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Abstract

Imbalanced domains pose important challenges to learning systems and multiple resampling
solutions have been put forward in the past two decades. More recently, it became clear that
the imbalance problem arises in several other tasks including regression. Although several
resampling solutions were proposed to tackle the imbalanced regression problem, with the
emergence of big data this problem has become more difficult as these solutions become
unfeasible due to the large volumes of data. In this paper, we propose the first distributed
resampling solution for imbalanced regression that is applicable to large amounts of data.
Our algorithm, DistSMOGN, is a resampling solution based on SMOGN that addresses
simultaneously the imbalanced regression problem and the challenge of dealing with high
volumes of data. We apply Scalable KMeans++ as way to obtain coherent cluster that
maintain the spatial relationships between the rare cases. Then, we apply the well-known
SMOGN method in each cluster to obtain the new synthetic examples. This method
allows to generate high quality synthetic examples while dealing with the large volumes
of data. Our solution is based on the MapReduce paradigm and we propose an efficient
implementation on Apache Spark. The experimental evaluation carried out shows the
advantages of DistSMOGN. All the code implementing DistSMOGN is freely available and
can be downloaded at https://github.com/ndao1104/distributed-resampling.

Keywords: Imbalanced Regression, Big Data, Spark, MapReduce

1. Introduction

Imbalanced domains are a challenge predominant in many real-world application where
the most relevant cases for the end-user are not frequent in the data. This problem has
been studied for over two decades with a particular focus on classification tasks. Still,
imbalanced domain problem spans multiple tasks including regression, data streams, or
time series (Branco et al., 2016; Krawczyk, 2016).

Imbalanced regression started to be addressed more recently. A multitude of solutions
have been proposed to alleviate the imbalanced regression problem with a special focus on
resampling techniques. Resampling acts by changing the original data distribution of the
training data to force the learning algorithm to focus on the most important cases which
would otherwise be neglected. The popularity of resampling methods to tackle imbalanced
domains can be associated to their easy implementation and efficiency and to the capability
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of using any user-preferred learning algorithm after the modification of the training data.
Resampling techniques revolve around under-sampling, over-sampling or hybrid solutions
that combine both under and over-sampling.

When dealing with binary class imbalance problem, the decision of which class is the
most important one is straightforward: the least represented (minority) class is considered
the class of interest. However, to obtain this information for a regression tasks is more dif-
ficult. Either the end-user is able to provide this, which is a time consuming and expensive
task, or an automatic method can be applied. This automatic method has several assump-
tions regarding the end-user interests but is an effective way to estimate a the relevance (or
importance) of the target variable values across the problem domain. Imbalanced regression
entails further challenges in order to be addressed successfully. Big data is an additional
relevant challenge that, together with imbalanced regression, poses serious issues.

In this paper, we provide the first resampling solution for imbalanced regression in a
big data environment. We propose DistSMOGN, a distributed implementation of SMOGN
to deal with imbalanced regression in an efficient way making it possible to deal with large
volumes of data. Our solution is based on SMOGN (Branco et al., 2017), a SMOTE-
based (Chawla et al., 2002) algorithm that combines both SmoteR (Torgo et al., 2013) and
Introduction of Gaussian Noise techniques to generate new instances. SmoteR is the exten-
sion to regression tasks of SMOTE, a well-known resampling algorithm initially developed
for classification tasks that generates new synthetic cases by interpolating one minority
class case and one of its nearest neighbors. However, SMOTE-based algorithms depend on
the calculation of nearest neighbors and are thus designed for standard-sized datasets and
cannot be directly applied when it comes to Big Data. To overcome this issue, DistSMOGN
re-implements the SMOGN algorithm in a distributed fashion in order to be suitable in a
big data context while seeking to keep the spatial coherence of the rare cases.

Our main contributions are as follows: (i) a solution for imbalanced regression in big
data environment: we propose DistSMOGN, the first resampling solution that is able to
deal with the imbalanced regression problem while also being applicable in environments
with large volumes of data implemented on Spark; (ii) keeping the rare cases spatial coher-
ence: our proposed solution maintains the spatial relationships between the rare examples
which ensures that high quality synthetic examples are generated; and (iii) code and data
repository: we made all code and data used freely available to the research community to
allow the reproducibility of our work and the usage of our solution.

