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Abstract

Anomaly detection is an important data mining task that aims to detect abnormal exam-
ples in a dataset. Dozens of unsupervised algorithms have been developed for this task,
each of which can be finely controlled via multiple hyperparameters. Therefore, choosing
an algorithm that works well for a new dataset has traditionally been a time-consuming
trial-and-error process. Moreover, any ground-truth labels to guide this process are hard
to come by in real-world anomaly detection problems. On the other hand, if we are able
to collect a small, labeled validation set, we could leverage the AutoML paradigm to au-
tomate this model search. While the off-the-shelf AutoML search strategies for combined
algorithm selection and hyperparameter optimization (CASH) are effective for supervised
classification and regression tasks, they require the availability of plenty of ground-truth
labels and large validation sets. It is unclear whether CASH will be equally effective for
anomaly detection problems where the validation sets are typically small at best and not
always representative of the test set at worst. In this paper, we present a discussion and
experimental evaluation of how the structure of the validation set, i.e., its size and label
bias, impacts the performance of different CASH search strategies within the context of
anomaly detection.

Keywords: anomaly detection, model selection, AutoML, CASH

1. Introduction

The goal of anomaly detection is to identify examples in a dataset that are somehow different
or abnormal. Anomaly detection is important in practice as anomalies often correspond to
costly or undesired behavior such as fraudulent credit card use (Pourhabibi et al., 2020),
excess water consumption (Vercruyssen et al., 2018), or suspicious DNS traffic (Robberechts
et al., 2018). Anomaly detection is an extremely challenging problem for several reasons.
First, anomalies are by definition exceedingly rare, meaning that it is an imbalanced learning
problem. Second, anomalies may not follow a particular pattern that a supervised learner
could pick up on. Third, anomaly detection problems often lack (large amounts of) labeled
data because it is costly to collect them. This is particularly true for anomalous behavior as
we either have to wait until it occurs naturally (e.g., a machine failure) or purposely cause
it to arise by, e.g,. breaking the system. The latter is often not feasible, as for example, no
one will consent to allowing a machine to break just to collect some data.

While researchers have designed many anomaly detection algorithms (Liu et al., 2008;
Breunig et al., 2000; Ramaswamy et al., 2000; Li et al., 2020c; He et al., 2003; Campos
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et al., 2016; Emmott et al., 2015), picking and configuring the one best suited for the task
at hand remains difficult. Algorithms can focus on finding different types of anomalies and
their detection performance can be optimized by tuning various hyperparameters. The lack
of labels and the imbalanced nature of the problem means that practitioners often resort
to selecting a model manually via trail-and-error, or they stick to one algorithm with its
default hyperparameters (Domingues et al., 2018; Emmott et al., 2015).

More recently, Soenen et al. (2021) advocated for a more standard machine learning
style approach of (1) collecting a small labeled validation set, (2) training different combi-
nations of algorithm and hyperparameter settings, (3) measuring their performance on the
validation set, and (4) selecting the best-performing model. However, that work relied on
using a naive and computationally expensive grid search over all possible algorithm config-
urations. In contrast, one of the big successes of automated machine learning (AutoML)
has been combined algorithm selection and hyperparameter optimization (CASH) (Hutter
et al., 2019). In this area there has been significant progress in designing smart search
strategies that can quickly identify the appropriate algorithm and its configuration for a
given dataset.

The goal of this work is to examine the usefulness of CASH search strategies for selecting
and configuring anomaly detectors. However, it is non-obvious whether the findings and
approaches from the CASH strategies developed for supervised classification and regression,
will transfer to the anomaly detection setting because:

• The costs associated with obtaining labels means that it is likely that any validation
set one can obtain, will be exceedingly small.

• The rarity of anomalies means that they will likely be more prevalent in the validation
set than in the wild to ensure that there is enough signal to compute an evaluation
metric (in order to guide the model search).

• The fact that certain anomalies are easier to identify and hence label means that the
observed labels are biased. That is, the validation set labels are not an i.i.d. sample.

