation above from t2 to ∞, we get

∫ ∞

t2

d∥wu(t)∥
∥wv(t)∥

dt
dt ≥ ∞

Thus limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞.

(b) ∥wu(t2)∥
∥wv(t2)∥ < cos(δ)

c+ϵ =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = 0.

Using Equation (34), we can say for t > t1,

d∥wu(t)∥
∥wv(t)∥

dt
=

∥wv(t)∥d∥wu(t)∥
dt − ∥wu(t)∥d∥wv(t)∥

dt

∥wv(t)∥2

≤ η(t)
∥wu(t)∥
∥wv(t)∥

(∥wu(t)∥∥∇wuL(w(t))∥ − ∥wv(t)∥∥∇wvL(w(t))∥ cos(δ))

= (η(t)∥wv(t)∥∥∇wvL(w(t))∥)∥wu(t)∥
∥wv(t)∥

(
∥wu∥∥∇wuL(w(t))∥
∥wv∥∥∇wvL(w(t))∥

− cos(δ)

)
≤ (η(t)∥wv(t)∥∥∇wvL(w(t))∥)∥wu(t)∥

∥wv(t)∥

(
∥wu∥
∥wv∥

(c+ ϵ)− cos(δ)

)
(36)

In this case, using Equation (36), we can see
d
∥wu(t)∥
∥wv(t)∥
dt < 0 at t2. Thus, ∥wu(t)∥

∥wv(t)∥ always remains

smaller than cos(δ)
c+ϵ and keeps on decreasing. Now, lets say limt→∞

∥wu(t)∥
∥wv(t)∥ > 0. This means that

∥wu(t)∥
∥wv(t)∥ > ∆, for some ∆ > 0. Also, let’s denote ∥wu(t2)∥

∥wv(t2)∥ by β. Then we can say

d∥wu(t)∥
∥wv(t)∥

dt
≤ −∆(cos(δ)− β(c+ ϵ))η(t)∥wv(t)∥∥∇wvL(w(t))∥
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As αv → ∞, therefore using Equation (14), we can say
∫∞
t2

η(t)∥wv(t)∥∥∇wvL(w(t))∥dt = ∞.
Thus, integrating both the sides of the equation above from t2 to ∞, we get

∫ ∞

t2

d∥wu(t)∥
∥wv(t)∥

dt
dt ≤ −∞

This is not possible as ∥wu(t)∥
∥wv(t)∥ is lower bounded by 0. Thus limt→∞

∥wu(t)∥
∥wv(t)∥ = 0.

Now, as ϵ and δ tend to 0, the length of the interval of stability [ cos(δ)c+ϵ , 1
(c−ϵ) cos(δ) ] shrinks to

zero, around the point 1
c . Thus, either ∥wu(t)∥

∥wv(t)∥ moves out of the interval of stability and converges
to either 0 or ∞, or it always remains within the interval of stability and converges to 1

c .

D.1.2. GRADIENT DESCENT

Theorem Consider two nodes u and v in the network with ∥g̃u∥ ≥ ∥g̃v∥ > 0, limt→∞ ∥wu(t)∥ =

∞ and limt→∞ ∥wv(t)∥ = ∞. Let ∥g̃u∥
∥g̃v∥ be denoted by c. Under assumptions (B1)-(B3) for gradient

descent, for EWN, limt→∞
∥wu(t)∥
∥wv(t)∥ is either 0,∞ or 1

c

Proof Using Theorem 3 and the fact that limt→∞
∥∇wuL(w(t))∥
∥∇wvL(w(t))∥ = c, for any 0 < ϵ < c and

0 < δ < 2π, there exists a time t1, such that for t > t1, the following hold

(i) ∥∇wuL(w(t))∥
∥∇wvL(w(t))∥ ∈ [c− ϵ, c+ ϵ] (ii)

(
wu(t)

∥wu(t)∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(δ)

(iii)
(

wv(t)
∥wv(t)∥

)⊤ ( −∇wvL(w(t))
∥∇wvL(w(t))∥

)
≥ cos(δ).

Now, we will provide the proof of part (iii) of Proposition 5, i.e, for EWN, if at some time
t2 > t1,

(a) ∥wu(t2)∥
∥wv(t2)∥ > 1

(c−ϵ) cos(δ) =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞

(b) ∥wu(t2)∥
∥wv(t2)∥ < cos(δ)

c+ϵ =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = 0

(a) ∥wu(t2)∥
∥wv(t2)∥ > 1

(c−ϵ) cos(δ) =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞

Using Equation (18) and part 1 of the Proposition, we can say

∥wu(t2 + 1)∥
∥wv(t2 + 1)∥

≥ ∥wu(t2)∥+ η(t2) cos(δ)∥wu(t2)∥2∥∇wuL(w(t2))∥
∥wv(t2)∥+ η(t2)∥wv(t2)∥2∥∇wvL(w(t2))∥

=
∥wu(t2)∥
∥wv(t2)∥

(
1 + cos(δ)η(t2)∥wu(t2)∥∥∇wuL(w(t2))∥

1 + η(t2)∥wv(t2)∥∥∇wvL(w(t2))∥

)
≥ ∥wu(t2)∥

∥wv(t2)∥
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Thus, ∥wu(t)∥
∥wv(t)∥ keeps on increasing for t > t2. It can either diverge to infinity or converge to a finite

value. If it converges to a finite value, then by Stolz Cesaro theorem,

lim
t→∞

∥wu(t)∥
∥wv(t)∥

= lim
t→∞

∥wu(t)∥2∥∇wuL(w(t))∥
∥wv(t)∥2∥∇wvL(w(t))∥

However, this is not possible as ∥wu(t)∥
∥wv(t)∥ > 1

c for every t > t2. Thus, ∥wu(t)∥
∥wv(t)∥ diverges to infinity.

(b) ∥wu(t2)∥
∥wv(t2)∥ < cos(δ)

c+ϵ =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = 0

Using Equation (18) and part 1 of the Proposition, we can say

∥wu(t2 + 1)∥
∥wv(t2 + 1)∥

≤ ∥wu(t2)∥+ η(t2)∥wu(t2)∥2∥∇wuL(w(t2))∥
∥wv(t2)∥+ η(t2) cos(δ)∥wv(t2)∥2∥∇wvL(w(t2))∥

=
∥wu(t2)∥
∥wv(t2)∥

(
1 + η(t2)∥wu(t2)∥∥∇wuL(w(t2))∥

1 + η(t2) cos(δ)∥wv(t2)∥∥∇wvL(w(t2))∥

)
≤ ∥wu(t2)∥

∥wv(t2)∥

Thus, ∥wu(t)∥
∥wv(t)∥ keeps on decreasing for t > t2. As it is always greater than zero, it must converge.

Therefore, by Stolz Cesaro Theorem,

lim
t→∞

∥wu(t)∥
∥wv(t)∥

= lim
t→∞

∥wu(t)∥2∥∇wuL(w(t))∥
∥wv(t)∥2∥∇wvL(w(t))∥

For ∥wu(t)∥
∥wv(t)∥ < 1

c , this can only be satisfied when limt→∞
∥wu(t)∥
∥wv(t)∥ = 0.

Now, as ϵ and δ tend to 0, the length of the interval of stability [ cos(δ)c+ϵ , 1
(c−ϵ) cos(δ) ] shrinks to

zero, around the point 1
c . Thus, either ∥wu(t)∥

∥wv(t)∥ moves out of the interval of stability and converges
to either 0 or ∞, or it always remains within the interval of stability and converges to 1

c .