This paper is organized as follows. Section 2 presents the related work associated with
imbalanced regression and distributed resampling. In Section 3, details of DistSMOGN,
our proposed distributed SMOGN implementation, are presented. Section 4 describes the
experimental framework and dataset used to evaluate the performance of DistSMOGN
algorithm and the results obtained. Finally, in Section 5, the main conclusions of our paper
are provided.

2. Background and Related Work

This section provides an overview of the problem of imbalanced domains and reviews the
main existing works to deal with this problem with a special focus on distributed solutions.
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2.1. Learning from Imbalanced Domains

The problem of imbalanced domains is well-known and multiple solutions have been put for-
ward to tackle it. Most of the existing solutions focus on the imbalanced classification prob-
lem. Among the most frequently used approaches are the resampling (or pre-processing)
methods which act by changing the original dataset in order to make it easier for the learning
algorithm to focus on the most rare and important cases. Resampling methods can be clus-
tered into under-sampling, over-sampling or hybrid approaches. Under-sampling methods
tackle the problem by removing cases from the majority (negative) class, while over-sampling
methods do not discard any cases but instead add more examples form the minority (pos-
itive) class. Under-sampling and over-sampling methods can be random or more informed
in the sense that they use instances characteristics to inform the removal/introduction of
examples. Random under-sampling, Near Miss (Mani and Zhang, 2003), or the Condensed
Nearest Neighbor (Hart, 1968) are examples of under-sampling approaches. Over-sampling
approaches can rely on the addition of exact copies of examples present in the available
data or the generation of new synthetic examples based on the real examples available. The
first method is used, for instance, by the random over-sampling strategy, while the second
method is used, for instance, by SMOTE (Chawla et al., 2002). SMOTE is one of the most
well-known and used resampling approaches for the class imbalance problem. This approach
is based on the interpolation of two minority class cases to generate a new synthetic mi-
nority class case. Since its development many alternative approaches were proposed to deal
with some of the risks that SMOTE strategy entails.

The class imbalance is the most extensively studied predictive task among the possible
tasks in the context of imbalanced domains. Regression tasks, data streams, time series are
examples of other tasks for which the presence of imbalanced domains also poses significant
challenges (Krawczyk, 2016). In this paper, we focus on regression problems, for which
several solutions have been proposed recently. In order to tackle an imbalanced regression
problem we first must understand which examples are the most important ones. This is
straight forward in binary classification where the minority class is assumed to be the class
of interest, i.e., the most relevant class for the end-user. In regression, we need to have a
similar notion of important and unimportant cases. To address this problem, Torgo and
Ribeiro (Torgo and Ribeiro, 2007) proposed the definition and use of a relevance function,
ϕ(), that expresses the importance assigned by the end-user to the range of the target
variable of the problem being tackled. The relevance function helps in determining the
rare (important) and normal (unimportant) cases by mapping the target variable into a
scale of relevance between 0 and 1. However, it is difficult for the end-user to define the
relevance function for a continuous target variable. Moreover, this information is should
ideally be provided by domain experts, but in that case this can become a time consuming
and expensive task. An automatic way for estimating the relevance function, was proposed
to deal with this challenge (Ribeiro, 2011). This method allows us to obtain the relevance
function information using the target variable density while assuming that low density
regions in the extremes of the distribution will be the most interesting cases for the end-
user.

Existing resampling approaches for imbalanced regression use the notion of the rele-
vance function and a relevance threshold that is used to build the rare/important and
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normal/unimportant ranges. Multiple under-sampling and over-sampling solutions were
proposed for imbalanced regression using this framework. In particular, and adaption of
SMOTE named SmoteR (Torgo et al., 2013) was proposed as well as multiple alternatives.
SMOGN (Branco et al., 2017) is an evolution of SmoteR that combines SmoteR with the
introduction of Gaussian Noise. When the risk estimated for generating a new example
through SmoteR is high, then a the more conservative alternative of generating the new
case through the introduction of Gaussian Noise is used instead. More precisely, the choice
of which method to use is determined by the distance between the base case and the neigh-
bor case. If the neighbor case is close enough, SmoteR is used, otherwise the new case is
generated by Gaussian Noise. Moreover, SMOGN also incorporates both over-sampling and
under-sampling to resample the dataset.

