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Abstract

Ordinal classification aims to categorize instances into ordered classes. An underrated or
overrated prediction can have significant impacts in applications such as credit rating. Or-
dinal approaches based on Machine Learning (ML) algorithms can be employed to capture
nonlinear patterns. However, under conditions such as lack of training data, their gener-
alization power can be adversely impacted. In this paper, we propose to experimentally
assess the robustness of various ordinal classifiers, with a focus on risk rating tasks. We
suggest two types of scenarios to evaluate robustness in Machine Learning: lack of training
data and data distribution shift. We also propose the ordinal classifier chains, an extension
of the multi-label classifier chains to ordinal tasks. It uses a lightweight bit layout to encode
the labels and employs the chain of classifiers to form a connected structure. Using various
evaluation metrics, we compare a selection of ML models under different robustness tests.
The models are evaluated on a specific risk rating dataset with significant class imbalance.
This benchmark offers a picture of which ML models might be more robust in various data
contexts.

Keywords: Ordinal classification, distribution shift, model robustness, data scarcity, class
imbalance, risk rating, evaluation metrics.

1. Introduction

Risk assessment for credit or compliance activities in finance require classifying instances
according to ordered classes, also called ratings. The objective of ordinal classification is
to assign such an ordinal label to an instance, based on covariates x. As mentioned by
Frank and Hall (2001), ordinal variables distinguish from interval and ratio quantities as
the difference between categories cannot be quantified. For instance, a risk rating could be
assessed as No Risk, Minor, Moderate, or High.

Various modeling approaches can be employed for ordinal classification tasks. Machine
Learning (ML) classifiers are one promising option. However, their inductive nature exposes
them to specific limitations. First, training data scarcity can affect their ability to generalize
well on new data (Prusa et al., 2015; Sordo and Zeng, 2005). Second, dataset shifts can arise
between the Source dataset S (i.e., training/validation data) and the Target dataset T" (i.e.,
real-world data) respective joint distributions: Ps(x,y) # Pr(xz,y) for a set of covariates
x and label y. They are due to non-stationary environments and prove to be harmful as
well (Moreno-Torres et al., 2012). These issues can be exacerbated in the context of class
imbalance. For instance, the data distribution could shift towards risky classes after the
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model has been trained on very few observations of those minority classes. Further, some
modeling architectures for ordinal tasks are not parsimonious, e.g., methods based on a
binary decomposition of the label (Gutiérrez et al., 2015). Lastly, other ML configurations,
such as multinomial classifiers, do not consider the order of categories.

Scope and Commitment In this paper, we propose to experimentally assess and com-
pare the robustness of 7 ML algorithms in performing ordinal classification tasks in the
context of distribution shifts and data scarcity. In addition to existing ML classifiers, we
extend the classifier chains, which originally target multi-label tasks (Read et al., 2021),
in order to perform ordinal classification. The ordinal classifier chain model is based on
a lightweight encoding of labels and a chained structure to reflect order by design. The
7 models are evaluated with specific metrics on a risk rating dataset with significant class
imbalance. CatBoost, an algorithm for gradient boosting on decision trees (GBDT), has
demonstrated to outperform some of the most popular GBDT packages (Prokhorenkova
et al., 2018). During the experiments, it is thus used as a standalone model for the mul-
ticlass approach, and employed as a base learner in the ordinal binary decomposition ap-
proaches (ordinal classifier chain, nested dichotomy, and ordered partition models). This
specific benchmark reveals some ML models’ limitations when facing robustness tests. We
show which approaches offer the best trade-off between accuracy, robustness, 2-notch error
rate, Average Mean Absolute Error (AMAE), Mazimum Mean Absolute Error (MMAE),
and computational cost. The class imbalance aspects are assessed thanks to the use of
specific metrics, namely the AMAE and the MMAE.

2. Related Work

Ordinal approaches Gutiérrez et al. (Gutiérrez et al., 2015) propose a taxonomy for
ordinal regression models and encoding of labels. There are 3 types of ordinal modeling
approaches.

First: multinomial models, such as random forest (Breiman, 2001) or CatBoost classi-
fiers, are called naive approaches as they ignore category order. To answer the explainability
stake, Explainable Boosting Machine is a specific tree-based boosting Generalized Additive
Model (GAM) (Nori et al., 2019), which automatically detects pairwise interactions. As a
side note, the terms multinomial and multiclass are used interchangeably in this paper.