We empirically evaluate the effectiveness of several guided and unguided CASH search
strategies to select the best among five distinct anomaly detectors for six datasets. Fur-
thermore, we consider the effect of how the size of the validation set and its label bias
affect the performance of the different search strategies. The label bias captures whether
the validation set is a representative sample of the full dataset or not. We found that:
(1) even simple CASH search strategies already outperform naively sticking with an algo-
rithm’s default hyperparameters, (2) larger validation sets guide the search to models that
generalize better to an unseen test set, (3) a biased validation set surprisingly allows the
selection of better performing models than a validation set that is an i.i.d. sample of the
full dataset, and (4) increasing the size of the search space (i.e., the number of possible
algorithm-hyperparameter configurations) improves the performance of the CASH search
strategies.

2. Preliminaries

Given a feature space X and a label space Y, let D = {(xi, yi)}ni=1 be a dataset consisting of
n tuples such that xi ∈ X is an example and yi ∈ Y its label. In anomaly detection, this label
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is binary indicating whether example xi is normal or anomalous. Let Dtrain = {(xi)}li=1

be a training split consisting only of features X and Dvalid = {(xi, yi)}mi=1 a validation split
that also includes each example’s label, such that Dtrain = D \ Dvalid and 1 ≤ m, l ≤ n.
The CASH problem can now be formally defined as follows (Hutter et al., 2019):

Problem 1 (CASH for anomaly detection):
Given Dtrain, Dvalid, a set of k anomaly detectors A = {A1, ..., Ak} with their respective
hyperparameter domains Λ1, ...,Λk, and a resource budget T , find the anomaly detector A∗

and a corresponding hyperparameter configuration λ∗ that minimize some loss function L
on Dvalid:

A∗, λ∗ ∈ arg min
Aj∈A, λ∈Λj

L(Aj
λ, Dtrain, Dvalid) (1)

under the constraint imposed by the resource budget T .

In this paper, we use the area under the receiver operating characteristic (AUC) as the
loss function1 as this metric is commonly used in anomaly detection (Campos et al., 2016).

CASH solvers for Equation (1) need to overcome several difficulties such as the com-
plexity and high-dimensionality of the combined configuration search space, the absence of
gradients for the loss function, and various resource constraints (Luo, 2016). Such solvers
are either model-free (unguided) or model-based (guided) (Hutter et al., 2019). The most
common unguided strategies are grid search and random search. Grid search evaluates the
loss function L for each possible configuration (Ak, λk) in the search space (Hutter et al.,
2014). This strategy is clearly extremely inefficient, especially if the structure of the loss
function is non-uniform over the full search space. Random search operates by randomly
sampling configurations (Ak, λk) from the search space until the budget T is exhausted
(Bergstra and Bengio, 2012). While superior to grid search, random search might be sub-
optimal if the search space is conditional because it will favor configurations sampled from
the larger sub-spaces. As an alternative to random search, we propose uniform exploration
which works by dividing the total search budget T equally among the candidate sub-spaces
and exploring them independently with a random search subroutine. This increases the
probability of fairly exploring all the constituent sub-spaces regardless of their relative size.

Contrary to the model-free solvers, the guided solvers assume that the loss function
L has a meaningful structure with relation to the search space and that this structure
can be learned. The state-of-the-art sequential model-based algorithm configuration (Smac)
framework uses Bayesian optimization to simultaneously learn this structure and exploit
it to (approximately) find the best-performing configuration (A∗, λ∗) (Hutter et al., 2011;
Lindauer et al., 2022). The framework uses a surrogate model (random forest) to learn the
target function and iteratively updates it by observing additional values and by optimizing
a cheap acquisition function (expected improvement) to select the next configuration to
evaluate. Smac can handle the (categorical) hyperparameters of the anomaly detectors
and the conditional parameters of the CASH search space, by default, while it scales well
for large datasets and high-dimensional search spaces.