In the context of data streams, some solutions were also proposed to tackle the imbal-
anced regression problem (e.g., Aminian et al. (2021)). Although dealing with imbalanced
regression, these methods are not built in a distributed fashion.

2.2. Distributed Solutions for dealing with Imbalanced Domains

The study of distributed resampling techniques for tackling the imbalance in classification
tasks is fairly recent. In a distributed context, we only found three works that address
binary class imbalance problems and one work that tackles multi-class imbalanced problems.
Moreover, as far as we know, no work exists that proposes a distributed resampling solution
for imbalanced regression problems.

In 2018, Rastogi et al. (2018b) proposed the first distributed implementation of SMOTE
for classification problems. The authors extend SMOTE to distributed environments under
Spark using Locality Sensitivity Hashing (LSH) (Indyk and Motwani, 1998). LSH is used
to identify the nearest neighbors of the minority class samples and then SMOTE is applied
to generate minority class synthetic samples. LSH method allows to obtain equal size
partitions of the space, providing a fast clustering solution. The intuition behind LSH
is that two points that are close to each other will continue to be close after a projection
operation. The main idea of the solution proposed by Rastogi et al. (2018b) is to use LSH to
cluster the data points and then apply SMOTE to each generated cluster. Another solution
for adapting SMOTE to a distributed setting was proposed by Rastogi et al. (2018a). The
authors used distributed K-Means and M-Trees as the base methodology to cluster the
data and search for the nearest neighbors inside each cluster. After having the clusters
and nearest neighbors the standard SMOTE algorithm is applied. A similar solution was
presented by Hooda and Mann (2019). Sleeman IV and Krawczyk (2021) proposed the
first framework for dealing with multi-class imbalanced problems in a distributed way and
presented an extensive set of experiments.

Still, we must highlight that, as far as we know, there is no such distributed solution
for resampling strategies in a imbalanced regression context. The advent of big data as an
important impact in these tasks frequently exacerbating the imbalance problem. Regression
problems are heavily affected by these issues, thus it is necessary and important to explore
and test solutions in this particular context.
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3. DistSMOGN: Distributed SMOGN for Imbalanced Regression

SMOTE-based algorithms rely on the neighbourhood information when generating new
samples. The computational complexity of searching nearest neighbor grows with the size
and dimensionality of the dataset. The intuition behind our algorithm is generate clusters
of data and to search for the nearest neighbors within each formed cluster so that par-
allel resampling is supported. Applying resampling techniques individually on randomly
partitioned data may seem to be an option. However, this usually fails since randomly
partitioned data are usually spatially disconnected. Our goal is to overcome this issue by
partitioning the dataset effectively such that similar data are always available in the same
node of the cluster which allows safe nearest neighbor search within each partition.

Figure 1: The DistSMOGN overall structure.

In this paper, we present DistSMOGN, a distributed implementation of SMOGN in
Apache Spark. The general structure of the algorithm is shown in Figure 1. Overall, the
algorithm includes four key steps: (i) clustering the dataset; (ii) building a distance matrix;
(iii) generate new samples and/or undersampling the dataset cluster; and (iv) update the
modified training dataset. We will discuss each step with more details next.

The pseudo code for the DistSMOGN Algorithm is provided in Algorithm 1. In any
imbalanced regression task we need to obtain the relevance function, ϕ(), and a use a
relevance threshold to define the important and unimportant ranges of the target variable.
We assume the end-user is able to provide this information or is able to use an automatic
method to estimate it from the data distribution. More details on ϕ() and the automatic
method to obtain it were provided in Section 2.1. Our first step is then to identify the
rare and normal samples using ϕ() and the user-defined threshold of the relevance function.
Then, we conduct distributed random under-sampling for normal samples and distributed
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over-sampling using SMOGN strategy for rare samples. The implementation of distributed
random under-sampling is trivial as it only implies the parallel computation of a random
sample of each bin containing normal cases (cf. Algorithm 1 lines 5-7). For this reason,
we will only focus on the algorithm for distributed SMOGN Algorithm that applies over-
sampling with SMOTER and introduction of Gaussian Noise.

