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Abstract

We develop methods to learn the correlation potential for a time-dependent Kohn-Sham (TDKS)
system in one spatial dimension. We start from a low-dimensional two-electron system for which
we can numerically solve the time-dependent Schrédinger equation; this yields electron densities
suitable for training models of the correlation potential. We frame the learning problem as one
of optimizing a least-squares objective subject to the constraint that the dynamics obey the TDKS
equation. Applying adjoints, we develop efficient methods to compute gradients and thereby learn
models of the correlation potential. Our results show that it is possible to learn values of the
correlation potential such that the resulting electron densities match ground truth densities. We
also show how to learn correlation potential functionals with memory, demonstrating one such
model that yields reasonable results for trajectories outside the training set.

Keywords: Physics-constrained learning, adjoint methods, quantum dynamics, TDDFT.

1. Introduction

The time-dependent Schrédinger equation (TDSE) governs the behavior of N quantum particles,

iat\I/(T’l,Tg, ...,TN,t) = H(TI,TQ, ceny T’N,t)\I/(Tl,?“Q, ...,TN,t), (1)

where H is the Hamiltonian and U is the many-body wave function. In d-dimensional space, the
many-body Coulomb interaction in the potential term of H leads to a coupled system of partial
differential equations (PDE) in dN + 1 variables. Hence (1) can only be solved for simple model
problems, such as for one electron in three dimensions or two electrons in one dimension. To
simulate electron dynamics in molecules and materials, a widely used approach is time-dependent
density functional theory (TDDFT), in which the many-body wave function W is replaced with the
Kohn-Sham wave function ® () to give the time-dependent Kohn-Sham (TDKS) equation (Maitra,
2016; Ullrich, 2011):

N
i ®(r,t) = Z:[—(I/Q)VZ2 + 0%y, 1) + v 0] (13, 1) + 0¥, o, @g) (7, 1)] (). (2)
i=1
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Because ®(r) is constructed as a product of non-interacting single-particle orbitals ¢(r;), (2) decou-
ples into [V separate evolution equations in 3 + 1 variables. Assuming all terms in (2) are specified,
one can use (2) to simulate molecular systems for which numerical simulation of (1) is intractable.

In (2), the many-body Coulomb interaction between electrons is replaced by known classical
Hartree v and unknown exchange-correlation vX© single-particle potentials, with the latter in-
corporating many-body effects. TDDFT is formally an exact theory, as the Runge-Gross and Van
Leeuwen theorems proved the existence of a time-dependent electronic potential and the unique
mapping to the time-dependent electron density, which is generated from the KS orbitals of the
TDKS equation (Runge and Gross, 1984; van Leeuwen, 1999).

The challenge in TDDFT is to construct vX¢ potentials that yield an electron density n that
is identical to the exact time-dependent many-body electron density generated from the TDSE.
Previous work has shown that the unknown vX¢ formally depends on the initial many-body wave
function W, the initial KS state @, and the electron density at all points in time n(r, s < t) (Maitra
et al., 2002). Although the development of vX¢ for electrons is a very active area of research,
almost all vX¢ make use of the so-called “adiabatic approximation” that only takes into account the
instantaneous electron density, leading to significant inaccuracies in electron dynamics due to the
lack of memory in vX€. The desire for more accurate electron dynamics leads to a natural question:
can we learn vXC from time series data? Note that this is an entirely different problem than the
problem of learning static, ground state potentials from the exact ground state electron density in
time-independent density functional theory (DFT) (Nagai et al., 2018; Kalita et al., 2021).

For machine learning of vX ¢ to proceed in the time-dependent context (TDDFT), a first obstacle
is formulating a tractable learning problem. In recent work, Suzuki et al. (2020) works with a spa-
tially one-dimensional electron-hydrogen scattering problem. For this model problem, one can solve
(1) numerically; from the solution, one can compute the electron density n(x, t) on spatial/temporal
grids. In this problem, we know both the functional form of v and that vX¢ = vX + v®. Further-
more, the one-dimensionality enables one to solve for exact values of v (Elliott et al., 2012), again
on spatial/temporal grids. With grid-based values of both v“ and n, the task of learning v“ [n] be-
comes a static, supervised learning problem, which Suzuki et al. (2020) solves using neural network
models. To our knowledge, this is the only prior work on learning vX¢ for TDDFT.