D.2. Standard Weight Normalization

D.2.1. GRADIENT FLOW

Theorem Consider two nodes u and v in the network with ∥g̃u∥ ≥ ∥g̃v∥ > 0, limt→∞ ∥wu(t)∥ =

∞ and limt→∞ ∥wv(t)∥ = ∞. Let ∥g̃u∥
∥g̃v∥ be denoted by c. Under assumptions (A1), (A2) for

gradient flow, for SWN, limt→∞
∥wu(t)∥
∥wv(t)∥ = c

Proof From Theorem 3, we can say, for both u and v, weights and gradients converge in opposite
directions.

Consider a time t1, such that for any t > t1,

• −∇wuL(w(t)) and wu(t) atmost make an angle ϵ with each other

• −∇wvL(w(t)) and wv(t) atmost make an angle ϵ with each other
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Then, using Equation (24), we can say for any time t > t1,

∥wu(t)∥ ≥ ∥wu(t2)∥+ cos(ϵ)
∫ t

k=t2

η(k)∥∇wuL(w(k))∥dk

∥wu(t)∥ ≤ ∥wu(t2)∥+
∫ t

k=t2

η(k)∥∇wuL(w(k))∥dk

∥wv(t)∥ ≥ ∥wv(t2)∥+ cos(ϵ)
∫ t

k=t2

η(k)∥∇wvL(w(k))∥dk

∥wv(t)∥ ≤ ∥wv(t2)∥+
∫ t

k=t2

η(k)∥∇wvL(w(k))∥dk

Using the above equations, we can say, for time t > t2,

∥wu(t)∥
∥wv(t)∥

≥
∥wu(t2)∥+ cos(ϵ)

∫ t
k=t2

η(k)∥∇wuL(w(k))∥dk
∥wv(t2)∥+

∫ t
k=t2

η(k)∥∇wvL(w(k))∥dk

∥wu(t)∥
∥wv(t)∥

≤
∥wu(t2)∥+

∫ t
k=t2

η(k)∥∇wuL(w(k))∥dk
∥wv(t2)∥+ cos(ϵ)

∫ t
k=t2

η(k)∥∇wvL(w(k))∥dk

We know that both integrals diverge as ∥wu(t)∥ and ∥wv(t)∥ → ∞, limt→∞
∥wu(t)∥
∥wv(t)∥ and limt→∞

∥∇wuL(w(t))∥
∥∇wvL(w(t))∥

exist. Taking limit t → ∞ on both the equations and using the Integral form of Stolz-Cesaro theo-
rem, we get

lim inf
t→∞

∥wu(t)∥
∥wv(t)∥

≥ cos(ϵ)∥g̃u∥
∥g̃v∥

lim sup
t→∞

∥wu(t)∥
∥wv(t)∥

≤ ∥g̃u∥
cos(ϵ)∥g̃v∥

As this holds for any ϵ > 0, therefore

lim
t→∞

∥wu(t)∥
∥wv(t)∥

= c

D.2.2. GRADIENT DESCENT

Theorem Consider two nodes u and v in the network with ∥g̃u∥ ≥ ∥g̃v∥ > 0, limt→∞ ∥wu(t)∥ =

∞ and limt→∞ ∥wv(t)∥ = ∞. Let ∥g̃u∥
∥g̃v∥ be denoted by c. Under assumptions (B1) - (B3) for

gradient descent, for SWN, limt→∞
∥wu(t)∥
∥wv(t)∥ = c

Proof For ease of notation, we will denote the two nodes by u and s. From Theorem 3, we can say,
for both u and s, weights and gradients converge in opposite directions. Now from Equation (28),
we can say

γu(t) = γu(0)−
k=t−1∑
k=0

η(k)
vu(k)

⊤∇wuL(w(k))

∥vu(k)∥
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γs(t) = γs(0)−
k=t−1∑
k=0

η(k)
vs(k)

⊤∇wsL(w(k))

∥vs(k)∥

Now, γs(t) either diverges to ∞ or −∞. In both the cases, it is a strictly monotonic sequence
for large enough t. Also limt→∞

γu(t+1)−γu(t)
γs(t+1)−γs(t)

exists. Therefore, using Stolz-Cesaro Theorem, we
can say

lim
t→∞

∥wu(t)∥
∥ws(t)∥

= c

Appendix E. Proof of Proposition 5

Proposition Consider two nodes u and v in the network such that ∥g̃v∥ ≥ ∥g̃u∥ > 0 and
∥wu(t)∥, ∥wv(t)∥ → ∞. Let ∥g̃u∥

∥g̃v∥ be denoted by c. Consider any ϵ, δ such that 0 < ϵ < c

and 0 < δ < π
2 . Then, the following holds:

(i) There exists a time t1, such that for all t > t1 both SWN and EWN trajectories have the
following properties:

(a) ∥∇wuL(w(t))∥
∥∇wvL(w(t))∥ ∈ [c− ϵ, c+ ϵ] (b)

(
wu(t)

∥wu(t)∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(δ)

(c)
(

wv(t)
∥wv(t)∥

)⊤ ( −∇wvL(w(t))
∥∇wvL(w(t))∥

)
≥ cos(δ).

(ii) for SWN, limt→∞
∥wu(t)∥
∥wv(t)∥ = c

(iii) for EWN, if at some time t2 > t1,

(a) ∥wu(t2)∥
∥wv(t2)∥ > 1

(c−ϵ) cos(δ) =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞

(b) ∥wu(t2)∥
∥wv(t2)∥ < cos(δ)

c+ϵ =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = 0

Proof (i) It follows from Theorem 3 and the fact that limt→∞
∥∇wuL(w(t))∥
∥∇wvL(w(t))∥ = c.

(ii) Proof provided in Appendix D.2
(iii) Proof provided in Appendix D.1

Appendix F. Proof of Proposition 6

Proposition Consider a linear model over Rd given by f(x) = w⊤x, where each wi is further
reparameterized as eαi . Consider a dataset consisting of a single data point z ≻ 0, that is labelled
as +1. According to the initialization of α, define a relation R on {1, . . . , d}, given by i ∼ j if
wi(0)zi = wj(0)zj . Then, R is an equivalence relation on {1, . . . , d}. Let these equivalent sets be
denoted by I1, I2, ..., Ik. Define a total order on these sets given by Ia > Ib if ∃i ∈ Ia, j ∈ Ib such
that wi(0)zi > wj(0)zj . Let the maximum set according to this order be denoted by I∗. Then, for
gradient flow on exponential loss, the following holds

(i) For any i ∈ I∗, limt→∞wi(t) = ∞
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(ii) For i, j ∈ I∗, wi(t)
wj(t)

=
zj
zi

.

(iii) For any i /∈ I∗, limt→∞wi(t) =
(

1
wi(0)

− zi
wj(0)zj

)−1
, where j is any element in I∗.

Proof In this case, the loss is given by

L(w) = e−w⊤z

As each wi is further exponentially reparameterized, therefore, using Theorem 1,

dwi

dt
= w2

i zie
−w⊤z (37)

Using this equation, we can say, for any pair of indices i, j,

d( zi
wj

− zj
wi
)

dt
= 0

Thus, for any pair of indices i, j

zi
wj(t)

− zj
wi(t)

=
zi

wj(0)
− zj

wi(0)
(38)

Thus, we can say for every equivalent set Ia, if i, j ∈ Ia, then as zj
wi(0)

− zi
wj(0)

= 0, therefore,
at any time t,

wi(t)

wj(t)
=

zj
zi

Now, clearly the gradient flow stops only when w⊤z → ∞. This means atleast one of the wi must
tend to ∞ (Notice from Equation (37) that wi always goes up). For two equivalents sets Ia and Ib,
such that Ia > Ib, we can say, for i ∈ Ia and j ∈ Ib, the RHS of Equation (38) is positive. Thus, it
is not possible for wj to go to ∞, otherwise the quantity on the LHS will be negative when t → ∞.
Using this argument, we can say, only for i ∈ I∗, wi tend to ∞. Then, for i /∈ I∗, considering
j ∈ I∗ and using Equation (38),

lim
t→∞

wi(t) =

(
1

wi(0)
− zi

wj(0)zj

)−1

Appendix G. Proof of Theorem 7

Theorem For Exponential Weight Normalization, under assumption (A1), the following hold for
t > t0 in case of gradient flow

