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Abstract
Purpose: This work proposes the hypothesis that data oversampling may lead to dataset
simplification according to selected data difficulty metrics and that such simplification
positively affects the quality of selected classifier learning methods.
Methods: A set of computer experiments was performed for 47 benchmark datasets to
make the hypothesis plausible. The experiments considered five oversampling methods, five
classifiers, and 22 metrics for data difficulty assessment. The experiments aim to establish:
(a) whether there is a relationship between resampling and change in the difficulty of the
training data and (b) whether there is a relationship between changes in the values of
training set difficulty metrics and classification quality.
Results: Based on the obtained results, the research hypothesis was confirmed. It was
indicated which measures correlate with selected classifiers. The experiments showed the
relationship between the change of assessed difficulty measures after oversampling and the
classification quality of selected models.
Conclusion: The obtained results allow using the selected measures to predict whether
a given oversampling method leads to favorable modifications of the learning set for a
given type of classifier. Showed relationship between difficulty measures and classification
will allow using the mentioned measures as a learning criterion. For example, guided
oversampling can treat the modification of the learning set as an optimization task. During
the oversampling process, no estimation of classification quality metrics will be required,
but only an evaluation of the training set difficulty. This may contribute to the proposition
of computationally efficient methods.
Keywords: oversampling, data complexity, imbalanced data, pattern classification

1. Introduction

The paper considers the problem of evaluating imbalanced data preprocessing. The unequal
number of training examples in each class concerns most real-world classification tasks and
has been of interest to the scientific community for more than thirty years. Initially, the
inequality in the number of objects in each class and the fact that most canonical classifier
learning methods cause the returned classification model to be biased toward the majority
class was the main source of the difficulty of training classifiers on imbalanced data. Many
methods based on data preprocessing and so-called algorithm-level solutions have been pro-
posed to offset this disparity, such as using randomized over- and undersampling or simple
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guided strategies. However, it is easy to show examples of conditional class distributions
that, despite the disparity in the representation of the different fractions, do not pose any
problem in building a high-quality model. In that case, any interference with the class
distributions is unnecessary and will not improve classification quality.

Previous works have recognized that in addition to the disparity mentioned above, a more
critical problem is the mutual distribution of minority and majority class data, their overlap,
and the formation of small unrepresentative minority class clusters. Several taxonomies of
the difficulty of minority class distributions were proposed. Mainly, they divide objects into
safe objects (i.e., minority class objects forming homogeneous clusters) and unsafe objects
(i.e., minority class objects surrounded by minority and majority class objects). The most
popular taxonomy is based on the composition of an object’s five nearest neighbors and
classifies it in the case of an inhomogeneous neighborhood into a borderline, rare, or outlier
category. Based on this approach, guided preprocessing methods began to be designed,
which take into account, for example, object types during the oversampling process (Sáez
et al.) or focus on one selected fraction, such as BorderlineSmote (Han et al., 2005).

However, it should be noted that most of the guided methods try to use some more or
less legitimate heuristics. Some authors try to avoid using the "rule of a thumb" by treating
preprocessing of imbalanced data as an optimization task. E.g., Khoshgoftaar et al. (2010)
proposed using an evolutionary algorithm for the undersampling. García and Herrera (2009)
treated the undersampling as a multi-criteria optimization problem. Also, several guided
oversampling strategies were supported by metaheuristic algorithms, such as Li et al. (2020).

An additional problem is the lack of reliable metrics to assess the quality of the re-
sulting model without information about the mutual validity of the minority and majority
classes. Such information would simplify the problem by taking the expected value of the
loss function (overall risk) as a criterion. Unfortunately, in most tasks, we do not have this
information, and the most popular metrics can lead to unwarranted conclusions about the
quality of the evaluated methods (Brzeziński et al., 2020; Stapor et al., 2021).

Unfortunately, there is a lack of explicit guidance that attempts to indicate whether a
given preprocessing method is worth using for a given decision problem and, if so, for which
learning method will a resulting dataset lead to a classifier of acceptable quality. The typical
structure of computer experiments aiming to evaluate the proposed preprocessing method
is to test it on a set of benchmark databases for several classifier learning methods. Such
a process is computationally costly, especially if preprocessing is treated as an optimization
task. For example, when using evolutionary algorithms, each potential solution requires
quality assessment, i.e., learning a classifier and estimating its quality.