We revisit the electron-hydrogen scattering model problem and develop methods to learn v
that do not require us to solve for grid-based values of v beforehand. In short, we view the v
functional as a control that guides TDKS propagation. We formulate the learning problem as an
optimal control problem: find v* that minimizes the squared error between TDKS electron densities
n and reference electron densities 7. Implicit in this formulation is the dynamical constraint that
electron densities n evolve forward in time via the TDKS equation with the model v*. The adjoint
or costate method is often used to handle constraints of this kind (Bryson and Ho, 1975; Hasdorff,
1976). To our knowledge, the derivations and applications of the adjoint method, o learn v®
models with memory for the TDKS equation, are considered here for the first time!. We derive
adjoint systems for two settings: (i) to learn pointwise values of v“ on a grid, and (ii) to learn the
functional dependence of v“ on the electron density at two points in time. We apply our methods
to train both types of models, and study their training and test performance. In particular, we train a
neural network model of v [n] with memory that, when used to solve the TDKS equations for initial
conditions outside the training set, yields qualitatively accurate predictions of electron density.

“In]
c

1. See Section 5.7 in the Appendix of the preprint ht tps://arxiv.org/pdf/2112.07067 for further context.
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2. Methods

To formulate the problem of learning v“ from time series, we first work in continuous space and
time. Later, to derive numerical algorithms to solve this problem, we discretize.

Continuous Problem. Define the 1D electron density created from KS orbitals

n(x7t) - 2‘¢($,t)|2, 3)

and the soft-Coulomb external v**' and interaction ¥ ¢ potentials
vM(@) = ~((z +10)* + 1), (4a)
We(a!,z) = ((¢' — x)® + 1) (4b)

The potentials (4a) and (4b) specify that we are working with the spatially one-dimensional electron-
hydrogen scattering problem considered by several previous authors. For this problem, we know
that vX¢ = vX 4+ 0. Let ¢ and n stand for ¢(x, t) and n(z,t). Then in one spatial dimension and
expressed in atomic units (a.u.), the TDKS system (2) becomes:

10, = —%amm + 0™ (@, )¢ + v n)(@, )6 + v [n)(@, )6 + v ez, )6, (Sa)

ees I / / _ 1
v [n](z,t) = /x, We (', x)n(a’, t) da’, vX[n](z,t) = —§UH[TL] (x,t). (5b)

In (5), the term that we are trying to learn (e.g., the control) is v© [¢]. Prior first principles work
has shown that at time ¢, v should depend functionally on the electron density n(x,s) fors < t,
the initial Kohn-Sham state ¢(x, 0) and the initial Schrodinger wave function ¥ (x, 0) (Maitra et al.,
2002; Wagner et al., 2012). In this work, we ignore the dependence of v© on the initial states &(z,0)
and ¥(z,0), and focus on modeling the dependence on present and past electron densities. By (3),
dependence on n is equivalent to a particular type of dependence on ¢; we use the notation vc[gb] to
refer to models that depend on ¢ either directly or through n.

For the sake of intuition, let us formulate the control problem in continuous time and space.
Assume that for t € [0, T'], we have access to a reference electron density trajectory 7(z, t). Suppose
that our model UC[¢; 0] is parameterized by 6. Then we seek to minimize the squared loss

o) T
7(0) = % / - /tzo(n(a?,t) i, 1)2 dt da, ©)

subject to the constraint that n(x, t) is computed via (3), with ¢(z, t) evolving on the interval 0 <
t < T according to the TDKS system (5). In this TDKS system, we identify v© with our model
vC¢; 8]. In short, we seek O such that the resulting vC[¢; 0] functional guides the TDKS system to
yield a solution ¢(x,t) such that n = 2|¢|> matches the reference trajectory i(x,t).