1. To properly utilize AUC as the loss function, we simply set L = 1−AUC.
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3. Related Work

The idea of applying AutoML for anomaly detection has been explored in several works (Li
et al., 2020a; Chakraborty et al., 2020; Lai et al., 2020; Li et al., 2020b; Zhao et al., 2020).
However, none of these works question the assumed availability of a large, unbiased, fully-
labeled validation set to guide the model search. In contrast, our work aims to evaluate
the utility of CASH for anomaly detection in light of the limited label availability that
characterizes the anomaly detection setting. We now give a brief overview of said works.

AutoOD Li et al. (2020a) proposed AutoOD to tackle the neural architecture search
problem for unsupervised anomaly detection using deep autoencoders. AutoOD employs
a LSTM-based meta-learning search strategy and its objective function is evaluated on a
labeled validation set. No open-source implementation of AutoOD is currently available.

Luminaire Chakraborty et al. (2020) developed Luminaire as an automated anomaly
detection system for time-series data. The search space is comprised of data preparation
algorithms, such as imputation and smoothing, and time series modeling algorithms, such as
structural and filter-based models. Artificially generated anomalies are injected at different
scales to facilitate supervised training.

TODS Lai et al. (2020) designed TODS for time series outlier detection. TODS has five
modules: (1) data processing, (2) time series processing, (3) feature analysis, (4) algorithm
detection, and (5) reinforcement learning. The latter module provides the capability to
inject human knowledge in the model search in the form of pre-defined rules.

PyODDS Li et al. (2020b) proposed PyODDS as an end-to-end tool for automatic con-
struction of optimal outlier detection pipelines. The search space consists of 13 anomaly
detection algorithms. A hybrid search strategy based on expected improvement is used
for optimization. PyODDS assumes an abundance of labels using a fixed split ratio for
training and validation set, while the size of the search space is relatively small with most
hyperparameters set to fixed values.

MetaOD Zhao et al. (2020) designed MetaOD for the problem of unsupervised outlier
model selection. MetaOD employs a 2-stage meta-learning approach: (1) an offline phase
where a meta-learner is trained on a collection of labeled datasets to extract meta-features
and passes them through a matrix factorization to describe the latent meta-space, and (2)
an online phase where, given a new unlabeled dataset, the system computes meta-features
and predicts the best model configuration based on a dot-product similarity.

4. Applying CASH for Anomaly Detection

When presented with a novel dataset and the task to detect anomalies in that dataset,
many anomaly detection algorithms are available to solve this task. Previous research has
shown that using a different algorithm or a different configuration of its hyperparameters can
result in a significantly improved detection performance (Soenen et al., 2021). It is clear that
CASH can guide the search for the best-performing algorithm more efficiently than simple
grid search (Zöller and Huber, 2021). Anomaly detection, however, is a fundamentally
different problem than the supervised classification and regression tasks that originally
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served to develop the existing CASH search strategies (Zöller and Huber, 2021). We will
now briefly discuss these differences and their implications.

Lack of Label Information Because anomalies in a dataset are typically infrequent
and difficult to detect, it is cumbersome to obtain labeled examples of them (Vercruyssen
et al., 2018). Therefore, most anomaly detection methods are unsupervised, i.e., they
learn a model using a training set without access to the label information (Campos et al.,
2016). This is an issue from the perspective of CASH because the model search has to be
guided by a clear signal, which is typically the performance of each model configuration
on a separate, labeled validation set. In short, the nature of anomaly detection problems
imposes a constraint on the maximum size of such a validation set.

In general, increasing the size of the validation set ensures that it is more representative
of the true underlying data distribution. Suppose we have two models, A and B, and two
validation sets, L(arge) and S(mall) such that |L| ≫ |S|. If model A outperforms model
B on both L and S, the likelihood that model A also outperforms model B on a separate
test set is larger for scenario L than for scenario S. Alternatively, if the validation set is too
small, the good performance of a model is more likely to be be due to randomness (Soenen
et al., 2021). Consider the extreme case of a validation set consisting of only two examples,
one normal and one anomaly. A model that randomly predicts a label for each example
still has a 25% probability to obtain perfect accuracy (assuming that the predictions are
independent). Adding two more examples to the validation set decreases this probability2

to 6.25%, and so on. Therefore, a reduced validation set size has an important implication
for the CASH search strategies; the smaller the validation set, the noisier the signal that
guides the model search. This could hurt the performance of the search strategies.