(i) ∥w(t)∥ grows with t as o((log t)
1
L ) (ii) L(t) goes down with t as O

(
1
t

)
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Proof Using Equation (13), we can say

1

L(t)
≥ 1

L(t0)
+

L2ϵ2

k
(t− t0)

Thus L(t) goes down with t as O
(
1
t

)
. Now, we know, L(w) =

∑
i e

−yiΦ(w,xi). Clearly, as
Φ(w,xi) is smooth, therefore L(w) attains a minima over the compact set ∥w∥ = 1. Using homo-
geneity of Φ and the fact that L goes down at O

(
1
t

)
, we can say ∥w(t)∥ grows with t as o((log t)

1
L ).

Appendix H. Proof of Theorem 8

Theorem For Exponential Weight Normalization, under Assumptions (B1)-(B4), ρ > 0, η(t) =

O
((
log 1

L
)c) for c < 1 and limt→∞

∥r(t+1)−r(t)∥
g(t+1)−g(t) = 0, the following hold

(i) ∥w(t)∥ asymptotically grows with t as Θ
(
(log d(t))

1
L

)
(ii) L(w(t)) asymptotically goes down with t as Θ

(
1

d(t)(log d(t))2

)
.

First, we will establish rates for gradient flow to elucidate the proof technique and then go to the
case of gradient descent.

H.1. Gradient Flow

Although the asymptotic convergence rates for smooth homogeneous neural nets have been estab-
lished in Lyu and Li (2020), the proof technique becomes easier to understand for smooth homo-
geneous nets, without weight normalization. In this case, we will use an assumption (A3) that
limt→∞

w(t)
∥w(t)∥ exists.

H.1.1. UNNORMALIZED NETWORK

Theorem For Unnorm, under Assumptions (A1)-(A3) for gradient flow, ρ > 0 and limt→∞
∥ dr(t)

dt
∥

g′(t) =
0, the following hold

1. ∥w(t)∥ asymptotically grows at Θ
(
(log t)

1
L

)
2. L(w(t)) asymptotically goes down at the rate of Θ

(
1

t(log t)2−
2
L

)
.

Proof Consider w = g(t)w̃ + r(t), where limt→∞
∥r(t)∥
g(t) = 0 and r(t)⊤w̃ = 0. Now, we make

an additional assumption that limt→∞
∥ dr(t)

d(t)
∥

g′(t) = 0. This basically avoids any oscillations in r(t) for
large t, where it can have a higher derivative, but the value may be bounded. Now, we know

dw(t)

dt
=

m∑
i=1

e−yiΦ(w(t),xi)yi∇wΦ(w(t),xi) (39)
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Now, we know ∥dw(t)
dt ∥ ≠ 0 for any finite t, otherwise w won’t change and L can’t converge to

0. Thus, for all t, we can say

∥dw(t)
dt ∥

∥
∑m

i=1 e
−yiΦ(w(t),xi)yi∇wΦ(w,xi)∥

= 1

Taking limit t → ∞ on both the sides, we get

lim
t→∞

∥dw(t)
dt ∥

∥
∑m

i=1 e
−yiΦ(w(t),xi)yi∇wΦ(w,xi)∥

= 1

Now, we know

∥dw(t)

dt
∥ = ∥g′(t)w̃ +

dr(t)

dt
∥

∥
m∑
i=1

e−yiΦ(w(t),xi)yi∇wΦ(w,xi)∥ = ∥
m∑
i=1

e
−yig(t)

LΦ
(
w̃+

r(t)
g(t)

,xi

)
(yig(t)

L−1∇wΦ

(
w̃ +

r(t)

g(t)
,xi

)
∥

Thus, we can say

∥
m∑
i=1

e−yiΦ(w(t),xi)yi∇wΦ(w,xi)∥ = L(w(t))g(t)L−1∥
m∑
i=1

e−yiΦ(w(t),xi)

L(w(t))
yi∇wΦ

(
w̃ +

r(t)

g(t)
,xi

)
∥

Now, for large enough t, ∥
∑m

i=1
e−yiΦ(w(t),xi)

L(w(t)) yi∇wΦ
(
w̃ + r(t)

g(t) ,xi

)
∥ is bounded as, using Euler’s

homogeneous theorem, we can say

lim
t→∞

w̃⊤

(
m∑
i=1

e−yiΦ(w(t),xi)

L(w(t))
yi∇wΦ

(
w̃ +

r(t)

g(t)
,xi

))
= lim

t→∞
L

(
m∑
i=1

e−yiΦ(w(t),xi)

L(w(t))
Φ(w̃,xi)

)

Thus, its a convex combination of positive defined terms and hence bounded. Thus, we can say

k1 ≤ lim
t→∞

∥dw(t)
dt ∥

L(w(t))g(t)L−1
≤ k2 (40)

where k1 and k2 are some constants. Also, by the assumption

lim
t→∞

∥dw(t)
dt ∥

g′(t)
= 1

Thus, we can say

k1 ≤ lim
t→∞

g′(t)

L(w(t))g(t)L−1
≤ k2

Now, as for large enough t, for all i that satisfy Φ(w̃,xi) = ρ and any ϵ satisfying 0 < ϵ < ρ, we
can say

ρ− ϵ ≤ Φ

(
w̃ +

r(t)

g(t)
,xi

)
≤ ρ+ ϵ
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therefore, for large enough t, we can say

c1e
−g(t)L(ρ+ϵ) ≤ L(w(t)) ≤ c2e

−g(t)L(ρ−ϵ)

where c1 and c2 are some constants. Using the above equations, we can say

lim
t→∞

g′(t)

e−g(t)L(ρ+ϵ)g(t)L−1
≥ k1c1 (41)

lim
t→∞

g′(t)

e−g(t)L(ρ−ϵ)g(t)L−1
≤ k2c2 (42)

Now, in Equation 41, multiplying numerator and denominator by Lg(t)L−1(ρ + ϵ) and denoting
g(t)L(ρ+ ϵ) by h1(t), we get

lim
t→∞

h′1(t)

e−h1(t)h1(t)
2− 2

L

≥ α

where α is some constant. This leads us to conclude

lim
t→∞

h1(t)

log(t)
≥ 1 =⇒ lim

t→∞

g(t)L(ρ+ ϵ)

log(t)
≥ 1

Similarly, in Equation 42, multiplying numerator and denominator by Lg(t)L−1(ρ−ϵ) and denoting
g(t)L(ρ− ϵ) by h2(t), we get

lim
t→∞

h′2(t)

e−h2(t)h2(t)
2− 2

L

≤ β

where β is some constant. This leads us to conclude

lim
t→∞

h2(t)

log(t)
≤ 1 =⇒ lim

t→∞

g(t)L(ρ− ϵ)

log(t)
≤ 1

As ϵ can be chosen to be arbitrarily small, we can conclude

lim
t→∞

g(t)Lρ

log(t)
= 1

Substituting this in Equation 40, we get that loss asymptotically goes down at Θ
(

1

t(log t)2−
2
L

)
.