Direct and Adjoint Methods. In a direct method to minimize the loss (6), we compute gradients
by applying Vg to both sides of (6). This will yield an expression for Vg7 that involves Vgo.
To compute this latter quantity, we numerically solve an evolution equation derived by taking Vg
of both sides of (5a). At each iteration of our gradient-based optimizer, we would carry out this
procedure to compute Vg7, which is then used to update 6. In practice, this direct method suffers
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from one major problem: if we discretize ¢ in space using J + 1 grid points, and if 8 has dimension
B, then at each point in time, Vg¢ will have dimension (J + 1) B. In our work, B can exceed 107,
while J > 600 is required for sufficient spatial accuracy. Solving the evolution equation for Vg¢
in (J + 1) B-dimensional space thus incurs huge computational expense at each optimization step.

In this paper, we pursue the adjoint method, which enables us to compute all required gradients
without computing or even storing any (J + 1) B-dimensional objects, thus dramatically reducing
computational costs relative to the direct method. Within the space of adjoint methods, there are
two broad approaches: (i) to use the continuous-time loss and constraints to derive differential
equations for continuous-time adjoint variables, and (ii) to first discretize the loss and constraints,
and then derive numerical schemes for discrete-time adjoint variables. In approach (i), we must still
discretize the adjoint differential equations in order to solve them; the choice of discretization can
lead to subtle issues (Sanz-Serna, 2016). We choose approach (ii) for its relative simplicity.

In the discrete adjoint method, we incorporate a discretized version of the dynamical system
(5) as a constraint using time-dependent Lagrange multipliers A(¢). In this approach, we derive
and numerically solve a backward-in-time evolution equation for A(t), from which we compute
required gradients. Importantly, A(¢) has the same dimension as the state variables ¢(t) defined
below; in our implementation, both quantities are (J + 1)-dimensional. We obtain the gradients of
the discretized loss at a computational cost that is proportional to that of computing the loss itself.

Discretized Problem. To keep this paper focused on the learning/control problem, we have moved
details of the numerical solution of the TDKS system (5) to Section 5.1 of the Appendix?. Here we
include only the most important concepts. First, we discretize the Kohn-Sham state by introducing
o(tr) = [p(z0, k), - - -, d(xs,t1)]T. The spatial domain is 2 € [Luin, Lmnax). With Az = (Liax —
Linin)/J > 0, our spatial grid is 2; = Lyin + jAz. Our temporal grid is t, = kAt, with At =
T/K. The positive integers J and K are user-defined parameters that control the accuracy of
the discretization. Second, by applying finite differences, Simpson’s quadrature rule, and operator
splitting, we can derive the following evolution equation for the discretized state ¢ defined above:

B(thi1) = exp(—iKAL/2) exp(—iV (p(ty), vE) AL) exp(—ikCAL/2)b(t). )

Here K is a constant (J + 1) x (J + 1) matrix, while V' is a diagonal (J + 1) x (J 4 1) matrix
that depends functionally on both the state ¢ and on v®, our spatially discretized model of the
correlation potential v from (5). Detailed descriptions of X and V' are provided in Section 5.1.

Evolving ¢ according to (7) generates a numerical approximation to the solution ¢(z, t) of (5).
This approximation has a truncation error of O(At?) in time and O(Ax*) in space.