Next, the ordinal binary decomposition approach mostly depends on the encoding choice
for the label. Ordered partitions split a k-class ordinal problem into k — 1 classifications,
as displayed in Figure 1(a). The labels are thus encoded using k — 1 binary variables
Y; with values I(Y; > ¢;), with I the indicator function. Various binary classifiers can
be employed, for instance decision trees (Frank and Hall, 2001). Nested dichotomies can
be used for ordinal classification as well (Frank and Kramer, 2004). They form a tree
where at each node, a classifier partitions the data in two sets of disjointed classes. The
final leaves contain only the data related to one class. A multi-output model is another
option: neural networks can be trained with ordered partitions and a specific loss function
to ensure consistent predicted ranks (Cao et al., 2020). A classifier chain model falls into
that category as well. This is a multi-output model which exploits the relationships between
classifiers. As displayed in Figure 2(a), each classifier’s output is used as a feature for the
subsequent classifiers along with the feature vector & (Read et al., 2021). In order to
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Figure 1: Encoding of labels with 8 ordered categories.

address the problem of class imbalance in ordinal classification, Cruz et al. (2018) introduce
a pairwise scoring ranking approach where observations are trained in pairs. Lastly, it is
worth noting that while some binary decomposition schemes consider the order of classes
(e.g., ordered partition, nested dichotomy), other approaches don’t (e.g., one-versus-all).

Third, threshold models are regressions using intervals to specify the order. The ordinal
logistic regression with proportional odds is one of these (Agresti, 2010; McCullagh, 1980).
Lastly, ordinal forests use latent scores instead of class values by minimizing the out-of-bag
errors (Hornung, 2020).

Rating with ML The rating model is a financial tool used in risk management. For
instance, credit rating is a forward-looking credit risk assessment of a borrower in terms of
default likelihood, through an ordinal scale from low to high risk. It thus supports credit
granting decisions such as loan approval or rejection, and interest to charge. To better
understand the drivers of firm’s creditworthiness, Hirk et al. (Hirk et al., 2019) consider
multivariate ordinal regression models with a latent variable specification and correlated
error terms. In that case, the ratings from various credit rating agencies are employed as
dependent variables, and firm-level and market information as covariates. Despite their
lack of interpretability, ML models can perform just as well or even better in credit rating
prediction (Gambacorta et al., 2019). Different ML algorithms have been investigated, such
as gradient boosting and deep learning (Petropoulos et al., 2019).

Robustness in Machine Learning ML model performance is sensitive to training data
size (Althnian et al., 2021; Prusa et al., 2015; Sordo and Zeng, 2005) . This is exacerbated
with over-parametrized models such as deep neural networks (Thompson et al., 2020). After
model deployment, dataset shifts can surface, generate model uncertainty, and damage its
performance (Rabanser et al., 2019; Szegedy et al., 2013). In that case, training data
is not representative of real-world data anymore. Two examples are covariate shift and
prior probability shift (Moreno-Torres et al., 2012). The former occurs when, for a set of
covariates  and label y, Ps(y|x) = Pr(y|x) and Ps(x) # Pr(x). The latter is defined
as Ps(x|ly) = Pp(x|y) and Ps(y) # Pr(y), with S and T the Source and Target datasets
respectively. P(y|x) denotes the conditional probability of ¥ = y knowing X = @. Risk
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Figure 2: Classifier chains.

rating data is usually prone to class imbalance as severe events, such as fraud or credit
default, might rarely occur (Bischl et al., 2016; Liu et al., 2020). Data scarcity could
hit high-risk classes or data distributions could shift towards those classes. The potential
impacts of these issues can be amplified by class imbalance.

3. Methodology

In this section, we extend the multi-label classifier chains in order to perform ordinal clas-
sification. With this goal in mind, we propose a specific binary decomposition, coined bit
encoding, which minimizes the number of base learners.

Notations and objectives An instance & € F' the instance space, while y € T a set of
k rating categories ¢; < ... < ¢x. When the ratings are encoded in p binary variables (e.g.,
ordered partition case), y = (y1,...,yp) € {0,1}” denotes the corresponding binary vector.
Observations {(x,y)} are assumed to be drawn independently according to an arbitrary
probability distribution P(X,Y) on F' x Y. Our goal is to learn p(y|x); an accurate,
consistent, and parsimonious ordinal predictor of true unknown P(Y = y|X = x),Vx €
F for any y € T. Such a classifier should generalize well when tested on an independent
dataset.