H.1.2. EXPONENTIAL WEIGHT NORMALIZATION

Theorem For EWN, under Assumptions (A1)-(A3) for gradient flow and limt→∞
∥ dr(t)

dt
∥

g′(t) = 0, the
following hold

1. ∥w(t)∥ asymptotically grows at Θ
(
log(t)

1
L

)
2. L(w(t)) asymptotically goes down at the rate of Θ

(
1

t(log t)2

)
.
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Proof Consider w = g(t)w̃ + r(t), where limt→∞
∥r(t)∥
g(t) = 0 and r(t)⊤w̃ = 0. Now, we make an

additional assumption that limt→∞
∥ dr(t)

d(t)
∥

g′(t) = 0.
In this case,

−dL(w(t))

dw
=

m∑
i=1

e−yiΦ(w(t),xi)yi∇wΦ(w(t),xi)

However, in this case, for a node u,

dwu(t)

dt
= −∥wu(t)∥2

dL(w(t))

dwu

Consider a vector a(t) of equal dimension as w, and its components corresponding to a node u is
given by au(t) = −∥w̃u∥2 dL(w(t))

dwu
. Now as we know w converges in direction to w̃, therefore,

using the update equation above, we can say

lim
t→∞

∥dw(t)
dt ∥

g(t)2∥a(t)∥
= 1

Using the update equation for −dL(w(t))
dw , which is the same as Equation 39, and using the same

arguments as for Unnorm in Appendix H.1.1, we can say

k1 ≤ lim
t→∞

∥dL(w(t))
dw ∥

L(w(t))g(t)L−1
≤ k2 (43)

where k1 and k2 are some constants. Now, using the expression for a(t), we can say

k3 ≤ lim
t→∞

∥a(t)∥
L(w(t))g(t)L−1

≤ k4

where k3 and k4 are some constants. Now, from the assumption, we know

lim
t→∞

∥dw(t)
dt ∥

g′(t)
= 1

Using the equations above, we can say

k3 ≤
g′(t)

L(w(t))g(t)L+1
≤ k4 (44)

Using similar reasoning as for Unnorm in Appendix H.1.1, we can say, for a large enough t,

c1e
−g(t)L(ρ+ϵ) ≤ L(w(t)) ≤ c2e

−g(t)L(ρ−ϵ)

where c1 and c2 are some constants. Substituting this in equation above, we get

lim
t→∞

g′(t)

e−g(t)L(ρ+ϵ)g(t)L+1
≥ k3c1 (45)

lim
t→∞

g′(t)

e−g(t)L(ρ−ϵ)g(t)L+1
≤ k4c2 (46)
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Now, using similar arguments as for Unnorm in Appendix H.1.1, we can say

lim
t→∞

g(t)Lρ

log(t)
= 1

Substituting this in Equation 44, we get that loss asymptotically goes down at Θ
(

1
t(log t)2

)
.

H.2. Gradient Descent

Theorem For Exponential Weight Normalization, under Assumptions (B1)-(B4), ρ > 0, η(t) =

O
((
log 1

L
)c) for c < 1 and limt→∞

∥r(t+1)−r(t)∥
g(t+1)−g(t) = 0, the following hold

(i) ∥w(t)∥ asymptotically grows with t as Θ
(
(log d(t))

1
L

)
(ii) L(w(t)) asymptotically goes down with t as Θ

(
1

d(t)(log d(t))2

)
.

Proof Consider w = g(t)w̃ + r(t), where limt→∞
∥r(t)∥
g(t) = 0 and r(t)⊤w̃ = 0. Now, we make

additional assumptions that limt→∞
∥r(t+1)−r(t)∥
g(t+1)−g(t) = 0.

Consider a node u in the network that has ∥w̃u∥ > 0. The update equations for vu(t) and αu(t)
are given by

αu(t+ 1) = αu(t)− η(t)eαu(t)vu(t)
⊤∇wuL(w(t))

∥vu(t)∥

vu(t+ 1) = vu(t)− η(t)
eαu(t)

∥vu(t)∥

(
I − vu(t)vu(t)

⊤

∥vu(t)∥2

)
∇wuL(w(t))

Now, we will first estimate ∥eαu(t+1) vu(t+1)
∥vu(t+1)∥−eαu(t) vu(t)

∥vu(t)∥∥. Let δu(t) denote η(t)eαu(t)∥∇wuL(w(t))∥
and ϵu(t) denote the angle between vu(t) and −∇wuL(w(t)). We know limt→∞ δu(t) = 0 and
limt→∞ ϵu(t) = 0. Now, rewriting update equations in terms of these symbols, we get

eαu(t+1) = eαu(t)eδu(t) cos(ϵu(t))

vu(t+ 1) = vu(t) + δu(t) sin(ϵu(t))
−∇wuL(w(t))vu(t)⊥

∥∇wuL(w(t))vu(t)⊥∥

where −∇wuL(w(t))vu(t)⊥ denotes the component of −∇wuL(w(t)) perpendicular to vu(t). Now,
using these equations we can say

eαu(t+1) vu(t+ 1)

∥vu(t+ 1)∥
− eαu(t) vu(t)

∥vu(t)∥
= eαu(t)

(
eδu(t) cos(ϵu(t))

∥vu(t)∥
∥vu(t+ 1)∥

− 1

)
vu(t)

∥vu(t)∥

+

(
eαu(t+1)δu(t) sin(ϵu(t))

∥vu(t)∥∥vu(t+ 1)∥

)
−∇wuL(w(t))vu(t)⊥

∥∇wuL(w(t))vu(t)⊥∥
(47)
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Now as limt→∞
∥vu(t)∥

∥vu(t+1)∥ = 1, therefore we can say

lim
t→∞

eδu(t)cos(ϵu(t)) ∥vu(t)∥
∥vu(t+1)∥ − 1

δu(t)cos(ϵu(t))
= 1

Now, as ∥vu(t)∥ keeps on increasing during the gradient descent trajectory, therefore we can say
1

∥vu(t)∥∥vu(t+1)∥ ≤ k, where k > 0 is some constant. Now dividing both sides of Equation (47) by

eαu(t)δu(t) cos(ϵu(t)) and analyzing the coefficient of the second term on RHS, we get

lim
t→∞

eδu(t) cos(ϵu(t)) sin(ϵu(t))

∥vu(t)∥∥vu(t+ 1)∥ cos(ϵu(t))
≤ 0

Taking norm on both sides of Equation (47), using Pythagoras theorem and the limits established
above, we can say

lim
t→∞

∥eαu(t+1) vu(t+1)
∥vu(t+1)∥ − eαu(t) vu(t)

∥vu(t)∥∥
eαu(t)δu(t)

= 1

Now, we also know

lim
t→∞

∥eαu(t+1) vu(t+1)
∥vu(t+1)∥ − eαu(t) vu(t)

∥vu(t)∥∥
g(t+ 1)− g(t)

= ∥w̃u∥

Now, using equations above and Equation (43), we can say

k1 ≤ lim
t→∞

g(t+ 1)− g(t)

η(t)L(w(t))g(t)L+1
≤ k2

where k1 and k2 are some constants. Using similar reasoning as for Unnorm in Appendix H.1.1, we
can say

c1e
−g(t)L(ρ+ϵ) ≤ L(w(t)) ≤ c2e

−g(t)L(ρ−ϵ)

where c1 and c2 are some constants. Substituting in the equation above, we get

lim
t→∞

g(t+ 1)− g(t)

η(t)e−g(t)L(ρ+ϵ)g(t)L+1
≥ k1c1

lim
t→∞

g(t+ 1)− g(t)

η(t)e−g(t)L(ρ−ϵ)g(t)L+1
≤ k2c2

These equations govern the rate of g(t) for any η(t) that satisfies assumption (A4). Now, to obtain
a better closed form, we will need the new assumption on η(t), i.e, η(t) = O

((
log 1

L
)c), where

c < 1.
Now, define a map d : N → R, given by d(t) =

∑t−1
τ=0 η(τ) and a real analytic function f(t)

satisfying f(d(t)) = g(t) for all t ∈ N and limt→∞
f(d(t+1))−f(d(t))

η(t)f ′(d(t)) = 1. We will later verify that
the f(t) obtained indeed satisfies this for the given η(t). Substituting in the equations above,

k1 ≤ lim
t→∞

f ′(d(t))

L(w(t))f(d(t))L+1
≤ k2 (48)
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lim
t→∞

f ′(d(t))

e−f(d(t))L(ρ+ϵ)f(d(t))L+1
≥ k1c1

lim
t→∞

f ′(d(t))

e−f(d(t))L(ρ−ϵ)f(d(t))L+1
≤ k2c2

As t → ∞, d(t) → ∞, therefore

lim
t→∞

f ′(t)

e−f(t)L(ρ+ϵ)f(t)L+1
≥ k1c1

lim
t→∞

f ′(t)

e−f(t)L(ρ−ϵ)f(t)L+1
≤ k2c2

Now, using similar arguments as in Appendix H.1.1,

lim
t→∞

f(t)Lρ

log(t)
= 1

Substituting in the Equation 48, we get that the loss goes down at Θ
(

1
d(t)(log d(t))2

)
.