In this paper, we will consider whether it is possible to use data complexity measures to
assess the difficulty of a decision problem before and after data preprocessing and indicate the
relationship between the chosen measure and the target classification model. In this work,
we want to make plausible the hypothesis that it is possible to indicate, without training a
classifier, whether a given method of data preprocessing leads to such a modification of the
training set, which will result in an increase in prediction quality for a given classifier trained
on a data after preprocessing. If this hypothesis is confirmed, we will obtain a simple tool
to indicate which preprocessing method is suitable for which dataset and classifier type and
can be used as an optimization criterion for guided preprocessing methods.
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2. Related works

The scope of data complexity measures applications, according to the available literature,
is rather wide, ranging from applications in signal data (Li et al., 2022), through the dom-
inant application in meta-learning (Rivolli et al.), extending the context of difficult data
analysis (Goethals et al., 2022), or applications in supporting the classification models of
imbalanced data classification (Barella et al.).

However, the most heavily exploited research area using complexity measures is meta-
learning, where a metric problem assessment is used to identify the processing pipeline that
should be used to construct an optimal recognition model (Rivolli et al.). Particularly
interesting is the work on spectrogram profiling Chinese liquor, the achievements of which
allow for efficient recognition of fake vintage liquors (Zhang et al., 2022), rejecting not
promising recognition strategies through meta-learning before building appropriate models.
Complexity measures are most often used as meta-features for a variety of AutoML solutions
(Alcobaça et al., 2020), being the basis for learning appropriate problem representations
(Rakotoarison et al., 2021), or in practical applications such as selecting a model that takes
into account prior risk knowledge of construction accidents (Li et al., 2021).

Assessing the problem’s difficulty often appears in the literature as a tool to extend the
analysis of results. This applies to research in the field of digital image processing, when
assessing the impact of the thermal image scale on the difficulty of the classification task
solved by LSTM networks (Reuß et al., 2021), and to the issue of model explainability, when
assessing the impact of increasing the explainability of the model on changes in problem
difficulty was measured by the F1v, N3 and L1 measures (Goethals et al., 2022). There is
also a noticeable trend taking into account changes in the complexity of the problems after
the resampling phase for the imbalanced data classification (Kong et al., 2019).

The primary scope of research on imbalanced data classification is based on evaluating
the relationship between the resampled training set and the test set (Dogo et al., 2021).
As part of the research on the correlation of measures with the quality of recognition in
an imbalanced environment, (Barella et al.) proposed versions of metrics adapted to the
disturbed prior distribution. Practical applications in such environments allow determining
the size of the synthetic set in oversampling or prior recommendation of the most appropriate
recognition methods for a given problem (Costa et al., 2020). It is worth mentioning (Santos
et al., 2022) where the authors evaluated the difficulty of simultaneous class imbalance and
overlapping.

As an issue integrating all areas of research in data complexity measures, the study
of the relationship between model quality and classification task difficulty can be dis-
tinguished. The base analyses, conducted both on small collections of benchmark data
(Camacho-Urriolagoitia et al., 2022), on dimensionality reduction (Morán-Fernández et al.)
and imbalanced sets (Barella et al.) initially confirm the possibility of making it plausi-
ble. This provides the basis for conducting research on selecting preprocessing models and
optimizing their configuration, an example of which may be the work of (Bartz et al., 2021).

A set of data complexity measures is presented in Lorena et al. (2019). This work
describes 22 measures, divided into six categories and implemented in ECoL package for R,
DCoL package for C++ and in problexity package for Python language. All the measures
are presented in Table 1. The original implementation of measures with a single asterisk
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(*) was slightly modified by authors of ECoL package, and for those with a double asterisk
(**), authors have selected the required parameters.

Table 1: Utilized measures of classification problem complexity assessment

category measure symbol

Feature-based Maximum Fisher’s discriminant ratio F1*
Directional vector maximum Fisher’s discriminant ratio F1v
Volume of overlapping region F2
Maximum individual feature efficiency F3
Collectove feature efficiency F4

Linearity Sum of error distance by linear programming L1
Error rate of linear classifier L2
Non linearity of linear classifier L3**

Neighborhood Fraction of borderline points N1
Ratio of intra/extra class NN distance N2
Error rate of NN classifier N3
Non linearity of NN classifier N4**
Fraction of hyperspheres covering data T1*
Local set average cardinality LSC

Network Density density**
Clustering Coefficient ClsCoef**
Hubs Hubs**

Dimensionality Average number of features per points T2*
Average number of PCA dimensions per points T3
Ratio of the PCA dimension to the original dimension T4

Class imbalance Entropy of class proportions C1
Imbalance ratio C2

3. Experimental evaluation

We conducted a series of experimental studies to prove the hypothesis presented in the
introduction by answering the following research questions:

RQ1: Do the known oversampling methods affect the change in the value of the data difficulty
measures?