Ordinal classifier chains Given we need 3 questions to guess a number between 1 and
8, we can use a bit encoding representation of the ordinal labels. With k ordered values, the
labels are thus encoded as increasing binary numbers of length [logy(k)] bits. This reduces
the number of classifiers to be trained to ¢ = [logy(k)]. Each rating category is thus
represented by a specific y € {0, 1}¢. For example, we just need 3-bit numbers for 8 ordered
categories. Figure 1(b) with k=8 shows that bit encoding is more parsimonious. Each
binary variable Y; plays a key role in separating specific categories or group of categories.
Figure 2(b) shows that the role of the first classifier h; will be to separate (ci,ca,c3,cq)
from (cs, g, ¢7,cg). The objective of the second classifier hy will be to separate (c1, c2) from
(c3,cq), and (cs,cq) from (c7,cs). Lastly, the final classifier hs will identify each category
uniquely. For this type of encoding, a memory is thus required to secure the consistency in
predicted bits. This role is ensured by the chains between the (Y;)s. We define the ordinal
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classifier chain model as h(x) : F — {0, 1}1°82(F)] with classifiers h; : Fx {0,1}*~! — {0,1}.
The features ¢;—; denote the predicted labels preceding classifier h;. For i € [1, [logy(k)]],
we have:

Ui = hi(x, Ji<;) = argmax p(yi| T, Ji<;) (1)
yiE{O,l}

During inference, the predicted label corresponds to the combination of the output
of each classifier based on argmax, by following a single path through the chain. This
greedy inference is a low-cost approximation of arg max, ¢ 13 P(y|z), with ¢ denoting the
number of classifiers in the chain (also argmaxyeo1ye [[i=) P(¥ilyi<i, ). However, it has
the advantage of remaining computationally tractable when there are many outputs (Read
et al., 2021). This approach also corresponds to a rough minimization of the subset zero-one
loss I(y # y) (Dembczynski et al., 2012), or exact match maximization. Figure 2(c¢) shows
an example during inference where the model predicts c4.

Do the connections between the model outputs really add value? If we assume they
offer no contribution to the model predictions, we can just employ the bit encoding struc-
ture without the chains between the outputs. We propose a simple example to compare
the latter model to the ordinal classifier chains. We consider a training subset with 7
observations from a small feature region R, with true labels {ci,c1,c1,c2,c9,c4,c4}, en-
coded as {00,00,00,01,01,11,11}. If, during inference, the model without chains is ex-
posed to a new instance from R, the model will predict 01 (or ¢2) in a greedy fashion. In
fact, given the training subset, it will first estimate argmax, c(o1y P(y1|Z)zer and then
arg max,, o1} P(y2|T)zer. We remark that max P(y1|@)zer = 5/7 is reached when y; = 0,
and max P(y2|®)zer = 4/7 is reached for yo = 1. On the other hand, the ordinal classifier
chains will estimate argmax, c(o1} P(¥1|®)xer and then argmax,,cgo 1y P(¥2|y1, T)zer-
Considering the training subset, we note that max P(y;|@)gzcr = 5/7 is reached when
y1 = 0, and max P(Y2 = y2|Y1 = 0, X = @)pecr = 3/5 is reached for yo = 0. In that
case, it will predict 00 (or ¢;), which is different from the prediction of the model with-
out chains. It is also an exact match of argmaxycrg1y2 P(Y|®)zer, which is 00 (or ¢;)
according to the training subset. This counterexample shows that the chains between
the outputs of the model can provide value. These connections help to partition the rat-
ing space by considering the dependencies between the (Y;)s. Going back to our train-
ing subset, it is obvious that P(Y2 = 0|Y; = 0) = 3/5 # P(Y> = 0]Y1 = 1) = 0 and
P(Yo =1|Y1 =0) =2/5 # P(Ys = 1|Y1 = 1) = 1, showing that Y2 depends on Y;. Lastly,
another angle would be to experimentally demonstrate the role of classifiers’ outputs in the
decisions of subsequent classifiers by considering the feature contributions in the chain.

Table 1: Comparison table of main ordinal techniques.