We also verify that limt→∞
f(d(t+1))−f(d(t))

η(t)f ′(d(t)) = 1 for η(t) = O(
(
log 1

L
)c
), where c < 1. This

can be easily verified by using mean value theorem, and simply verifying limt→∞
η(t)f ′′(d(t))

f ′(d(t)) = 0.
Obtaining the expressions for f ′(d(t)) and f ′′(d(t)), we get

lim
t→∞

η(t)f ′′(d(t))

f ′(d(t))
= lim

t→∞

η(t)
(
d(t)( 1L − 1)− log d(t)

)
d(t) log(d(t))

As loss goes down at Θ
(

1
d(t)(log d(t))2

)
, therefore if η(t) = O(

(
log 1

L
)c
) for c < 1, the above limit

tends to 0 as d(t) → ∞.

Appendix I. Cross-Entropy Loss

In this section, we will provide the corresponding assumptions and theorems, along with their
proofs, for cross-entropy loss.

I.1. Notations

Let k denote the total number of classes. As Φ(w,xi) is a multidimensional function for multi-
class classification, let’s denote the jth component of the output by Φj(w,xi). Also, denote the
asymptotic normalized margin for jth class corresponding to ith data point(j ̸= yi) by ρi,j , i.e,
ρi,j = Φyi(w̃,xi) − Φj(w̃,xi). Margin for a data point i is defined as ρi = minj ̸=yi ρi,j . The
margin for the entire network is defined as ρ = mini ρi.

I.2. Assumptions

The assumptions can be broadly divided into loss function/architecture based assumptions and tra-
jectory based assumptions. The loss functions/architecture based assumptions are shared across
both gradient flow and gradient descent.

Loss function/Architecture based assumptions
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INDUCTIVE BIAS OF WEIGHT NORMALIZATION

1 ℓ(yi,Φ(w,xi)) = log
(
1 +

∑
j ̸=yi

e−(Φyi (w,xi)−Φj(w,xi))
)

2 Φ(.,x) is a C1 function, for a fixed x

3 Φ(λw,x) = λLΦ(w,x), for some λ > 0 and L > 0

Gradient flow. For gradient flow, we make the following trajectory based assumptions

(A1) There exists a time t0 such that L(w(t0)) < log 2.

(A2) limt→∞
−∇wL(w(t))
∥∇wL(w(t))∥ := g̃.

Gradient Descent. For gradient descent, we require the learning rate η(t) to not grow too fast,
and a slightly stronger assumption on loss.

(B1) limt→∞ L(w(t)) = 0 (B2) limt→∞
−∇wL(w(t))
∥∇wL(w(t))∥ := g̃

(B3) limt→∞ η(t)∥wu(t)∥∇wuL(w(t))∥ = 0 for all u in the network.

The assumption (B3) is mild, as the norm of the gradient of cross-entropy loss goes down
exponentially fast as compared to norm of the weights.

I.3. Asymptotic relations between weights and gradients

This section contains the main theorems that establish asymptotic relations between weights and
gradients for SWN and EWN. First, we will state a common proposition for both SWN and EWN.

Proposition 11 Under assumption (A1) for gradient flow, for both SWN and EWN, limt→∞ L(w(t)) =
0.

Proof First of all, for cross-entropy loss

dL(t)
dw

= −
∑
i

(∑
j ̸=yi

e−(Φyi (w,xi)−Φj(w,xi))(∇wΦyi(w,xi)−∇wΦj(w,xi))

1 +
∑

j ̸=yi
e−(Φyi (w,xi)−Φj(w,xi))

)
(49)

Now, using Theorem 1,

dL(t)
dt

=

(
dL(t)
dw

)⊤ dw(t)

dt
= −

∑
u

∥wu(t)∥2
∥∥∥∥dL(t)dwu

∥∥∥∥2
Let k be the total number of neurons in the network. Then using the elementary inequality, (

∑n
i=1 ai)

2 ≤
n
∑n

i=1 a
2
i , we get

dL(t)
dt

≤ −1

k

(∑
u

∥wu(t)∥
∥∥∥∥dL(t)dwu

∥∥∥∥
)2

Again using the fact that
∣∣∣w(t)⊤ dL(t)

dw

∣∣∣ ≤∑u ∥wu(t)∥
∥∥∥dL(t)

dwu

∥∥∥, we get

dL(t)
dt

≤ −1

k

(
w(t)⊤

dL(t)
dw

)2

(50)
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Taking the dot product with w on both sides of Equation (49) and using w⊤∇wΦ(w,xi) =
LΦ(w,xi) (Euler’s homogeneity theorem), we get

w(t)⊤
dL(t)
dw

= −L
∑
i

(∑
j ̸=yi

e−(Φyi (w,xi)−Φj(w,xi))(Φyi(w,xi)− Φj(w,xi))

1 +
∑

j ̸=yi
e−(Φyi (w,xi)−Φj(w,xi))

)
Now, using the fact, that at time t0, L(t0) < log 2, which means miniminj ̸=yi(Φyi(w,xi) −
Φj(w,xi)) = ϵ > 0. Also, as we know, for gradient flow, the loss cannot go up, therefore, for
any time t > t0, miniminj ̸=yi(Φyi(w,xi) − Φj(w,xi)) > ϵ > 0. Using this, we can say, for any
t > t0,

w(t)⊤
dL(t)
dw

≤ −Lϵ
∑
i

( ∑
j ̸=yi

e−(Φyi (w,xi)−Φj(w,xi))

1 +
∑

j ̸=yi
e−(Φyi (w,xi)−Φj(w,xi))

)
Using the fact that ln(1 + t) > t

1+t for t ∈ (0, 1), therefore,

w(t)⊤
dL(t)
dw

≤ −LϵL(t)

Substituting this in Equation (50), we get

dL(t)
dt

≤ −L2ϵ2

k
L(t)2

Integrating this equation from t0 to t, we get

1

L(t)
≥ 1

L(t0)
+

L2ϵ2

k
(t− t0) (51)

Clearly as t tends to ∞, RHS tends to ∞ and thus L tends to 0.

Now, we provide one of our main theorem that establishes gradient convergence implies weight
convergence.

Theorem 12 Consider a node u in the network with ∥g̃u∥ > 0 and limt→∞ ∥wu(t)∥ = ∞. Under
assumptions (A1), (A2) for gradient flow and (B1)-(B3) for gradient descent, for both SWN and
EWN

(i) limt→∞
wu(t)

∥wu(t)∥ := w̃u exists. (ii) w̃u = λg̃u for some λ > 0.

Proof Same as in Appendix C.

Now, we provide the main theorem that distinguishes SWN and EWN.