First Adjoint Method: Learning v© Pointwise. Assume we have access to observed values of
electron density on the grid—we denote these observed or reference values by 7(z;, ;). The first
problem we consider is to learn v“(z;,t;) on the same grid. Suppose we start from an initial
condition ¢(0) and an estimate v©. We iterate (7) forward in time and obtain a trajectory ¢(ty)
for 0 < k < K. We then form n(zj,t;) = |¢(zj,t)>. In this subsection, ¢ and n are the
predicted wave function and density when we use the estimated correlation potential v©. Let Px =
exp(—ikCAt/2) and abbreviate ¢, = ¢(ty), v = v(tx). Define the discrete-time propagator

Fa(¢,v7) = Prexp(—iV (¢, v°) At) P, (8)

2. Henceforth, for Section 5.x or the Appendix, see https://arxiv.org/pdf/2112.07067.
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so that (7) can be written as the discrete-time system ¢ ; = Fa¢(¢y, vko) Both sides of this
system are complex-valued. In order to form a real-valued Lagrangian and take real variations,
we split both ¢ and F into real and imaginary parts: ¢ = ¢ + i¢! and Fa, = F&, +iFL,.
Superscript I? and I denote, respectively, the real and imaginary parts of a complex quantity. Let
the uppercase ®, A, and V¢ denote the collections of all corresponding lowercase b, A, and 'vkc
for all k. Then we form a real-variable Lagrangian that consists of the discretized squared loss with
the constraint that ¢ evolves via (7).

K J
Z(@% &1 AR AT v7) = % D> @0 (@ te)® + 20 (), tr)? — A, th)?
k=0 j=0
K-1
= N (@ — FR@F, 01, v%)) + M) (Dhg1 — Fad@r, o1, %)) 9)
k=0

Setting 0. = 0 for all variations 5(1),? and 5¢£ for k > 1, we obtain
A =4[2l¢x|* — k) © D] (102)

A ! 2 - of1" AR R I . C

|:)\I:| = 4(2|¢y|” — ng) 0 Lbﬂ + [A]Ifﬂ} J o F at(Py s by, v )- (10b)
k k k41

Here J 4 F a; denotes the Jacobian of F' with respect to ¢. We use (10a) as a final condition and

iterate (10b) backward in time for k = K — 1,...,1. Having computed A from (10), we return to

(9) and compute the gradient with respect to U?I

)\R T FR
Vool = |: ?H] V,UC|: IAt:| (¢E7¢£7v?) 1D
¢ Attt ¢ LF A
Given a candidate v, we solve the forward problem to obtain ®. We then solve the adjoint system
to obtain A. This provides everything required to evaluate (11) for each ¢. The variations, the block
matrix form of the Jacobian J 4 F A, and the gradients of the discrete-time propagator F' can be
found in Sections 5.3 and 5.4 of the preprint Appendix.

Second Adjoint Method: Learning v© Functionals. Here we rederive the adjoint method to
enable learning the functional dependence of v°[¢](x,t) on ¢(x,t) and ¢(x,t — At). We take as
our model v*[¢] = v (¢, ¢';@). The parameters § determine a particular functional dependence
of v on the present and previous Kohn-Sham states ¢ and ¢’. At spatial grid location x; and time
ts, the model v© is

v ) (g, tr) = [0 (B, P13 0)];- (12)

In short, we intend ¢’ to be the Kohn-Sham state at the time step prior to the time step that corre-
sponds to ¢». Our goal is to learn 6. This requires redefining the following quantities:

V(¢;0) = diag(v(9, 9" 0))

v(h,¢';0) = —((x +10)> +1)"2 + W (|9 o w) + v (¢, ¢'; 0)
FAt(¢a ¢/; 9) = P/C exp(—ZV(d), ¢/; G)At)P/Cd)
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The Lagrangian still has the form of an objective function together with a dynamical constraint:

K-1
2@ o' AR Al 0) ZZ (20" (s, tr)? + 20" (), t)? — Ay, 1)) = > (AFL]T
k 0j=0 k=1

(¢I<:R+1_Fﬁt(¢kR?¢kR—la¢£v¢£—1;0)) [k:-',—l] (¢k+1 Fhr (o8, 11, ok, 115 0)) (13)

Setting 6. = 0 for all variations ¢kR and ¢£ for k£ > 1, we obtain the following adjoint system:

Ak = 4[C2lox[* — nK) o P (14a)
Ax—1=4[@2lopg 11> —Pk-1) o dgx_] (14b)
+ P‘ﬁ]TV¢>FR (DK, Pr_1;6) + P‘%{]Tvdqu((ﬁ}o bKr_1;0)

AR b T A
M— TETA R m+[ | e abr 000+ [;ﬂ Ty Fsi(por 15)
k k+1 k+2
(14¢)

The key difference between (14c) and (10b) is that the right-hand side of (14¢) involves X at two
points in time. The adjoint system is now a linear delay difference equation with time-dependent
coefficients. Additionally, the derivatives of Fa; needed to evaluate (14-15) are different—see
Section 5.4 of the preprint Appendix. For a candidate value of 8, we solve the forward problem
to obtain ¢ on our spatial and temporal grid. Then, to compute gradients, we begin with the final
conditions (14a-14b) and iterate (14c) backwards in time from k = K — 2 to k = 1. Having solved
the adjoint system, we compute the gradient of .# with respect to 8 via

T R
VoZ = Z [ ’““] [?1 ](%dm 136). (15)

k—l—l

3. Modeling and Implementation Details

Modeling Correlation Functionals. In this work, all models of the form (12) consist of dense,
feedforward neural networks. For models of the form v* (¢, ¢’; @), we treat the real and imaginary
parts of ¢ and ¢’ as real vectors each of length J + 1. Hence for J = 600, we have an input
layer of size 4(.J 4+ 1). We follow this with three hidden layers each with 256 units and a scaled
exponential linear unit activation function (Klambauer et al., 2017). The output layer has J + 1
units to correspond to the vector-valued output . For models in which v depend on m and n’,
we take the real and imaginary parts of ¢ and ¢’ as inputs and use them to immediately compute n
and n’, which we then concatenate and feed into an input layer with 2(.JJ + 1) units. The remainder
of the network is as above. We started with smaller networks (fewer layers, less units per layer)
and increased the network size until we obtained reasonable training results; no other architecture
search or hyperparameter tuning was carried out. We experimented with other activation functions
and convolutional layers—none of these models produced satisfactory results during training.

Generation of Training Data. To generate training data, we solve (1) for a model system con-
sisting of N = 2 electrons: a one-dimensional electron scattering off a one-dimensional hydrogen
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Figure 1: Training results for the problem of learning pointwise values of VCona grid consisting
of K = 30000 points in time and J = 600 points in space. The adjoint method succeeds
in producing V¢ values that yield TDKS solutions such that the corresponding electron
densities (red) match those computed from the 2D Schrddinger equation (black).

atom. Hence (1) becomes a partial differential equation (PDE) for a wave function V(z1, z2,t). We
discretize this PDE using finite differences on an equispaced grid in (z1, z2) space with J = 1201
points along each axis. Here —80 < x1, x5 < 40, so that Ax = 0.1. After discretizing the kinetic
and potential operators in space, we propagate forward in time until 7' = 0.72 fs, using second-
order operator splitting with At = 2.4 x 1075 fs (or, in a.u., At ~ 9.99219 x 10~%). Note that
this is 1/100-th the time step used by Suzuki et al. (2020). For further details, consult Section 5.2.
After discretization, the wave function ¥ (x1, z2,t) at time step k is a complex vector 10, of dimen-
sion (J + 1)2. For the initial vector 1), we follow Suzuki et al. (2020) and use a Gaussian wave
packet that represents an electron initially centered at x = 10 a.u., approaching the H-atom local-
ized at x = —10 a.u., with momentum p. We generate training/test data by numerically solving the
Schrodinger system for initial conditions with p € {—1.0,—-1.2,—-1.4,—1.5,—1.6, —1.8}. From
the resulting time series of wave functions, we compute the time-dependent one-electron density
n(x,t); below, we refer to this as the TDSE electron density.