RQ:2 Is there a relationship between the change in the value of the selected difficulty measure
caused by oversampling the training data and the classification quality of the chosen
models?

3.1. Experimental setup

The experiments were implemented in the Python programming language using the scikit-
learn (Pedregosa et al., 2011), imbalance-learn (Lemaître et al., 2017) libraries and the
problexity module (Komorniczak and Ksieniewicz, 2022). The experiments examined the
relationships between all data difficulty measures and five classification quality metrics:
balanced accuracy (BAC ), F1 score, area under the curve (AUC ), recall, and precision.
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Forty-seven publicly available binary data sets were used for the classification task.
The tested problems were characterized by a different imbalance ratio, a different number
of instances, and a different number of features defining the problem space. The difficulty
of the examined data sets was also analyzed in the context of the classification problem
complexity to confirm the diversity of the selected collection.

The evaluation was performed with 5×2 cv protocol (Stapor et al., 2021). The training
set was subjected to resampling, then the measures of problem difficulty were calculated,
and the classifier was trained using post-resampling data. The classification quality was
tested on the test data without resampling. Each experimental loop was repeated ten times
to minimize the influence of data bias, initializing classifiers and resampling methods with
different random states. Due to the high imbalance ratio in some datasets, not all oversam-
pling algorithms can generate synthetic data. In the event of an error in the resampling
procedure, the dataset was not considered during the analysis. The experiments considered
five oversampling methods and five classification algorithms.

3.2. Results and lessons learned

Let’s present the results of the experiments and answer the research questions.

3.2.1. RQ1: Do the known oversampling methods affect the change in the
value of the data difficulty measures?

The first experiment investigated the effect of oversampling on the data difficulty. Figure 1
shows the mean values of the measures with the standard deviation in all tested sets before
and after resampling. In order to improve the readability of the chart, it shows only two re-
sampling methods: ROS and SMOTE, and the base values, without modifying the dataset.
Conclusions for the remaining resampling methods do not differ from those presented be-
low. Nevertheless, a summary for all tested methods has been included in supplementary
materials1.

For the feature-based measures, only the F1 metric shows a substantial change. This
measure describes the overlapping of values across classes. Adding synthetic instances to the
set has a much smaller impact on changing the remaining criteria in this category. In the
case of the F1v measure, slight changes are observed, most often concerning the increased
problem difficulty. The F2 measure examines the classes’ maximum and minimum values of
instance characteristics. The presented oversampling methods generate synthetic instances
within the distribution of a given class, so the values taken into account and thus the metric’s
value will remain unchanged. The F3 and F4 measures test the ability of a single feature
(in the case of F3) or sets of features (F4) to separate problem classes. Minor changes
appearing in these metrics’ values usually concern an increase in difficulty. They will result
from losing the feature’s ability to separate problem classes after adding synthetic samples.

Each metric shows a data difficulty increase in the category of Linearity measures. The
measures in this category test the linear separability of the problem. Assuming the class
areas in the original set overlap, generating synthetic instances will increase the error of the
SVM Linear Classifier. The mistakes made by the classifier will consequently increase the
difficulty of the problem in the area of these metrics.