Theorem 13 Consider two nodes u and v in the network with ∥g̃u∥ ≥ ∥g̃v∥ > 0, limt→∞ ∥wu(t)∥ =

∞ and limt→∞ ∥wv(t)∥ = ∞. Let ∥g̃u∥
∥g̃v∥ be denoted by c. Under assumptions (A1), (A2) for gradi-

ent flow and (B1)-(B3) for gradient descent,

(i) for SWN, limt→∞
∥wu(t)∥
∥wv(t)∥ = c

(ii) for EWN, limt→∞
∥wu(t)∥
∥wv(t)∥ is either 0,∞ or 1

c

Proof Same as in Appendix D
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I.4. Sparsity Inductive Bias for Exponential Weight Normalisation

The inverse relation between ∥wu(t)∥ and ∥∇wuL(w(t))∥ in the EWN trajectory results in an
interesting inductive bias that favours movement along sparse directions.

Proposition 14 Consider two nodes u and v in the network such that ∥g̃v∥ ≥ ∥g̃u∥ > 0 and
∥wu(t)∥, ∥wv(t)∥ → ∞. Let ∥g̃u∥

∥g̃v∥ be denoted by c. Consider any ϵ, δ such that 0 < ϵ < c and
0 < δ < 2π. Then, the following holds:

(i) There exists a time t1, such that for all t > t1 both SWN and EWN trajectories have the
following properties:

(a) ∥∇wuL(w(t))∥
∥∇wvL(w(t))∥ ∈ [c− ϵ, c+ ϵ] (b)

(
wu(t)

∥wu(t)∥

)⊤ ( −∇wuL(w(t))
∥∇wuL(w(t))∥

)
≥ cos(δ)

(c)
(

wv(t)
∥wv(t)∥

)⊤ ( −∇wvL(w(t))
∥∇wvL(w(t))∥

)
≥ cos(δ).

(ii) for SWN, limt→∞
∥wu(t)∥
∥wv(t)∥ = c

(iii) for EWN, if at some time t2 > t1,

(a) ∥wu(t2)∥
∥wv(t2)∥ > 1

(c−ϵ) cos(δ) =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = ∞

(b) ∥wu(t2)∥
∥wv(t2)∥ < cos(δ)

c+ϵ =⇒ limt→∞
∥wu(t)∥
∥wv(t)∥ = 0

Proof The proof follows from Appendix E.

I.5. Convergence rates

In this section, we provide convergence rate of loss for EWN.

Gradient Flow: We provide a finite-time convergence rate of loss for gradient flow in case of
EWN.

Theorem 15 For Exponential Weight Normalization, under assumption (A1), the following hold
for t > t0 in case of gradient flow

(i) ∥w(t)∥ grows with t as o((log t)
1
L ) (ii) L(t) goes down with t as O

(
1
t

)
Proof Follow from Equation (51)

Gradient Descent:

Theorem 16 For Exponential Weight Normalization, under Assumptions (B1)-(B4), ρ > 0, η(t) =
O
((
log 1

L
)c) for c < 1 and limt→∞

∥r(t+1)−r(t)∥
g(t+1)−g(t) = 0, the following hold

(i) ∥w(t)∥ asymptotically grows with t as Θ
(
(log d(t))

1
L

)
(ii) L(w(t)) asymptotically goes down with t as Θ

(
1

d(t)(log d(t))2

)
.
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Proof The proof follows Appendix H.2, the only difference is in the gradient update. Let w be
represented as w = g(t)w̃ + r(t), where limt→∞

∥r(t)∥
g(t) = 0. Using Equation (49), we can say

k1 ≤ lim
t→∞

∥dL(w(t))
dw ∥

L(w(t))g(t)L−1
≤ k2 (52)

where k1 and k2 are some constants. As the order remains the same as in the proof for exponential
loss, the proof follows from Appendix H.2.

Appendix J. Lemma Proofs

Lemma Consider sequence a satisfying the following properties

1. ak > 0

2.
∑∞

k=0 ak = ∞

3. limk→∞ ak = 0

Then
∑∞

k=0
ak√∑k
j=0 a

2
j

= ∞

Proof If
∑∞

k=0 a
2
k is bounded, then the statement is obvious. Let’s consider the case when

∑∞
k=0 a

2
k

diverges. As limk→∞ ak = 0, therefore there must be an index k1, such that for k ≥ k1, ak ≤ ϵ.
Now, as ak ≤ ϵ, therefore a2k ≤ ϵak. Now, as

∑∞
k=0 a

2
k diverges, therefore, there must be an index

k2 > k1, such that for any k > k2,
∑k

j=k1
a2j ≥

∑k1−1
j=0 a2j . Now, for k > k2, we can say

k∑
j=k1

aj√∑j
l=0 a

2
l

≥ 1√
2

k∑
j=k1

aj√∑j
l=k1

a2l

≥ 1√
2

k∑
j=k1

aj√∑j
l=k1

ϵal

≥ 1√
2ϵ

k∑
j=k1

aj√∑k
l=k1

al

=
1√
2ϵ

√√√√ k∑
j=k1

aj

As
∑∞

k=0 ak diverges, therefore
∑∞

k=0
ak√∑k
j=0 a

2
j

diverges as well.

Lemma Consider two sequences a and b satisfying the following properties

1. ak > 0,
∑∞

k=0 ak = ∞ and limk→∞ ak = 0
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2. b0 > 0, b is increasing and b2k+1 ≤ b2k +
(
ak
bk

)2
Then

∑∞
k=0

ak
bk

= ∞.

Proof As we know b is increasing and b2k+1 ≤ b2k + (akbk )
2, we get

bk ≤

√√√√b20 +
k−1∑
j=0

(
aj
bj

)2

≤

√√√√b20 +
1

b20

k−1∑
j=0

a2j

Using this, we can say

k∑
j=0

aj
bj

≥
k∑

j=0

aj√
b20 +

1
b20

∑j−1
l=0 a

2
l

≥
k∑

j=0

aj√
b20 +

1
b20

∑k−1
l=0 a2l

Now, if
∑∞

k=0 a
2
k does not diverge to infinity, then b remains bounded using the bound above and

then its trivial to establish that
∑∞

k=0
ak
bk

diverges. In case,
∑∞

k=0 a
2
k diverges to infinity, then there

must be an index k1 such that for any k > k1, we can say
∑k−1

j=0 a
2
j ≥ b40. So, for k > k1, we can

say
k∑

j=0

aj
bj

≥
k∑

j=0

b0√
2

aj√∑k−1
l=0 a2l

Now, as we have assumed a tends to zero, so there must be an index k2 such that for any k > k2,
ak ≤ ϵ. Also, as we have assumed

∑∞
j=0 a

2
j diverges, therefore there must be an index k3 > k2,

such that for k > k3,
∑k

j=k2
a2j ≥

∑k2
j=0 a

2
j . Using these things and that if aj ≤ ϵ, then a2j ≤ ϵaj ,

we can say for k > k3,

k∑
j=k3

aj
bj

≥
k∑

j=k3

b0
2

aj√∑k−1
l=k3

ϵal

≥ b0
2
√
ϵ

√√√√ k−1∑
j=k3

aj

Now, as
∑∞

k=0 ak diverges, thus
∑∞

k=0
ak
bk

diverges as well.

Appendix K. Integral Form of Stolz-Cesaro Theorem

We first state the Stolz-Cesaro Theorem.

Theorem (Muresan, 2015) Assume that {a}∞k=1 and {b}∞k=1 are two sequences of real numbers
such that {b}∞k=1 is strictly monotonic and diverging. Additionally, if limk→∞

ak+1−ak
bk+1−bk

= L exists,
then limk→∞

ak
bk

exists and is equal to L.

Now, we state and prove the Integral Form of Stolz-Cesaro Theorem.