4. Results

Pointwise Results. Our first result concerns learning the pointwise values of V. Here we use
the same fine time step At = 2.4 x 107> used to generate the training data. However, we increase
Az by a factor of 2, taking J = 600 and sampling the initial condition ¢, at every other grid point.
We retain this subsampling in space in all training sets/results that follow. Still, our unknown v
consists of a total of 30000 - 601 values.

We learn V¢ by optimizing an objective function that consists of the first line of (9) together
with a regularization term. The regularization consists of a finite-difference approximation of
mY g Zj(axvc(asj,tk))Q, with 4 = 107°. This regularization is analogous to the [(f”)%dz



ADJOINT LEARNING FOR TDKS

time t = 0.744 fs time t = 0.768 fs timet = 0.792 fs

—— adjoint method —— adjoint method —— adjoint method
— test data — test data — test data

2

€010
0.05 J\J
0.00

timet = 0.816 fs timet =0.84 fs time t = 0.864 fs

—— adjoint method —— adjoint method —— adjoint method
—— test data —— test data —— test data

T 0.15

x

€
0.10
0.05
0.00

-80 -60 -40 -20 O 20 40 -80 -60 -40 -20 O 20 40 -80 -60 -40 -20 O 20 40
x (a.u.) x (a.u.) x (a.u.)

Figure 2: We use 300 time steps (corresponding to 0.72 fs) of the p = —1.5 data together with the
adjoint method to train a neural network model of v* that depends on the current and
previous ¢. Using the learned v*, we propagate (5) for 60 additional time steps and plot
the test set results (in red) against the reference electron density (in blue).

penalty used in smoothing splines (Hastie et al., 2009). We penalize the square of the first (rather
than second) derivative as we find this is sufficient to smooth v“ in space. The precise value of
is unimportant; taking 4 € [1075 107%] yields similar results. For training data, we use only the
TDSE one-electron densities computed from the p = —1.5 initial condition. To optimize, we use
the quasi-Newton L-BFGS-B method, with gradients Vy,c . computed via the procedure described
just below (11). We initialize the optimizer with V¢ = 0 and use default tolerances of 107,

In Figure 1, we present the results of this approach. Each panel shows a snapshot of both the
training electron density (in black, computed from TDSE data) and the electron density n = 2|¢|?
(in red) obtained by solving TDKS (5) using the learned V' values. Note the close quantitative
agreement between the black and red curves. The overall mean-squared error (MSE) across all
points in space and time is 2.035 x 10~5. Note that no exact V¢ data was used; the learned V¢
does not match the exact V¢ quantitatively, but does have some of the same qualitative features.

This problem suits the adjoint method well: regardless of the dimensionality of V', the dimen-
sionality of the adjoint system is the same as that of the discretized TDKS system. Note that, for this
one-dimensional TDKS problem (5), it is possible to solve for V¢ ona grid (Elliott et al., 2012).
If we encounter solutions of higher-dimensional, multi-electron (d > 2 and N > 2) Schrodinger
systems from which we seek to learn V¢, we will not be able to employ an exact procedure. In
this case, the adjoint-based method may yield numerical values V', with which we can pursue
supervised learning of a functional from electron densities 7 to correlation potentials Ve,

Functional Results. Next we present results in which we learn v© functionals. In preliminary
work, we sought to model v“[¢](z,t) as purely a function of ¢(z,t), a model without memory.
These models did not yield satisfactory training set results, and hence were abandoned. We focus
first on models v*[¢](x, ) that allow for arbitrary dependence on the real and imaginary parts of
both ¢(x,t) and ¢(z,t — At). The TDDFT literature emphasizes that v“ should depend on ¢
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Figure 3: We plot training and test results at time ¢ = 0.432 fs for the adjoint method, applied
to estimating neural network models v®[¢] that, at time ¢, depend on both ¢(x,t) and
é(x,t — At). Propagating TDKS (5) with the learned v* yields the red curves.

through present/past electron densities 1, where n = 2|¢|2. How important is it to incorporate such
physics-based constraints into our v“ model? Let us see how well a direct neural network model of
v°[¢] captures the dynamics. The input layer is of dimension 4(.J 4 1)—see Section 3.