Methodology Advantages ‘Weaknesses

Multinomial classifier Wide range of classifiers, easy to implement Naive approach, used for multiclass problems
Ordinal logistic regression Model parsimony (features), explainable Constraints such as proportional odds
Standard binary decomposition Wide range of classifiers Inconsistencies, lack of parsimony (estimators)
Nested dichotomy Wide range of classifiers, specific nested models Lack of parsimony (nested estimators)
Ordinal classifier chains ‘Wide range of classifiers, lightweight Greedy inference
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General versus specific model Table 1 compares the main ordinal approaches, with
their respective strengths and weaknesses. It is worth highlighting the differences between
the nested dichotomy and ordinal classifier chain models:

e During training: as displayed in Figure 1(¢), the nested dichotomy trains k — 1 clas-
sifiers on data partitions. On the other hand, the ordinal classifier chain model trains
[logy (k)| classifiers, and the whole dataset is used each time. The ordinal classifier
chain model employs more features, the (g;<;)s, while the nested dichotomy requires
more classifiers. Therefore, with many rating categories, the number of classifiers
would soar in the nested dichotomy case.

e During inference: nested dichotomies go through a limited number of classifiers while
the ordinal classifier chain model goes through all of them.

The ordinal classifier chains and nested dichotomies thus follow two different paradigms:
general versus specific classifiers. We will compare their performance in the experimental
phase to understand which approach (general or specific) proves to be more accurate in the
context of class imbalance.

Bit-output decoding and inconsistency correction Bit-output decoding can be car-
ried out with a simple dictionary where, for instance, prediction 001 is mapped to category
co. If the number of ordered categories k is strictly between 27~! and 2", inconsisten-
cies in bit predictions may occur during inference. A prediction ¢ cannot be mapped to
a category if it does not exist in the possible reference configurations. For instance, in a
3-class ordinal problem, if 00, 01, and 10 have been used to respectively encode categories
c1, co, and cs, a prediction such as 11 will not find any match. To correct inconsistencies
in bit predictions, we suggest computing the probability szl P(Y;j|Yi<j, ) for each of the
k possible paths (k categories) and selecting the optimal one. Going back to our example,
we compare p(ya|y1,x) X p(y1|x) for (y1,y2) in {(0,0),(0,1),(1,0)}, and select the most
likely configuration. If the number of rating categories is significant, this could increase the
computational cost. However, few inconsistencies were observed during the experiments.

Table 2: Model list and implementation packages.

Model Acronym Python 3 package

Ordinal logistic regression, proportional odds OLR statsmodels v0.13.0.dev0

Rank-consistent neural network (Cao et al., 2020) NN Coral Ordinal (Kennedy, 2020)

Ordinal classifier chains [e]e]e; CatBoost base learner

CatBoost (multiclass) (Prokhorenkova et al., 2018) CAT CatBoost 0.26.1

Nested dichotomy ND nd (Melnikov and Hiillermeier, 2018), CatBoost base learner
Ordered partitions oP CatBoost base learner

Explainable Boosting Machine (Nori et al., 2019) EBM interpret 0.2.7

4. Experiments

4.1. Settings

Use case The Lending Club dataset contains peer-to-peer lending data with personal and
business loans for individuals (George, 2018). It is available under CCO: Public Domain
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license. We limit the scope to 2018 accepted loan data, i.e., 56311 observations. The risk
rating is the grade variable estimated by Lending Club at issuance time. In this use case,
the grade validated and assigned by Lending Club is thus considered to be the true label.
The rating has 7 levels from less risky A to riskier G. The minority classes are the high-risk
ratings I and G. We employ 21 variables, with a blend of continuous and categorical types.
The objective is to predict (i.e., replicate) the rating using only the information available
at loan issuance time ¢t = 0. Therefore, the loan status at ¢ > 0 (default or not) is not used.
Variables are financial ratios (e.g., debt-to-income), credit record data (e.g., revolving line
utilization rate), borrower characteristics (e.g., annual income) or current loan information
(e.g., loan amount).