We first cluster the dataset into different partitions using Scalable KMeans++ (Bahmani
et al., 2012) to preserve the spatial relationship among data points within each partition
(cf. lines 10-11 in Algorithm 1). We selected Scalable Kmeans++ as this solution over-
comes important limitations of the KMeans clustering. The well-known KMeans clustering
has two main steps: initialization and convergence. The original KMeans algorithm first
initialize centroids randomly which affects the final results if the initial centroids are chosen
incorrectly. The KMeans++ algorithm improves on KMean by sampling a single point in
each pass to remove the dependence on centroid initialization. Scalable K-Means++ (Bah-
mani et al., 2012) takes it one step further by sampling multiple points in each pass and
repeating the preprocess multiple times which allows parallel implementation of the KMeans
algorithm. For this reason we selected this algorithm for our implementation.

As shown in Figure 1, our algorithm employs the MapReduce philosophy to achieve
distributed processing. After creating the dataset partitions we enter the map phase. For
each partition, we construct the distance matrix for nearest neighbor search (cf. line 14 in
Algorithm 1) and for each sample in the partition, we generate new synthetic samples using
SMOGN (cf. lines 17-27 in Algorithm 1). At the synthetic data generation stage, either
SmoteR strategy or introduction of Gaussian Noise strategy is applied depending on the
SMOGN safe distance requirement between the base case and its neighbor.

Finally, we enter the reduce phase by collecting all the newly generated samples in each
partition to obtain the balanced dataset (cf. line 30 in Algorithm 1).

Our DistSMOGN solution tries to maintain the spatial relationship between the dataset
cases in each partition built and relies on the MapReduce paradigm to effectively resam-
ple the dataset. This allows us to deal with large volumes of data in an efficient way
while simultaneously maintaining the spatial coherence of the data instances in each par-
tition built. For reproducibility purposes, the source code for DistSMOGN is freely avail-
able to the research community in the following link: https://github.com/ndao1104/

distributed-resampling.

4. Experimental Evaluation

4.1. Experimental Settings

We selected seven datasets from different imbalanced domains to evaluate the effectiveness
of our implementation. The selected datasets include two datasets that have a larger number
of samples and features which we use to assess and compare the improvement on execution
time between the original sequential implementation (Branco et al., 2017) and DistSMOGN,
our distributed implementation of SMOGN. The main characteristics of the datasets used
are shown in Table 1. All datasets were normalized. The relevance function is automatically
obtained based on the label density of both low and high values and a relevance threshold
of 0.8 is used to determine the rare and normal cases. The selected datasets have a total
number of instances ranging from 506 to 21263. This will allow us to observe how the
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Algorithm 1 DistSMOGN: Distributed SMOGN Algorithm

Input: Data: dataset;
y: target variable
thresh: relevance threshold
%under: percentage of undersampling
%over: percentage of oversampling
k partition: number of partitions
k neigh: number of nearest neighbors
pert: perturbation

Output: new data: the resampled dataset
1 y sorted← sort(y)
2 ϕ()← relevance score obtained based on the y distribution
3 bins norm, bins rare← normal and rare bins obtained using ϕ() and thresh
4 new data← {}
5 for bin ∈ bin norm do
6 new samples← randomly select %under × |bin| samples from bin
7 new data← new data

⋃
new samples

8 end
9 for bin ∈ bin rare do

10 centroids← KMeans(bin, k partition) ; // build partitions of bins with rare cases

11 partitions← partitions of bin obtained based on centroids
12 n← %over × |bin|
13 for partition ∈ partitions do

// apply SMOGN in each obtained data partition

14 dist mat← pairwise distance matrix between all samples in partition
15 new samples← partition
16 for sample ∈ partition do
17 neighbours← KNN(k neigh, sample, dist mat)
18 safe dist← median(distmat(samples, neighbours))/2 ; // SMOGN safe distance

19 for i← 1 to n do
20 sel neigh← randomly select one neighbour from neighbours

// apply SmoteR or GN

21 if dist(sample, sel neigh) < safe dist then
22 new sample← SmoteR(sample, sel neigh)
23 else
24 new sample← GN(sample, sel neigh)
25 end
26 new samples← new samples

⋃
new sample

27 end

28 end

29 end
30 new data← new data

⋃
new samples

31 end
32 return new data
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dimension of the datasets impacts the performance and the time to carry out the resampling.
Moreover, we are also considering datasets with imbalance ratios varying between 4.56 and
14.6, which will allow to analyze the impact of DistSMOGN in difference IR settings.