1. https://github.com/w4k2/complexity/blob/main/LIDTA/suplementary.pdf
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Figure 1: Resampling effect on complexity measures

The neighborhood measures include N1-N4, T1 and LSC metrics. N1 describes the
fraction of borderline points based on the minumum spanning tree spread over the points.
Out of the analyzed oversamplers, only ROS causes an increase in this measure. The metric
is determined by the number of edges in the MST between instances of opposite classes.
If the resampled points are at the same location of a multidimensional space, both will be
considered as instances lying on the class area boundary. This behavior will be reflected in
the increase of metric value. The remaining oversampling algorithms will have little effect
on the MST covering the problem instances. The largest metric value change is visible for
N2 – determined by the distance to the nearest neighbor of the same and opposite class.
Out of tested oversampling methods, a decrease in this measure is visible, which occurs due
to the generation of the synthetic samples in the vicinity of the original ones. The intra-class
distances are decreasing, affecting the metric value. The N3 measure decreases for the same
reason – this measure is expressed by the error rate of the NN classifier. The N4 measure
will increase for problems where the class areas overlap. The T1 metric value will decrease
when the hyperspheres generated for synthetic instances cover more instances of the problem
than the hyperspheres for the original points. The last measure in this category – LSC –
measures the distances to the closest neighbor of the sample and the closest instance of the
opposing class. Neighbors closer to the instance than the closest enemy are considered. The
value of this metric usually increases as a result of oversampling. When classes have an
overlap region, the generated instances may lie close to the opposite class instance.

We generated a graph based on the normalized Gower distances between instances to
determine the network measures. For density and hubs, the difficulty values after resampling
increases. It may result from generating a graph where synthetic instances, lying at a large
distance from each other, will not be connected by edges with the rest of the class instance.
This will happen when the minority class points are spread. In the case of clfCoef measure,
the connections between a given instance’s neighbors are taken into account, divided by
the number of possible connections between the neighbors, depending on the size of the
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neighborhood. In the case of a large dispersion of class instances and the lack of edges in
the graph, their absence will not negatively affect the measure.

For the Dimensionality measures, there are no notable differences between the set before
and after resampling. However, the most visible change is for the class imbalance measures
– the oversampled classes will be equally numerous.

Answering the RQ:1, the known oversampling methods affect the value of the
problem difficulty measures. In Feature based category, there is a substantial change in
measure describing the overlapping of values across classes. In Linearity measures, there is a
stable increase in difficulty since synthetic samples reduce the problem’s linear separability.
ROS is also increasing the N1 Neighborhood metric, while all oversampling methods are
highly influencing the N2 and N3 value, describing the distance to the nearest neighbor of
the same and opposite class and NN classifier error. There is also an increase in density
and hubs measures of Network category and a complete reduction of all metrics from Class
imbalance category of the main assumptions of used balancing techniques.

3.2.2. RQ:2 Is there a relationship between the change in the value of the
selected difficulty measure caused by oversampling the training
data and the classification quality of the chosen models?

The second experiment analyzed the problem difficulty and the classification quality after
oversampling.

The Figure 2 presents the data difficulty expressed in the F1 and L3 measures and
the classification quality for all tested classifiers. The presented values were subjected to
a standard normalization. The Figure shows the results for SMOTE oversampling. A
similar summary for other measures of difficulty and other oversamplers is available in the
supplementary materials.
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Figure 2: Correlation of F1 and L3 measures. The classifiers are presented in rows, while
the columns show the classification quality metrics.
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The values on the bottom of each chart show the Pearson correlation coefficient value.
The line visible in each of the graphs was determined using linear regression, and its color
depends on the value of the correlation coefficient, where blue means a strong negative cor-
relation, red – a strong positive. The closer the color is to white, the smaller the correlation
between the values. If the correlation coefficient lies between -0.2 and 0.2, the line deter-
mined by linear regression becomes gray and dotted – the correlation is not significant. The
color of points is determined by correlation coefficient in a analogous way.

In Figure 2 the strong negative correlation can be noticed for each classifier in the case
of BAC, F1 score and AUC metrics. For precision and recall metrics, for SVM and GNB
classifiers, the correlation coefficient has a less significant value. The negative correlation
can be understood as the following relationship between the data difficulty and the quality
of the classification: the more difficult the problem is (large values on the y axis), the lower
the quality of the classification (low values on the x-axis), while for simpler data sets (low
values on the y axis) the quality of the classification is higher (high values on the x-axis).

The experiment results are consistent with intuition – the classifiers achieve better results
for sets in which the training data after resampling was characterized by low difficulty.

