
CNN and dMRI 4th degree rotation invariant features for AD identification

Appendix A. Preprossessing

Since we are starting from raw dMRI data, a preprocessing phase is mandatory. In this
phase, we follow the following steps :

1. Denoising to remove of some of the Racian noise present inherently in all dMRI data
(Done using the MRtrix library (Tournier et al., 2019)).

2. Distortion correction to correct of distortions in the scans that may emerge from
patients’ movements (Done using the MRtrix library (Tournier et al., 2019)).

3. Rotation Invariant Features extraction to extract in each voxel all 12 alge-
braically independent RIFs calculated from 4th degree Spherical Harmonics that
model the dMRI signal (Done using the dmipy library (Fick et al., 2019) which con-
trains the code from Zucchelli et al. (2020)).

4. Registration to remove anatomical clues and focus on the RIFs values in each voxel.
It consists of casting all the scans onto one reference RIFs scan of a NC patient using
a linear and non-linear transformations (Done using the FSL library (Jenkinson et al.,
2012)).

After these steps, for each scan we obtain 12 corresponding 3D matrices each one rep-
resents one of the 12 RIFs. Note that not all scans passed the preprocessing step and the
number of usable scans is reported in Table 1.

Also, we remove the outliers and normalise the values of each RIF 3D matrix of each
subject. This is done my clipping the values in areas that constitute the brain into a suitable
range specific to each RIF. Then, the values are normalised in the [0-1] range (Values outside
the brain are set to 0).

Appendix B. Fixed Slicing

Due to the scarcity of dMRI scans compared to classical computer vision benchmark data
sets, we cannot use each 4D matrix as a single data point in training a deep learning model
that uses 3D convolutions as it will have too many parameters to learn. To solve this
problem we resort to slicing the 4D RIF scans into 3D ones along the spatial directions,
apply 2D convolutions on them, then regroup the resulting latent space (See Section 3.3).
To this end, we take slices in the 2 main directions (Axial, Coronal) which results in a 3D
matrix where the RIFs represent the channels 1. As a slicing policy we opt for the fixed
slicing. This policy consists of taking the same set of continuous slices in a predefined range
regardless of the training epoch. We take all the brain slices that contain a reasonable
amount of information then let the model decide which information to take/encode.

1. We have tried using the sagittal slices but they didn’t improve the classification performance and nor
allowed us to employ a big enough batch size.



Bouayed Deslauriers-Gauthier Zucchelli Deriche

Appendix C. Implementation details

C.1. Cross data set parameters and data set split

Building and training the deep learning model proposed in this work is done using the
Pytorch library (Paszke et al., 2019). As for the optimisation part, it is done using the Adam
optimisation algorithm (Kingma and Ba, 2014) with a learning rate of 2 × 10−6, β1 = 0.9,
β2 = 0.999 and a weight decay of 10−5. To split the data set into train, validation and test,
we noticed that in the ADNI - SIEMENS data set the AD scans represent about 12% of
the data set and in the ADNI - GE medical they represent around 32%. Consequently, we
preserve this ratios in the train, validation and test splits of each data set. The data set
partitioning we use is reported in Table 4.

Following the splits in Table 4, we have 62.5%, 13.5% and 24% of the data sets that is
used for training, validation and testing respectively.

Table 4: ADNI data sets splits.

ADNI - SIEMENS ADNI - GE medical
Train Validation Test Non used Train Validation Test Non used

AD 30 6 10 0 119 26 46 0
NC 200 46 76 30 262 54 100 3

C.2. Scans’ size adjustments

For each data set we make sure that the voxels are isotropic. For the ADNI - GE medical
data set we omit the first 50 and last 56 dimensions of the scans on the second and third
axis because they do not contain any brain information. Then, we pad the volumes with
zeros so as to have cubes (except for the dimension of the RIFs). Finally, we interpolate
the output of the padding operation to the size 12 × 224 × 224 × 224.

C.3. Loss function

Since the training, validation and testing sets are imbalanced, to train the deep learning
models we use the Weighted Cross Entropy loss (WCE) expressed as

LWCE =
∑
i,j

βi · yi,j · log(ŷi,j)

where βi is a scaler that represents the weight of the data point i, yi is a one hot vector
encoding the ground truth label and ŷi is a vector representing the probability distribution
predicted by the network for the input i over all the classes. The weight βi is a hyper
parameter that is set according to the proportion of the class yi in the training set w.r.t the
other classes so that all classes have the same number of training instances when scaled by
βi. In our case, we set it as

βi =


1 if i is NC
200
30 ≈ 6.67 if i is of the ADNI - SIEMENS data set and is AD
262
119 ≈ 2.2 if i is of the ADNI - GE medical data set and is AD



CNN and dMRI 4th degree rotation invariant features for AD identification

To test the trained models, we adopt a check-pointing strategy. In this strategy, and
after 5 warm up epoch, we save the model’s weights each time we improve the validation
B-score. Then, for the testing phase, we load the latest saved model and evaluate it on the
test set. Consequently, in case of over-fitting, this approach allows us to use the weights of
the best learned model according to the validation set.

Appendix D. Additional Figures

Figure 4: An overview of the proposed pipeline.

(a) AD vs NC for R0. (b) AD vs NC for R222.

Figure 5: Distribution difference for the RIFs R0 and R222 between the first 20 AD patients
and the first 20 NC patient in the ADNI - SIEMENS data set.


	Preprossessing
	Fixed Slicing
	Implementation details
	Cross data set parameters and data set split
	Scans' size adjustments
	Loss function

	Additional Figures