Dataset #Instances #Attr #Cat Attr #Num Attr Normal:Rare IR

Boston 506 13 0 13 415:91 4.560
Abalone 4117 8 1 7 3498:679 5.152
Bank8FM 4499 8 0 8 4211:288 14.622
heat 7400 11 3 8 6736:664 10.145
cpuSM 8192 12 0 12 7479:713 10.489
energy 19735 27 0 27 17070:2665 6.405
superconductivity 21263 81 0 81 19726:1537 12.834

Table 1: Main characteristics of the used datasets (#Attr: No. of attributes; #Cat Attr:
No. categorical attributes; #Num Attr: No. numeric attributes).

The infrastructure used for the experiments was a Databrick cluster with one driver
node and two worker nodes. The driver node has six cores and 16 GB of memory. Each
worker node has two cores and 8 GB of memory. The cluster was configured with Apache
Spark 3.2.1.

We tested DistSMOGN using different number of partitions (k = 2, k = 4 and k = 8).
We also included in our tests the initial sequential versions of SMOGN, Random Under-
sampling (RUS) and Random Over-sampling (ROS). We included RUS and ROS solutions
as they allow to modify the original dataset in a simple and fast way.

With the setting described we carried out two key experiments that evaluated: (i) the
impact of the different resampling solutions on the execution time; and (ii) the impact in
the performance of the different resampling solutions. For the first experiment we simply
evaluated the time required to modify each dataset using the different resampling techniques.

For the second experiment, we used four learning algorithms to evaluate the performance
of the four resampling techniques (RUS, ROS, SMOGN and DistSMOGN) and the use of the
original (unchanged) dataset. The experiments were conducted in the Python environment
using implementations of regression algorithms from the scikit-learn package. The four
regression algorithms selected are: Linear Regression (LR), Support Vector Machine (SVM),
Random Forest (RF) and Neural Network (NN). For each selected algorithm, we tested six
parameter variants (except for Linear Regression). Table 2 shows the learning algorithms
and corresponding parameter variants. Overall we carried out tests with 19 learners variants.

Each dataset is splitted into two sets of data: the training set (80%) and the test set
(20%) and for each training set, we created 6 balanced training sets using the following
resampling methods and variants: RUS, ROS, SMOGN, DistSMOGN with k = 2, 4 and 8.
We also tested the performance of the learners when using the original imbalanced training
set. Overall, we carried out a total of 931 tests (7 × 7 × 19 = 931) using 7 datasets, 7
resampling variants and 19 learner variants.

For the performance evaluation we used a variant of the Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE) metrics with the relevance values of the target variable
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Learning Algorithms Parameters

Linear Regression (LR) No parameter
Support Vector Machine (SVM) C = {10, 150, 300}; gamma = {0.01, 0.001}
Random Forest (RF) min samples leaf = {1, 2, 4}; min samples split={2, 5}
Neural Network (NN) hidden layer sizes = {1, 5, 10}; max iter = {500, 1000}

Table 2: Used learning algorithms and respective parameters.

being used as the sample weights. We refer to these metrics as MAEϕ and RMSEϕ which
are defined in Equation 1 and Equation 2, respectively. The intuition behind using the
relevance values as weights for the different errors is to penalize more heavily errors that
occur in the most relevant regions of the target variable.

MAEϕ =

√√√√ 1

n

n∑
i=1

ϕ(yi)× |yi − ŷi| (1)

RMSEϕ =

√√√√ 1

n

n∑
i=1

ϕ(yi)× (yi − ŷi)2 (2)

Figure 2: Execution time (measured in seconds) in a logarithmic scale of RUS, ROS,
SMOGN and DistSMOGN with different number of partitions (k=2, 4, 8) for
each dataset. (Bold: lowest execution time; underlined: highest execution time)
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RUS ROS SMOGN
DistSMOGN

k = 2 k = 4 k = 8

Boston 6.85 5.077 3.817 16.439 15.526 15.563
Abalone 9.456 8.276 189.563 28.336 21.896 12.725
Bank8FM 11.673 9.983 35.68 16.951 13.32 10.012
heat 10.458 10.209 251.871 17.738 12.48 9.437
cpuSm 9.94 9.105 185.718 17.556 11.985 8.643
energy 12.983 11.276 2758.835 60.497 29.373 21.45
superconductivity 10.705 9.187 3951.75 35.988 26.844 18.789

Table 3: Execution time (measured in seconds) of RUS, ROS, SMOGN and DistSMOGN
with different number of partitions for each dataset. (k: the number of partitions.)