Another analysis concerned the relative values of the examined measures. For the equal
division of the set into folds, the original training set was used directly to build the clas-
sification model. The obtained classification quality was the base value for the analyzed
classification metrics. The baseline value of the difficulty was the measures calculated for
the original data set. Baseline values were subtracted from the classification quality and
problem difficulty after resampling. The obtained results, presented in a similar form in
Figure 3, show the relative value of the difficulty and quality of the classification in re-
lation to the data set without resampling. A summary of other difficulty measures and
oversampling methods is available in supplementary materials.
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Figure 3: Correlation of relative F1 and L3 measures

In the case of the F1 measure, shown on the left side of the Figure 3, the strongly
negative correlation coefficient was preserved only in the MLP classifier. For the GNB
classifier, a negative coefficient for aggregated metrics can also be seen. In the case of the
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other classifiers, the dependence of the relative change in the problem’s difficulty and the
classification quality is small. However, in the L3 measure, shown on the right side of the
Figure, there was a significant change in the correlation coefficient. The absolute values
presented in Figure 2 showed a strong negative correlation. Relative values, however, have
a strong positive or close to zero correlation. Strong positive correlation is observed for the
KNN, SVM and DT classifiers.

In the relative analysis, a low coefficient means that the decrease in the problem difficulty
in the context of a given metric was associated with increased classification quality. A high
coefficient implies that the increased difficulty in understanding a given metric is related to
a rise in classification quality.

As presented in the first experiment – resampling has a positive effect on some measures
(F1, N2, clsCoef , C1, C2) and negatively on others (L1-L3, LSC, density). Linear mea-
sures, including the presented L3, are measures for which resampling causes the difficulty
value to increase. Usually, resampling leads to an increase in the quality of classification for
imbalanced data, so despite the increase in difficulty, we observed an improvement in the
classification result. A negative correlation is the expected result for measures where the
problem’s difficulty after resampling increases.

Figure 4 presents a summary of the correlation coefficient for the tested classifiers and
difficulty measures. Each heatmap shows the correlations for a different classification quality
metric. On the left side it is possible to observe an absolute values (example in the Figure 2),
on the right side a relative values (example in the Figure 3). The values presented on the
heatmap were averaged for all tested resampling methods.
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Figure 4: Mean non-relative and relative correlation coefficient

For absolute correlations, a significant part of the metrics shows a negative coefficient
value, especially for BAC and AUC measures. For the relative correlation, some metrics
from the feature-based group and all from the linear group show a positive correlation
coefficient value, especially for the KNN and SVM classifiers.

Answering the RQ:2, there is a relationship between the change in the diffi-
culty measure value caused by oversampling and the classification quality
of the chosen models. The strong negative correlation is possible to observe, especially
for aggregated metrics of BAC, F1 and AUC. Base metrics dedicated to imbalanced data
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also show the negative correlation, but with a lower coefficient for SVM and GNB models.
This observation concludes that problems with lower complexity calculated according to
established measures give a higher model’s predictive quality.

Also, relative analysis was conducted, validating if a change in training data complexity
leads to increasing the model quality. In the case of F1 measure, this trend was confirmed
since, in relative comparison, the negative correlation is preserved. However, for the L3
measure – showing nonlinearity of linear classifier – a significant change in correlation oc-
curred for some classifiers, showing an increase of predictive abilities proportional to problem
difficulty. The final experiment emphasized that for an identified group of data complexity
measures (F1, N2, clsCoef , C1, C2), there is a significant negative correlation between
the data difficulty and model quality. It leads to the conclusion that reduction of data
complexity – calculated within this identified group – leads to increased model’s predictive
quality.

4. Conclusion

The main objective of this study was to analyze the behavior of the data difficulty metrics
before and after the oversampling procedure. It was hypothesized that there is a relationship
between the change in the value of selected training set difficulty metrics and the classifica-
tion quality of selected models.

The results of the experimental study supported the hypothesis. Particularly interesting
behavior was observed for the F1 metrics for MLP and GNB and L3 metrics for SVM,
DT, KNN, as well as for GNB. It turns out that there is a strong relationship between the
change in their values for the training set of nuts and after oversampling and the quality of
classification of the above models (evaluated on the validation set). This allows us to start
working on quick methods for evaluating whether it is worth oversampling a given set for
a given classification model. It also allows using the mentioned data difficulty metrics in
guided oversampling design, where the preprocessing task is treated as an optimization task.
Then the mentioned metrics can be used as an optimization criterion. The advantage of
this approach is the speed of evaluating solutions during the optimization process, without
the need to train classifiers in each iteration and estimate their quality. This is one of the
directions of work to be undertaken by the authors of this article.
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