Theorem Consider two functions f(t) and g(t) greater than zero satisfying
∫ b
a f(t)dt < ∞ and∫ b

a g(t)dt < ∞ for every finite a, b. For any time t, its known that
∫∞
t f(t)dt = ∞ and

∫∞
t g(t)dt =

∞. If limt→∞
f(t)
g(t) exist and is equal to L, then limt→∞

∫ t
c f(t)dt∫ t
c g(t)dt

exists for any c and is equal to L.
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Proof Case 1: L = 0 or ∞:
We will prove for L = ∞. The case for 0 can be handled similarly. For any M > 0, there must

exist a time t1 > c, such that f(t)
g(t) > M , for t > t1. Thus we can say for t > t1,∫ t

c
f(t)dt >

∫ t1

c
f(t)dt+M

∫ t

t1

g(t)dt

Adding M
∫ t1
c g(t)dt on both the sides, we get∫ t

c
f(t)dt+M

∫ t1

c
g(t)dt >

∫ t1

c
f(t)dt+M

∫ t

c
g(t)dt

Dividing both sides by
∫ t
c g(t)dt and taking limsup t → ∞(using also the fact that

∫ b
a f(t)dt < ∞

and
∫ b
a g(t)dt < ∞ for every finite a, b), we get

lim sup
t→∞

∫ t
c f(t)dt∫ t
c g(t)dt

> M

Similarly the equation holds for liminf as well. Thus, both liminf and limsup are greater than M for

any M . Hence limt→∞

∫ t
c f(t)dt∫ t
c g(t)dt

= ∞.

Case2: L is finite
In this case, there must exist some time t1 > c, such that L − ϵ < f(t)

g(t) < L + ϵ.Thus, we can
say for t > t1,∫ t1

c
f(t)dt+ (L− ϵ)

∫ t

t1

g(t)dt ≤
∫ t

c
f(t)dt ≤

∫ t1

c
f(t)dt+ (L+ ϵ)

∫ t

t1

g(t)dt

Taking the left inequality, adding (L − ϵ)
∫ t1
c g(t)dt on both the sides, dividing both the sides by∫ t

c g(t)dt and taking lim inft→∞, we get

L− ϵ ≤ lim inf
t→∞

∫ t
c f(t)dt∫ t
c g(t)dt

Similarly, taking the right inequality, adding (L+ ϵ)
∫ t1
c g(t)dt on both the sides, dividing both the

sides by
∫ t
c g(t)dt and taking lim supt→∞, we get

lim sup
t→∞

∫ t
c f(t)dt∫ t
c g(t)dt

≤ L+ ϵ

Using the two inequalities, we get, for any ϵ > 0,

lim sup
t→∞

∫ t
c f(t)dt∫ t
c g(t)dt

− lim inf
t→∞

∫ t
c f(t)dt∫ t
c g(t)dt

≤ 2ϵ

Thus, limt→∞

∫ t
c f(t)dt∫ t
c g(t)dt

exists and is equal to L.

46



INDUCTIVE BIAS OF WEIGHT NORMALIZATION

Appendix L. Standard Weight Normalization is not Locally Lipschitz in its
parameters

In this section, we will denote w by θ so as to be consistent with the notaion in Lyu and Li (2020).
SWN(in its parameters γ and v) is also a homogeneous network. Therefore, results from Lyu and
Li (2020) should directly apply to the case of SWN as well. However, a crucial point to be noted is
that it is not even locally Lipschitz around ∥vu∥ = 0. Therefore, the assumptions from Lyu and Li
(2020) do not hold.

However, during gradient descent or gradient flow, if started from a finite ∥vu∥ > 0, for all
u, then during the entire trajectory, ∥vu∥ cannot go down. Therefore, the network is still locally
Lipschitz along the trajectory it takes. Examining the proofs from Lyu and Li (2020), its clear that
the proof regarding monotonicity of margin and convergence rates are just dependent on the path
that gradient descent/flow takes and thus the proofs hold.

However, the result regarding the limit points of θ
∥θ∥ do not hold. One of the crucial theorems

the proof relies on is stated below

Theorem Let {xk ∈ Rd : k ∈ N} be a sequence of feasible points of an optimization problem (P),
{ϵk > 0 : k ∈ N} and {δk > 0 : k ∈ N} be two sequences. xk is an (ϵk, δk)-KKT point for every k
and ϵk → 0, δk → 0. If xk → x as k → ∞ and MFCQ holds at x, then x is a KKT point of (P)

The above statement requires MFCQ to be satisfied at x, that was shown in Lyu and Li (2020)
assuming local lipschitzness/smoothness at x. However, in this case, for gradient flow, as ∥vu∥ does
not grow, while |γu| → ∞, therefore the convergent point of θ

∥θ∥ will always have the component
corresponding to vu as 0. Thus, the network is not locally lipschitz at x and the proof that MFCQ
holds is violated. Similarly, for gradient descent as well, it can’t be said that vu has a non-zero
component in θ

∥θ∥ . Thus, the proof does not hold.

Appendix M. Experiment Details

In all the experiments, techniques for handling numerical underflow were used as described in Lyu
and Li (2020). However, the learning rate they used was of O

(
1
L
)
, but in our case, we generally

modify it to be O
(

1
Lc

)
, where c < 1.

M.1. Lin-Sep

The learning rate used was k(t)
L0.97 , so that it speeds up at the beginning of training, but slows down

as loss approaches e−300. The constant k(t) was initialized at 0.01, and was increased by a factor
of 1.1 every time loss went down and decreased by a factor of 1.1 every time loss went up after a
gradient step. Its value was capped at 0.01 for EWN and SWN.

M.2. Simple-Traj

The learning rate used was k(t)
L0.9 , so that it speeds up at the beginning of training, but slows down as

loss approaches e−50. The constant k(t) was initialized at 0.01, and was increased by a factor of 1.1
every time loss went down and decreased by a factor of 1.1 every time loss went up after a gradient
step. Its value was capped at 0.1 for EWN and Unnorm.
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Figure 7: Demonstration of Results for SWN in Lin-Sep experiment: (a) Evolution of ∥wu∥
(b) Cosine between weights and gradients for weights 5, 6 and 8. (c) Weight and gradient
norms for weights 5, 6 and 8.
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Figure 8: Demonstration of Results for EWN in XOR experiment with ReLU-square activa-
tion: (a) Evolution of ∥wu∥ (b) Cosine between weights and gradients for weights 0, 1,
13 and 17. (c) Weight and gradient norms for weights 0, 1, 13 and 17.

M.3. XOR

The learning rate used was k(t)
L0.93 for SWN and Unnorm, while k(t)

L0.8 for EWN, so that it speeds up at
the beginning of training, but slows down as loss approaches e−50. The constant k(t) was initialized
at 0.01, and was increased by a factor of 1.1 every time loss went down and decreased by a factor of
1.1 every time loss went up after a gradient step. Its value was capped at 0.1 for EWN and Unnorm
and 0.01 for SWN.

M.4. Convergence rate experiment

For all SWN, EWN and Unnorm, the learning rate was constant η = 0.001 and they were trained
for 5000 steps. All the networks were explicitly initialized to the same point in function space.
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Figure 9: Demonstration of Results for SWN in XOR experiment with ReLU-square activation:
(a) Evolution of ∥wu∥ (b) Cosine between weights and gradients for weights 0, 1, 13 and
17. (c) Weight and gradient norms for weights 0, 1, 13 and 17.
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Figure 10: Demonstration of Results for EWN on MNIST dataset with 2-class classification:
(a) Evolution of ∥wu∥ (b) Cosine between weights and gradients for weights 96 and
105. (c) Weight and gradient norms for weights 96 and 105.

M.5. Pruning Experiments

The learning rate used was k(t)
L . The constant k(t) was initialized at 0.01, and was increased by a

factor of 1.1 every time loss went down and decreased by a factor of 1.1 every time loss went up
after an epoch.

Appendix N. Demonstration of Theorems on various datasets

In this section, we demonstrate Theorem 3 and 4 on various datasets - Lin-Sep, XOR and MNIST
(2-class classification).