Model inventory and evaluation A selection of 7 modeling approaches are evaluated.
Table 2 describes the models and implementation packages. To make comparisons more rel-
evant, the ordinal classifier chains, the nested dichotomy, and the ordered partition models
use the same base learner, CatBoost classifier, which is an algorithm for gradient boosting
on decision trees. We convert the ratings to numerical labels from 1 to 7 for the multiclass
models (CAT, EBM). OLR employs ordered categories. Lastly, a specific label encoding
scheme is used for the other models: ordered partitions for NN and OP, bit encoding for
OCC, and nested dichotomy partitions for ND. Models are evaluated using various metrics:

e Accuracy is defined as the rating exact match by using the 0-1 loss: 1 —
(1/N) Zfil I(¢; # ¢;), where the sum is performed over N test instances, and with
¢; and ¢; denoting the true and predicted ratings, respectively. The prediction of a
multiclass or binary classifier is based on the argmax of predicted class probabilities.

e The 2-notch error rate is defined as: (1/N) ZZJL I(|¢; — ¢i| > 2). It corresponds to a
weighted error rate, considering model under/over-rating of at least 2 categories from
the true rating. We assume here that the ratings are numerical with ¢; € [1, k]. This
metric is a meaningful performance measure in rating tasks as it focuses on significant
€ITors.

e The Average Mean Absolute Error (AMAE) is defined as (1/k) 22:1 MAE,, where

MAE, = (1/N,) ZZN:ql |¢; — g| on the partition related to true rating g € [1, k] (Cruz
et al., 2018; Perez-Ortiz et al., 2014). It is relevant for ordinal classification problems
with class imbalance as the share of each class is not taken into account in the average
computation. High MAE values on minority classes would thus influence AMAE. The
fact that the variable is considered as a cardinal variable is an assumption of this
measure.

e The Maximum Mean Absolute Error (MMAE) is defined as max(M AE,|q =1, ..., k).
It focuses on the class with the greatest mean distance between the predicted classes
and the true classes. This metric is thus appropriate to assess the model performance
for ordinal classification problems with class imbalance (Cruz et al., 2018; Perez-Ortiz
et al., 2014). In fact, a high MAE value on the minority class would affect MMAE.

e Lastly, the computational cost is the time to perform pre-processing (e.g., label encod-
ing), model training, optimization, and evaluation on 10000 observations (test set).
Experiments are run with a CPU 1.9 GHz and 32 GB RAM.
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For the ordinal logistic regression, variables with Variance Inflation Factors (VIF)
greater than 10 are discarded (Hair et al., 2006). The neural network has 2 hidden layers
(512 and 32 units) and 2 drop-out layers (0.2 rate). It employs ReLu activations. Adam
optimizer (Kingma and Ba, 2014) is used with learning rate tuning initialized at 5e-5 and
batch size of 32. Training is performed with early stopping on validation accuracy with a
patience of 5.

For the 5 other models, the number of boosting iterations is optimized using cross-
validation with a simple grid search: [10, 100, 500, 1500]. We select the model with the best
mean accuracy over cross-validation folds. With 7 rating categories, the ordinal classifier
chain model employs the first 7 3-bit binary numbers for label encoding: 000 (¢1), 001 (c2),
010 (c3), 011 (ca), 100 (c5), 101 (cg), and 110 (c7).

Robustness scenarios Two shift scenarios are tested:

e Baseline or standard scenario: no distribution shift occurs between training and test
data. The distribution is noticeably skewed towards low-risk ratings.

e Adverse scenario: covariate shift occurs, and label proportions differ between training
and test datasets. The distribution moves towards classes with higher risk.

Training (500) [—

Standard test
(10000)

Training (5000)

Adverse test
(10000)

Training (25000)

Model optimization

<<<<<<<

Figure 3: Training and evaluation pipeline with (dataset size), shift scenario and corre-
sponding rating distribution. Model optimization includes cross-validation (num-
ber of iterations for the boosting algorithms) and validation (number of epochs
through early stopping for the neural network) using folds of the training set.

The experiments are run over 2 dataset shift scenarios (standard, adverse), 3 training
data sizes (500, 5000, 25000) and 5 random states. Random states correspond to different
seeds in the dataset splits during the creation of training and test datasets. The 6 robustness
scenarios are referred to as ”shift scenario-training data size”, e.g., adverse-500. We could
have chosen a more progressive and granular approach for the training data sizes; this
remains to be studied. As displayed in Table 3, a training data size of 500 corresponds to a
situation of data scarcity, where volumes are low for most of the labels. For a given random
state and training data size, all models are trained on the same data. For a given random
state, all models are evaluated on 2 test datasets with distinct shift scenario: standard test
and adverse test datasets. Figure 3 summarizes the training and evaluation pipeline for one
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random state. As displayed in Table 4, the label distribution is thus significantly imbalanced.
The training set includes very few observations related to ratings 6 and 7. However, in the
adverse scenario, there is an increasing number of instances of those classes.