Label Collection Bias It is well-understood in machine learning that the training and
validation set should be i.i.d. samples of the underlying data distribution. This ensures
that a learned model generalizes to the unseen test set which, in turn, is also assumed to
be an i.i.d. sample of the same data distribution. Because anomalies are infrequent, a
random sample of the full dataset is likely to contain only normal examples. Suppose that
our dataset contains only 2% anomalies and that we randomly label 50 examples to serve
as a validation set. Then, the probability of ending up with a validation set containing only
normal labels is about 37%. Alternatively, we would need to label at least 35 examples to
have a probability ≥50% that one of them is anomalous. A validation set that contains only
examples of one class cannot be used to guide the model search, as we cannot compute a
loss function. The immediate implication is that our validation set should be collected in a
biased manner, such that we can (1) satisfy the size constraints (the validation set cannot
be too large), and (2) ensure that it contains at least some labeled anomalies such that we
can use CASH. This suggest that there is a trade-off between validation set size and label
bias in anomaly detection problems.

Search Space Size The search space consists of the algorithms and their configurable
hyperparameters. A CASH search strategy learns a function that maps each configuration
(Ak, λk) of the search space onto its corresponding validation set performance. If the search
space becomes larger, either through adding more algorithms or increasing the size of their

2. If the validation set contains n examples, the probability is equal to ( 1
2
)n.
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hyperparameter domains, the function becomes more difficult to learn (Hutter et al., 2019).
Possible solutions are to (1) increase the resource budget T , (2) increase the validation set
size, or (3) improve the search strategy. Most anomaly detectors, as opposed to supervised
classifiers, have a limited number of hyperparameters. For instance, Lof and Knno have
one meaningful hyperparameter; the number of nearest neighbors (Breunig et al., 2000;
Ramaswamy et al., 2000).3 iForest has three meaningful hyperparameters; the number of
trees, the sample size per tree, and the number of features used per tree (Liu et al., 2008).
Other algorithms, such as Copod (Li et al., 2020c), do not even have hyperparameters to
tune. Compare this to the simplest neural network where one can choose the number of
layers, the amount of neurons per layer, the activation function per layer, the learning rate,
the batch size, and so on. It is possible that larger search spaces increase the usefulness of
“smart” guided search strategies over the “naive” unguided ones.

5. Implementing CASH for Anomaly Detection

To enable the use of CASH for selecting the best anomaly detection model for a dataset, we
combine the capabilities of Auto-Sklearn and PyOD, two state-of-the-art, open-source
Python frameworks. Auto-Sklearn is an AutoML framework that provides functionality
for the automatic construction of ML pipelines for supervised classification and regression
problems (Feurer et al., 2020). It is built on top of Scikit-Learn4 and provides, among
others, an implementation of the state-of-the-art guided search strategy Smac. PyOD
implements dozens of anomaly detection algorithms (Zhao et al., 2019).

Auto-Sklearn does not support unsupervised learning or anomaly detection algo-
rithms by default. For our purposes, we significantly extended5 its functionality in four
ways. First, we included connectors that interface with the anomaly detection algorithms
in PyOD. This allows Auto-Sklearn to treat these detectors as any other classifier. Sec-
ond, we added the option to disable the use of training labels and training loss calculations,
which would otherwise prohibit learning unsupervised detectors. Third, we implemented
the possibility to create custom labeled validation sets by splitting the original training
set according to two search parameters: class prior and size. Finally, we added two addi-
tional search strategies to Auto-Sklearn, namely random search and uniform exploration.
These can replace the native SMAC search strategy as required. Throughout the exper-
iments we do not use the meta-learning, preprocessing, and ensembling functionality of
Auto-Sklearn as these are irrelevant to our experiments.