N.1. Lin-Sep

We demonstrate Theorem 3 and Theorem 4 for EWN and SWN on a linearly separable dataset
(Lin-Sep) in Figure 1 and 7 respectively. As can be seen in Figure 7, for weights 5, 6 and 8,
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Figure 11: Convergence rate of EWN, SWN and Unnorm on the MNIST dataset for seed - 2356 at
different loss values

0 5 10 15 20
Epochs

10

8

6

4

2

Lo
ss

 (m
ea

su
re

d 
in

 lo
g)

Unnorm
EWN
SWN

(a) L = e−10

0 200 400 600
Epochs

100

80

60

40

20

0

Lo
ss

 (m
ea

su
re

d 
in

 lo
g)

Unnorm
EWN
SWN

(b) L = e−100

0 500 1000 1500 2000
Epochs

300

200

100

0

Lo
ss

 (m
ea

su
re

d 
in

 lo
g)

Unnorm
EWN
SWN

(c) L = e−300

Figure 12: Convergence rate of EWN, SWN and Unnorm on the MNIST dataset for seed - 3576 at
different loss values

whose norms keep on growing, weights and gradients eventually become oppositely aligned, and
their norms are directly proportional to each other.

N.2. XOR

In this experiment, we train a 2-layer network with 20 hidden neurons and ReLU-square activation
on XOR dataset, till a loss value of e−40. We demonstrate Theorems 3 and 4 for EWN and SWN in
Figure 8 and Figure 9 respectively.

As can be seen in Figure 8, for weights 0, 1, 13 and 17, whose norms keep on growing, weights
and gradients eventually become oppositely aligned, and their norms are inversely proportional to
each other.

Similarly, in Figure 9, for weights 0, 1, 13 and 17, whose norms keep on growing, weights and
gradients eventually become oppositely aligned, and their norms are directly proportional to each
other.
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N.3. MNIST

In this experiment, we train a 2-layer network with 128 hidden neurons and ReLU-square activation
on MNIST dataset with 2 classes - {0, 1}. Since even after considering just 2 classes, this dataset is
huge, therefore training takes longer. Therefore, we only consider exponential weight normalized
network in this case.

We demonstrate Theorems 3 and 4 for MNIST dataset for EWN in Figure 10. As can be seen,
for weights 96 and 105, whose norms keep on growing, weights and gradients eventually become
oppositely aligned, and their norms are inversely proportional to each other.

Appendix O. Convergence rate plots for pruning experiment

In this section, we provide convergence rate plots for the pruning experiments.
The convergence rate for 2 different seeds at various loss levels are shown in Figure 11 and

12. As can be seen, initially the convergence rate of all the normalizations are comparable. But
at extremely low loss values, Unnorm becomes slightly faster as compared to SWN or EWN. Note
that the results regarding asymptotic convergence rate do not apply in this case, as we are training
at extremely high learning rates of O

(
1
L
)
.

Appendix P. Verification of Assumptions for various datasets

In this section, we verify the assumptions on three datasets - Lin-Sep, XOR and MNIST (2-class
classification). Note that in Figures 13, 14, 15, 16 and 17, plots demonstrating the components of
unit gradient vector, each line corresponds to a single parameter of the network, while in the plots
demonstrating the evolution of η(t)∥wu(t)∥∥∇wuL(w(t))∥, each line corresponds to a neuron of
the network.

P.1. Lin-sep

We verify assumptions (B1)-(B3) for the Lin-Sep experiment for EWN and SWN in Figure 13
and Figure 14 respectively. As can be seen, for both the cases, the components of unit gradient
vector become constant as training proceeds. Another thing to note, is that even for an aggressive
learning rate schedule of the form 1

L0.97 , η(t)∥wu(t)∥∥∇wuL(w(t))∥ still goes down to 0.

P.2. XOR

In this experiment, we train a 2-layer network with 20 hidden neurons and ReLU-square activation
on XOR dataset, till a loss value of e−40. We verify assumptions (B1)-(B3) for the XOR experiment
for EWN and SWN in Figure 15 and Figure 16 respectively. As can be seen, for both the cases, the
components of unit gradient vector become constant as training proceeds. Another thing to note, is
that even for an aggressive learning rate schedule of the form 1

L0.93 , η(t)∥wu(t)∥∥∇wuL(w(t))∥
still goes down to 0.

P.3. MNIST

In this experiment, we train a 2-layer network with 128 hidden neurons and ReLU-square activation
on MNIST dataset with 2 classes - {0, 1}. Since even after considering just 2 classes, this dataset is

51



INDUCTIVE BIAS OF WEIGHT NORMALIZATION

0 200 400 600
Steps

0.5

0.0

0.5

g i
/||

g|
|

(a)

0 200 400 600
Steps

0.00

0.02

0.04

0.06

0.08

(t)
||w

u(
t)|

|||
w

u
(t)

||

w0
w1
w2
w3
w4
w5
w6
w7
w8

(b)

Figure 13: Verification of Assumptions for EWN in Lin-Sep experiment: (a) Evolution of
∇wL(t)

∥∇wL(t)∥ (b) Evolution of η(t)∥wu(t)∥∥∇wuL(t)∥
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Figure 14: Verification of Assumptions for SWN in Lin-Sep experiment: (a) Evolution of
∇wL(t)

∥∇wL(t)∥ (b) Evolution of η(t)∥wu(t)∥∥∇wuL(t)∥

huge, therefore training takes longer. Therefore, we only consider exponential weight normalized
network in this case.

We verify assumptions (B1)-(B3) for MNIST dataset for EWN in Figure 17. As can be seen, the
components of unit gradient vector become constant as training proceeds. Another thing to note, is
that even for an aggressive learning rate schedule of the form 1

L0.97 , η(t)∥wu(t)∥∥∇wuL(w(t))∥
still goes down to 0.

Appendix Q. Pruning algorithm

We will explain the pruning algorithm used in Figure 5b. The same algorithm is used for SWN,
EWN as well as the unnormalized net.
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Figure 15: Verification of Assumptions for EWN in XOR experiment with ReLU-square acti-
vation: (a) Evolution of ∇wL(t)

∥∇wL(t)∥ (b) Evolution of η(t)∥wu(t)∥∥∇wuL(t)∥
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Figure 16: Verification of Assumptions for SWN in XOR experiment with ReLU-square acti-
vation: (a) Evolution of ∇wL(t)

∥∇wL(t)∥ (b) Evolution of η(t)∥wu(t)∥∥∇wuL(t)∥

Let t1 and t2 denote the optimization iteration indices when log-loss has a value of −10 and
−100 respectively. Consider three pruning strategies available at the time instant given by t2:

• Prune weights on the basis of ∥wu(t2)∥

• Prune weights on the basis of ∥wu(t2)−wu(0)∥

• Prune weights on the basis of ∥wu(t2)−wu(t1)∥

For a given level of pruning, we try all the 3 strategies, and then pick the one with the best test
performance.

Variants of option (a) are the most prevalent pruning algorithms. The non-standard options of
(b) and (c) represent the intuition of pruning neurons whose weight has not moved in the recent
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Figure 17: Verification of Assumptions for EWN on MNIST dataset with ReLU-square acti-
vation: (a) Evolution of ∇wL(t)

∥∇wL(t)∥ (b) Evolution of η(t)∥wu(t)∥∥∇wuL(t)∥

past. This intuition is in turn motivated by the asymptotic behaviour of the inductive bias, i.e. the
neuron weight norms become ‘relatively sparse’ in the ‘limit’.

In fact, if we prune the network based on the final L2 norm of the weights (strategy (a)), we get a
similar pruning performance for EWN as the current pruning algorithm at a loss value of e−100 and
e−300. However, the pruning performance of EWN at the loss value of e−10 drops. We believe this
is because when the loss values are less than e−100 the network is already in the asymptotic regime
and hence the difference between using the three pruning strategies is not significant. However,
when the loss values are around e−10, the network is not in the asymptotic regime, and a difference
emerges between the three pruning strategies.
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