Table 3: Label distribution in training dataset (count), averaged over 5 random states, by
data size.

Label /Volume 500 5000 25000

138.6 1391.0 7000.4
139.2 1420.2 7107.6
127.4 1219.0 6129.4
71.0 762.0 3711.2
21.4 187.6 944.2
1.8 16.0 86.2
0.6 4.2 21.0

N O U W N

Table 4: Rating distribution (%) averaged over 3 data sizes and 5 random states for each
dataset: Training, Standard Test, Adverse Test.

Label Training Standard Test Adverse Test

1 27.85 28.06 4.10
2 28.22 28.37 22.27
3 24.79 24.89 31.49
4 14.76 14.50 25.97
5 3.94 3.74 11.19
6 0.34 0.35 4.11
7 0.10 0.09 0.86

Shift generation As creating synthetic data can generate label inconsistencies, we keep
the original dataset unchanged. Shift generation is performed through k-means clustering
(Lloyd, 1982) applied to the whole (covariate) dataset. Categorical covariates are one-hot-
encoded. Instances within each cluster will have their proper covariate distribution. Given
these covariates are correlated with the target variable, the clusters will thus have different
label distributions. In fact, distant clusters are more likely to exhibit significantly different
label proportions. The adverse shift is thus produced by sampling (without replacement)
heterogeneously over all the clusters for the training data and the adverse test data. Figure 4
describes the cluster sampling process. If the test dataset is constructed by sampling mainly
from cluster 1 and the training set by sampling from the other clusters, significant covariate
and rating shifts will be observed.

4.2. Results
4.2.1. ACCURACY ROBUSTNESS TRADE-OFF

Figure 5(a) displays the average accuracy over all 6 scenarios versus the absolute change
in accuracy computed between 2 opposite scenarios (standard-25000 and adverse-500). 3
groups stand out. First, explainable models, i.e., the ordinal logistic regression and Ex-
plainable Boosting Machine, are more robust against data scarcity and distribution shift,
but perform poorly on average. It is worth mentioning that in the interpret package, the
interaction parameter is forcefully set to 0 for multiclass tasks. At the other end of the
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Figure 4: Shift generation based on cluster sampling. One covariate (revolving balance) and
rating distributions are displayed respectively in blue and red by cluster.

spectrum, the neural network, as a complex model, achieves good average accuracy with
poor adaptation to adverse-500. The last group, with 4 models, achieves superior accuracy
and in-between robustness. Within this group, the ordered partition model has the best
average accuracy over all scenarios, while the ordinal classifier chain model comes second.
Overall, the general ordinal chain approach generalizes slightly better over different situa-
tions than the specialized nested dichotomy. Further, the former, as an ordinal approach, is
more accurate than CatBoost multiclass. However, the ordinal classifier chain is a bit more
sensitive to extreme changes when moving from standard-25000 to adverse-500. Although
designed for multinomial tasks, CatBoost multiclass proves to be quite competitive.
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Figure 5: (a) Mean accuracy over 6 scenarios versus absolute change between standard-
25000 and adverse-500 accuracies, averaged over 5 random states. (b) Accuracy
versus computation time in seconds, averaged over 6 scenarios and 5 random
states.
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Table 5 highlights that the ordinal logistic regression is robust in difficult conditions but
does not really take advantage of a larger training dataset. As expected, it fails to capture
nonlinear patterns. On the other hand, the neural network cannot generalize well when it
is exposed to both training data scarcity and distribution shifts. It may overfit and require
even more regularization. The ordered partition model confirms its good performance across
various scenarios. Compared to the nested dichotomy and CatBoost multiclass models, the
ordinal classifier chains mostly stand out when facing adverse dataset shifts provided that
there is enough training data (5000 and 25000). In fact, the ordinal classifier chain model
proves to be more robust to dataset shifts than training data scarcity.

Table 5: Accuracy (standard deviation), by model and scenario, averaged over 5 random
states. Best performance for given scenario is in bold. Model acronyms are defined

in Table 2.