6. Experiments

The experimental evaluation is structured around the following four questions:

1. Will the guided search strategy Smac outperform the unguided search strategies?

2. Does changing the label bias of the validation set affect how the CASH model selection
generalizes to the unseen test data?

3. Based on the PyOD implementation of Lof (Zhao et al., 2019). Other hyperparameters, such as the
contamination factor, do not affect Lof’s or Knno’s fundamental computation of the anomaly score.

4. https://scikit-learn.org/stable/
5. All code is available at: https://github.com/johnantonn/cash-for-unsupervised-ad
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3. Does increasing the size of the validation set lead to better CASH model selection?

4. Does the performance gap between guided and unguided search strategies increase
with an increasing CASH search space?

6.1. Experimental Setup

Search strategies We compare four different search strategies: (1) random search (un-
guided), (2) uniform exploration (unguided), (3) Smac (guided), and (4) default, a simple
baseline that selects the best-performing anomaly detector based on the default hyperpa-
rameter settings as set in PyOD. We do not compare to grid search as even simple random
search is far superior to this naive strategy (Zöller and Huber, 2021).

Anomaly detectors The CASH search space is comprised of five anomaly detectors:
Cblof (He et al., 2003), Copod (Li et al., 2020c), iForest (Liu et al., 2008), Knno (Ra-
maswamy et al., 2000), and Lof (Breunig et al., 2000). Along with their relevant hyper-
parameters, they form a conditional space of a total of 19600 configurations, see Table 1.
The algorithms were selected because (1) they are radically different in how they detect
anomalies, and (2) their individual search space sizes vary substantially.

Setup The experiments are conducted on six datasets listed in Table 2. To reduce run
times, we downsampled each dataset to contain at most 5000 examples. Each experiment
goes as follows: (1) take a dataset and randomly split it into 75% train set and 25% test
set, (2) normalize the features, (3) construct a validation set from the train set, (4) use a
search strategy to find the best anomaly detector as measured by the validation set AUC,
and (5) apply this detector to the test data and report its test AUC. Each experiment is
repeated 10 times and the results are averaged. We use AUC as this is standard in anomaly
detection (Campos et al., 2016). In different experiments, we vary the size of the validation
set ∈ {20, 50, 100, 200}. Additionally, the validation set label bias can be either stratified
or balanced. A stratified validation set mimics the class prior of the full dataset, while a
balanced validation set contains an equal amount of normal and anomaly labels (effectively
simulating label bias). The total number of experiments is 2100.

Search budget In each experiment, the search budget T is set to 600 seconds. A sensible
value of T was derived by running a sample of 100 anomaly detector configurations on the
datasets, measuring the compute-time, finding the distribution of best-fit and calculating
its 90th percentile, so that a single search evaluates at least 1% of the CASH search space.

6.2. Results

6.2.1. Meta-Analysis using Linear Regression

We start with conducting a meta-analysis to estimate the effect of the experimental factors
(dataset, validation set size, validation set label bias, and search strategy) on the final test
set AUC of the model (i.e., anomaly detector and hyperparameter configuration) selected
by each search strategy. We can summarize these results using linear regression models.
We identify the significance of each factor by removing one factor at a time and comparing
the coefficients of determination (R2) of the resulting fitted linear regressors to the R2 of
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Table 1: Search space 1: anomaly detectors and hyperparameter domains.

Anomaly Detector Hyperparameter Domain Domain Size

Cblof

alpha={0.5, 0.55, ..., 1.0}
beta={2, 4, ..., 20}

contamination={0.05, 0.1, ..., 0.5} 8800
n clusters={2, 4, ..., 16}

use weights=False

Copod contamination={0.05, 0.1, ..., 0.5} 10

iForest

bootstrap=False
contamination={0.05, 0.1, ..., 0.5}

max features=1.0 6800
max samples={0.2, 0.25, ..., 1.0}

n estimators={5, 10, ..., 200}

Knno

contamination={0.05, 0.1, ..., 0.5}
method=largest

n neighbors={1, 2, ..., 200} 2000
p=2

Lof
contamination={0.05, 0.1, ..., 0.5}

n neighbors={1, 2, ..., 200} 2000
p=2

Table 2: Summary of the datasets used in the experiments (Campos et al., 2016).