To train such a model, we again apply the L-BFGS-B optimizer with objective function given
by the first line of (13) and gradients computed with the adjoint system (14-15). We initialize
neural network parameters 6 by sampling a mean-zero normal distribution with standard deviation
o = 0.01. For training data, we subsample the p = —1.5 TDSE electron density time series by
a factor of 100 in time, so that At = 2.4 x 1072 fs and the entire training trajectory consists of
K = 301 time steps. We retain this time step in all training sets and results that follow.

We omit the training set results here as they show excellent agreement between training and
model-predicted electron densities—see Section 5.6. The overall training set mean-squared error
(MSE) is 7.668 x 1076, In Figure 2, we display test set results obtained by propagating for 60
additional time steps beyond the end of the training data. On this test set, we see close quantitative
agreement near t = (.72 fs, which slowly degrades. Still, the learned v“ leads to TDKS electron
densities that capture essential features of the reference trajectory. Note that no regularization was
used during training of the v* functional, leading to a learned v* that is not particularly smooth
in space. We hypothesize that, with careful and perhaps physically motivated regularization, the
learned v© will yield improved test set results over longer time intervals.

In the next set of results, we retrain our model using TDSE electron densities with initial mo-
menta equal to p = —1.0 and p = —1.8. We train two models: a v®[¢](z,t) model that depends
on ¢ at times ¢ and t — At, and a v“[n](x, t) model that depends on n at times ¢ and t — At. This
latter model incorporates the physics-based constraints mentioned above. We view the v [n] model
as more constrained because its the first hidden layer can depend on ¢(z,t) and ¢(z,t — At) only
through the electron densities n(z,t) and n(x,t — At). We keep all other details of training the
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Figure 4: We plot training and test results at time ¢ = 0.432 fs for the adjoint method, applied
to estimating a neural network model v“[n] that, at time ¢, depends on both n(z, ) and
n(x,t — At). Propagating TDKS (5) with the learned v [n] yields the red curves.

same. The final training set MSE values are 4.645 x 107> for the v“[¢] model and 8.098 x 10~°
for the v [n] model.

In Figures 3 and 4, we plot both training and test set results for these models. Here we have
chosen a particular time (¢t = 0.432 fs) and plotted the electron density at this time for six different
trajectories, each with a different initial momentum p. We have chosen this time to highlight the
large, obvious differences between the p = —1.0 and p = —1.8 curves. The p = —1.0 and
p = —1.8 panels contain training set results; here the TDKS electron densities (in red, produced
using the learned v©) lie closer to the ground truth TDSE electron densities (in black).

Note that, despite the greater freedom enjoyed by the vc[¢] model, its generalization to tra-
jectories outside the training set (—1.2 < p < —1.6) is noticeably worse than that of the more
constrained v“[n] model. In fact, the v©[n] model’s results (Figure 4, in red) show broad qualita-
tive agreement with the test set TDSE curves (in blue). The test set MSE values are 9.363 x 1074
for the v©[¢] model and 2.482 x 10~* for the v“[n] model. Overall, these results support the
view that v© should depend on ¢ through n. Again, we hypothesize that if we were to filter out
short-wavelength oscillations in the electron density—perhaps by regularizing the v“[n] model or
by training on a larger set of trajectories—the agreement could be improved.

Conclusion. For a low-dimensional model problem, we have developed adjoint-based methods to
learn the correlation potential v* using data from TDSE simulations. The adjoint method can be
used to directly train v©[n] models, sidestepping the need for either exact v* values or density-
to-potential inversion. Our work provides a foundation for learning models that depend on present
and past snapshots of the electron density. We find that our trained v“ [n] models (with memory)
generalize well to trajectories outside the training set. Further improvements to the model may be
possible, e.g., by incorporating known physics in the form of model constraints. Overall, the results
show the promise of learning v via TDKS-constrained optimization.
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