Scenario OLR NN ocCcC CAT ND oP EBM

adverse-500 0.344 (0.01) 0.043 (2e-3) 0.247 (0.04) 0.247 (0.03) 0.258 (0.05) 0.334 (0.02) 0.280 (0.04)
adverse-5000  0.360 (0.01) 0.606 (0.07) 0.519 (0.03) 0.478 (0.01) 0.477 (0.06) 0.574 (0.02) 0.360 (0.01)
adverse-25000  0.368 (4e-3) 0.840 (0.02) 0.830 (0.01) 0.716 (0.01) 0.786 (0.02) 0.845 (0.01) 0.380 (0.01)
standard-500  0.413 (0.01) 0.281 (0.01) 0.409 (0.02) 0.412 (0.01) 0.411 (0.01) 0.427 (0.01) 0.381 (0.02)
standard-5000  0.426 (4e-3) 0.755 (0.05) 0.759 (0.01) 0.761 (0.01) 0.745 (0.02) 0.788 (0.01) 0.489 (0.02)
standard-25000 0.432 (0.01) 0.902 (0.02) 0.904 (5e-3) 0.889 (4e-3) 0.898 (0.01) 0.909 (0.01) 0.583 (4e-3)

4.2.2. COMPUTATIONAL COST

Figure 5(b) demonstrates that CatBoost multiclass is the most computationally efficient
model, followed by the ordinal classifier chain model. The latter offers a good trade-off
between accuracy and computation time thanks to its lightweight structure. On the other
hand, the ordered partition approach is less parsimonious, due to a heavy encoding structure
with more classifiers. The nested dichotomy model is also less efficient given the number
of nested classifiers. Lastly, the neural network model would require more resources for a
faster computation time, especially with large datasets.

Table 6: 2-notch error rate (standard deviation), by model and scenario, averaged over 5
random states. Best performance for given scenario is in bold.

—~—

standard-5000  0.139 (0.003
standard-25000 0.139 (0.002

0.016
0.002

0.007) 0.028 (0.002) 0.041
0.001) 0.002 (0.001) 0.005

0.002) 0.048
0.001) 0.007

0.016) 0.013 (0.001
0.003) 0.002 (0.001

Scenario OLR NN OoCcC CAT ND oP EBM
adverse-500  0.186 (0.013) 0.729 (0.005) 0.330 (0.058) 0.329 (0.043) 0.321 (0.065) 0.221 (0.026) 0.289 (0.070)
adverse-5000 0.153 (0.008) 0.014 (0.007) 0.087 (0.032) 0.113 (0.038) 0.123 (0.048) 0.048 (0.020) 0.188 (0.018)
adverse-25000  0.151 (0.002) 0.002 (0.000) 0.003 (0.001) 0.029 (0.003) 0.026 (0.013) 0.006 (0.001) 0.166 (0.009)
standard-500 0.157 (0.010) 0.445 (0.008) 0.192 (0.018) 0.190 (0.007) 0.187 (0.012) 0.124 (0.004) 0.216 (0.016)
( ( (
( ( (

—_—o =
—
—_—

0.155 (0.002)
0.131 (0.003)

122



ROBUSTNESS OF ORDINAL CLASSIFIERS

4.2.3. 2-NOTCH ERROR RATE

Table 6 displays the 2-notch error rate across the 6 scenarios. For complex models, this met-
ric is quite sensitive to training data size and distribution shifts. This trend is pronounced
for the neural network. However, with more training data, this metric converges to 0, espe-
cially for the neural network, the ordinal classifier chains, and the ordered partition model,
even when distribution shifts appear. We note that the ordinal logistic regression achieves
the lowest rate if we focus on adverse-500, but its 2-notch error rate remains high around
14-20% across all the scenarios. For complex models exposed to small data contexts, the
optimization of regularization hyperparameters to minimize this metric remains to be seen.

4.2.4. AMAE

AMAE is affected by high MAE values on minority ratings 6 and 7. Table 7 shows that
AMAE values can be significant for the neural network in small data contexts. For complex
models, AMAE values noticeably decrease with more training data. The adverse scenario
sometimes displays a lower AMAE value than the standard case. In fact, in the standard
case, there are often very few test instances with true ratings 6 or 7, which can produce
pretty high MAE values on those classes.

Table 7: AMAE (standard deviation), by model and scenario, averaged over 5 random
states. Best performance for given scenario is in bold.