Name Datapoints Outliers Outliers % Attributes

ALOI 50000 1508 3% 27

Annthyroid 7200 534 7% 21

Arrhythmia 450 206 46% 259

Cardiotocography 2126 471 22% 21

SpamBase 4601 1813 39% 57

Waveform 3443 100 3% 21

Table 3: R2 values for different linear regression models.

Features R2 R2 loss

All 0.804 -

w/o dataset 0.186 0.618

w/o search strategy 0.687 0.117

w/o validation set class prior 0.780 0.024

w/o validation set size 0.742 0.062
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a regressor fitted using all factors. The target variable (test AUC) was transformed using
the logit function to map its original [0, 1] range to the reals. The results are presented
in Table 3. It is clear that the choice of dataset has the highest impact on predicting
the performance, followed by the search strategy, validation set size, and label bias. From
the coefficients, we can conclude that a larger validation set contributes positively to test
set AUC. Surprisingly, a balanced validation set improves test set AUC over its stratified
variant. A final observation we can make for now, is that uniform exploration seems to
outperform the other search strategies.

6.2.2. Comparison of Anomaly Detectors

We continue with a comparison of the five anomaly detectors by reporting the percentage
of wins of each one for different datasets as well as overall, in Table 4. A win is determined
by the anomaly detector that achieves the highest validation set AUC score for a specified
search strategy, validation set prior and size. The results indicate that there is no single
winning algorithm and that the winner is dataset-dependent. This observation coincides
with the findings of a recent benchmarking study by Han et al. (2022), which further
highlights the importance of model selection for unsupervised anomaly detection tasks.

6.2.3. Q1: Impact of the Search Strategy

Figure 1 presents the average test set AUC of the best incumbent model (i.e., anomaly
detector and hyperparameter configuration) over time for each dataset and for different
search strategies, using balanced validation sets of size 100. The results show that the
default search strategy is outperformed by at least one CASH search strategy in each dataset.
Further, uniform exploration provides the best configuration for 4/6 datasets, while random
search and default finish last by finding the worst configuration for 3/6 datasets each.

We apply non-parametric Friedman tests6 to test whether the different search strategies
lead to significantly different results. We run the test for different combinations of validation
set label bias and size. The results are presented in Table 5. Especially for small and
stratified validation sets, choosing a different search strategy has a significant impact on
the final test set AUC. Table 5 also shows the average rank of each search strategy, computed
as in (Demšar, 2006). Uniform exploration always achieves the lowest rank, outperforming
the other search strategies.

6.2.4. Q2: Impact of the Validation Set Label Bias

To measure the impact of the validation set label bias, we (1) pick a search strategy, dataset,
and validation set size, (2) alternate the bias between balanced and stratified, and (3) com-
pare the resulting test set AUCs. This totals 92 comparisons. The balanced prior leads
to a model with higher test set AUC in 73 cases, or 79% of the time. We can conclude
that balanced validation sets lead to improved model selection for anomaly detection. This
observation might be explained by the fact that balanced validation sets contain more la-
beled anomalies - which are harder to classify - thus leading to better calibrated anomaly
detectors that are less able to overfit on the validation set.

6. We maintain a floating point precision of 3, the critical value of the test is 7.81.
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Table 4: Percentage of wins (higher is better) of each anomaly detector, measured by
validation set performance, for different datasets and in total.