Scenario OLR NN OoCcC CAT ND oP EBM

adverse-500 1.367 (0.07) 2.538 (0.23) 1.762 (0.09) 1.783 (0.07) 1.786 (0.08) 1.646 (0.07) 1.778 (0.16)
adverse-5000 1.332 (0.00) 0.583 (0.10) 1.070 (0.13) 1.302 (0.04) 1.349 (0.18) 0.972 (0.08) 1.407 (0.03)
adverse-25000  1.314 (0.00) 0.312 (0.07) 0.370 (0.02) 0.680 (0.02) 0.677 (0.19) 0.460 (0.02) 1.319 (0.01)
standard-500  1.646 (0.07) 2.554 (0.15) 1.872 (0.08) 1.841 (0.03) 1.921 (0.04) 1.740 (0.05) 2.011 (0.09)
standard-5000  1.632 (0.06) 0.741 (0.10) 1.012 (0.05) 1.183 (0.08) 1.250 (0.14) 0.899 (0.04) 1.619 (0.06)
standard-25000 1.659 (0.06) 0.454 (0.06) 0.468 (0.05) 0.615 (0.08) 0.689 (0.13) 0.482 (0.05) 1.487 (0.08)

4.2.5. MMAE

MMAE is affected by a high MAE value on rating 7. MMAE values, displayed in Table 8,
demonstrate that the greatest distance between predicted and true labels can be significant
in small data contexts for all models. However, NN, OCC and OP can take advantage of
more data to reach pretty good results. As mentioned previously for AMAE, MMAE can
sometimes be lower in the adverse case, as the model is evaluated on more test instances
with a true rating of 7, producing fewer erratic results than in the standard case. Lastly, the
general OCC model achieves lower MMAE results than the specific ND model. A general
approach can thus be relevant even for minority classes.

5. Conclusion

In this paper, we experimentally evaluate the robustness of various ML models against
training data scarcity and adverse distribution shifts when predicting ratings in the context
of class imbalance. We also extend the classifier chains to perform ordinal classification
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Table 8: MMAE (standard deviation), by model and scenario, averaged over 5 random
states. Best performance for given scenario is in bold.

Scenario OLR NN occ CAT ND oP EBM

adverse-500  2.968 (0.24) 4.246 (0.88) 3.834 (0.09) 3.902 (0.16) 3.919 (0.21) 3.811 (0.20) 3.922 (0.35)
adverse-5000  2.937 (0.05) 1.204 (0.17) 2.476 (0.40) 3.348 (0.10) 3.334 (0.52) 2.453 (0.21) 3.124 (0.12)
adverse-25000  2.914 (0.04) 0.986 (0.17) 1.104 (0.08) 1.952 (0.12) 2.213 (0.75) 1.585 (0.07) 2.954 (0.14)
standard-500  3.955 (0.60) 4.526 (0.69) 4.348 (0.43) 4.304 (0.32) 4.642 (0.14) 4.248 (0.35) 4.642 (0.31)
standard-5000  3.974 (0.39) 1.905 (0.44) 3.006 (0.25) 3.638 (0.45) 3.551 (0.43) 2.743 (0.26) 3.946 (0.36)
standard-25000 4.133 (0.42) 1.304 (0.32) 1.791 (0.32) 2.207 (0.60) 2.655 (0.61) 1.788 (0.42) 3.923 (0.58)

tasks. This model leverages a lightweight bit encoding and connected structure. The
ordinal logistic regression is less sensitive to distribution shifts than more complex models
in small data contexts. Complex models are more likely to overfit but are more accurate
when averaging over all scenarios, especially when they capture nonlinear patterns on larger
training datasets. By design, tree-based methods or neural networks are able to capture
these nonlinearities. The ordered partition model demonstrates good performance across
diverse scenarios. It achieves the best accuracy, 2-notch error rate, and AMAE when each
of these metrics is averaged over all scenarios. The ordinal classifier chain offers a relatively
good compromise between the different evaluation metrics, especially when the training
dataset is large. It achieves the second-best accuracy, 2-notch error rate, computational
cost, AMAE and MMAE when each of these indicators is averaged over all scenarios. For
all models, MMAE can disclose failure zones with a greater distance between predicted and
true high-risk ratings in small data contexts. These results are specific to this use case
and should be confirmed on additional datasets with more rating categories. Future work
will also concentrate on testing a selection of regularization hyperparameters in small data
contexts. Additional classifier families (e.g., random forest) could be evaluated.
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