Dataset Cblof Copod iForest Knno Lof

ALOI 17.08 6.66 8.75 11.66 55.83

Annthyroid 30.83 13.75 12.08 11.66 31.66

Arrhythmia 10.83 8.33 61.66 10.41 8.75

Cardiotocography 8.33 7.50 69.58 7.91 6.66

SpamBase 9.58 49.16 24.41 6.25 9.58

Waveform 37.14 7.14 30.00 14.28 11.42

All 16.96 17.69 34.00 11.75 19.57

0 200 400 600
seconds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

sc
or

e

ALOI

0 200 400 600
seconds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

sc
or

e

Annthyroid

0 200 400 600
seconds

0.50

0.55

0.60

0.65

0.70

0.75

0.80
sc

or
e

Arrhythmia

0 200 400 600
seconds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

sc
or

e

Cardiotocography

0 200 400 600
seconds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

sc
or

e

SpamBase

0 200 400 600
seconds

0.50

0.55

0.60

0.65

0.70

0.75

0.80

sc
or

e

Waveform

SMAC
default
random search
uniform exploration

Figure 1: Average test set AUC of the best incumbent model over time for different search
strategies, using balanced validation sets of size 100.
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Table 5: Average ranks (lower is better) for each search strategy and results of the Friedman
tests for different variations of the validation set. P-values indicated with ** are significant.
Uniform exploration consistently outperforms the other strategies.

Validation set Random Uniform
label bias & size Default search exploration Smac p-value

Stratified, 20 2.83 2.83 1.16 3.16 0.032**

Stratified, 50 2.83 2.67 1.00 3.50 0.006**

Stratified, 100 2.58 2.75 1.25 3.41 0.031**

Stratified, 200 3.17 2.58 1.42 2.83 0.1

Balanced, 20 2.58 3.08 1.17 3.17 0.026**

Balanced, 50 2.92 2.67 1.42 3.0 0.12

Balanced, 100 3.33 3.17 1.33 2.17 0.002**

Balanced, 200 3.17 2.17 1.83 2.83 0.26

6.2.5. Q3: Impact of the Validation Set Size

To measure the impact of the validation set size, we (1) pick a search strategy, dataset,
and validation set label bias, (2) alternate the size ∈ {20, 50, 100, 200}, and (3) compare
the resulting test set AUCs, totalling 44 comparisons. Validation sets of size 200 win in
32 (73%) of the cases, with sizes of 100 and 50 following with 7 (16%) and 5 (11%) wins,
respectively. Figure 2 presents the average validation and test set performance over time
achieved by the Smac search strategy using different sizes of balanced validation sets. It is
evident from the plots that larger validation sets generalize better. On the contrary, smaller
validation sets are prone to overfitting. This result is intuitive when considering that larger
validation sets have higher coverage and learn to generalize better on unseen data, while
smaller ones might be easier to classify yielding a high performance score, resulting in the
promotion of a sub-optimal incumbent.

6.2.6. Q4: Impact of the Search Space Size

To evaluate the impact of the search space size on the test set AUC, a second search space
was constructed using the same five anomaly detectors while increasing their hyperparam-
eter domains, resulting in a total size of circa 175 million configurations. Table 6 presents
a performance comparison between the two search spaces using the same search budget
and balanced validation sets of size 2007 since these parameters were found to yield the
best average test set performance. The results show that an increase in the search space
improves the average test set performance for 5 out of 6 datasets.

7. Conclusions

Anomaly detection is generally treated as an unsupervised learning problem since labels are
hard to come by. This makes it difficult to select a good performing algorithm for any new

7. For the Waveform dataset, the size was set to 100 since there are not enough anomaly labels to form a
balanced validation set of size 200.
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Figure 2: Average validation set AUC (a) and corresponding test set AUC (b) of the best
incumbent model found by Smac over time for three datasets (ALOI, Annthyroid, and
SpamBase). Reducing the size of the validation set leads to overfitting, which hurts the
generalization performance of the selected model.

dataset, especially because dozens of algorithms could be used, each with their own set of
hyperparameters. On the other hand, if we are able to collect a small, labeled validation
set, we could use it to guide the model search. It is possible to leverage the advances of
AutoML research, and in particular the CASH search strategies, for this task. In this paper,
we argue that one has to be careful, however, when applying CASH for anomaly detection.
Because of the nature of the anomaly detection problem, the collected validation set will
be small and biased. We make three observations. First, the smaller the validation set, the
less useful it is to guide the model search. Second, biased validation sets (i.e., including an
equal amount of anomalous and normal examples) guide the model search toward models
that generalize better to unseen test sets. Finally, increasing the search space size might
improve the model search.
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Table 6: Best average test set AUC achieved per dataset for each search space. The table
also includes the average test set AUC for the default search strategy as a comparison.

Dataset Default SP1 SP2 (SP2-SP1)/SP1 %

ALOI 0.605 0.714 0.727 1.8

Annthyroid 0.706 0.724 0.874 20.7

Arrhythmia 0.746 0.776 0.775 0.0

Cardiotocography 0.720 0.767 0.819 6.8

SpamBase 0.692 0.695 0.739 6.3

Waveform 0.737 0.797 0.812 1.9
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Rémi Domingues, Maurizio Filippone, Pietro Michiardi, and Jihane Zouaoui. A comparative
evaluation of outlier detection algorithms: Experiments and analyses. Pattern recognition,
74:406–421, 2018.

Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and Weng-Keen Wong.
A meta-analysis of the anomaly detection problem. arXiv preprint arXiv:1503.01158,
2015.

20

https://doi.org/10.1007/s10618-015-0444-8
https://arxiv.org/abs/2011.05047


CASH for Unsupervised Anomaly Detection

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank
Hutter. Auto-sklearn 2.0: The next generation. arXiv preprint arXiv:2007.04074, 24,
2020.

Songqiao Han, Xiyang Hu, Hailiang Huang, Mingqi Jiang, and Yue Zhao. Adbench:
Anomaly detection benchmark, 2022. URL https://arxiv.org/abs/2206.09426.

Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based local outliers.
Pattern recognition letters, 24(9-10):1641–1650, 2003.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In Carlos A. Coello Coello, editor, Learning and
Intelligent Optimization, pages 507–523, Berlin, Heidelberg, 2011. Springer Berlin Hei-
delberg. ISBN 978-3-642-25566-3.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing
hyperparameter importance. In Eric P. Xing and Tony Jebara, editors, Proceedings of
the 31st International Conference on Machine Learning, volume 32 of Proceedings of
Machine Learning Research, pages 754–762, Bejing, China, 22–24 Jun 2014. PMLR. URL
https://proceedings.mlr.press/v32/hutter14.html.

Frank Hutter, Joaquin Vanschoren, and Lars Kotthoff. Automated Machine Learning: Meth-
ods, Systems, Challenges. Springer, 2019.

Kwei-Herng Lai, Daochen Zha, Guanchu Wang, Junjie Xu, Yue Zhao, Devesh Kumar,
Yile Chen, Purav Zumkhawaka, Minyang Wan, Diego Martinez, and Xia Hu. TODS:
an automated time series outlier detection system. CoRR, abs/2009.09822, 2020. URL
https://arxiv.org/abs/2009.09822.

Yuening Li, Zhengzhang Chen, Daochen Zha, Kaixiong Zhou, Haifeng Jin, Haifeng Chen,
and Xia Hu. Autood: Automated outlier detection via curiosity-guided search and self-
imitation learning. CoRR, abs/2006.11321, 2020a. URL https://arxiv.org/abs/2006.

11321.

Yuening Li, Daochen Zha, Praveen Kumar Venugopal, Na Zou, and Xia Hu. Pyodds:
An end-to-end outlier detection system with automated machine learning. CoRR,
abs/2003.05602, 2020b. URL https://arxiv.org/abs/2003.05602.

Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. COPOD: Copula-based
outlier detection. In 2020 IEEE International Conference on Data Mining (ICDM).
IEEE, nov 2020c. doi: 10.1109/icdm50108.2020.00135. URL https://doi.org/10.1109%

2Ficdm50108.2020.00135.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan
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