LR SVM RF NN

MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ

No Sampling 4.849 7.003 6.329 9.034 2.476 4.138 8.483 10.818
RUS 4.394 6.189 8.128 11.235 3.444 6.075 15.94 16.206
ROS 4.313 5.947 5.425 8.505 2.702 3.499 4.474 6.353
SMOGN 4.246 6.221 5.921 7.219 2.332 3.801 5.615 7.766
DistSMOGN (k = 2) 4.459 6.214 5.265 7.618 2.638 3.59 5.849 7.682
DistSMOGN (k = 4) 4.453 6.295 5.25 7.781 2.581 3.876 5.206 7.056
DistSMOGN (k = 8) 4.297 6.134 5.174 7.494 2.9 3.658 5.981 7.968

Table 4: MAEϕ and RMSEϕ of the best model variant for each regression algorithm
with different resampling strategies for the Boston dataset. (Best results for each
regression algorithm and resampling strategy are highlighted.)

4.2. Results and Discussion

4.2.1. Execution Time

To evaluate the impact on the execution time, we compared the resampling time taken using
our distributed SMOGN (DistSMOGN) implementation with different number of partitions
(partitions = 2, 4 or 8) against the sequential implementations of SMOGN, RUS and ROS.

Table 3 summarizes the execution time obtained for each dataset and Figure 2 displays
the resampling time in a logarithmic scale. We decided to visualize of the results in a
transformed scale due to the extremely large values observed for some datasets in some
resampling strategies, namely the SMOGN strategy for the energy and superconductivity
datasets, which would skew the graph.

We observe that globally the sequential version of SMOGN is the most time consuming
approach. Only for the smaller dataset (Boston) SMOGN does not provide the longer
execution time. RUS and ROS exhibit very low execution times as expected even for the
larger datasets. In fact, these resampling strategies are very efficient and easy to apply.
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LR SVM RF NN

MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ

No Sampling 2.331 3.128 2.851 3.895 2.194 3.061 2.405 3.302
RUS 2.123 2.808 2.45 3.339 2.072 2.803 3.817 4.684
ROS 2.08 2.761 2.173 2.976 2.145 2.978 2.022 2.719
SMOGN 2.235 2.821 2.516 3.316 2.123 2.881 3.069 3.863
DistSMOGN (k = 2) 2.097 2.78 2.223 3.062 1.981 2.805 2.057 2.786
DistSMOGN (k = 4) 2.078 2.776 2.223 3.062 2.004 2.81 2.878 3.676
DistSMOGN (k = 8) 2.087 2.793 2.236 3.075 1.975 2.796 2.703 3.554

Table 5: MAEϕ and RMSEϕ of the best model variant for each regression algorithm with
different resampling strategies for the Abalone dataset. (Best results for each
regression algorithm and resampling strategy are highlighted.)

When comparing SMOGN and the DistSMOGN variants we observe that DistSMOGN is
always faster irrespectively of the number of partitions considered, except for the smaller
dataset used in our experiments.

4.2.2. Performance

Regarding the experiments for measuring the predictive performance of our proposed
DistSMOGN algorithm, Tables 4, 5, 6, 7, 8, 9, and 10 show the aggregated benchmark-
ing results for each dataset considered.

Overall we observe that DistSMOGN presents an overall competitive performance. The
clustering applied does not seem to be affecting the quality of the newly generated in-
stances. We conclude this due to the number of times DistSMOGN exhibits the best overall
performance but also becasue when comparing DistSMOGN performance against SMOGN
they do not differ much for both performance metrics considered. We also noticed that
for some datasets, such as Abalone, there is another strategy that performs better (ROS)
than SMOGN. In these cases, we observe that DistSMOGN is able to beat that resam-
pling strategy for some learners. There are also datasets for which SMOGN is overlla the
best performing strategy, such as Bank8FM. Still, we must highlight that in these cases
DistSMOGN performance is only slightly worst that SMOGN but DistSMOGN results are
much faster to compute.

Our results show that DistSMOGN is an effective strategy for tackling the imbalanced
regression problem in a distributed fashion making it fats and easy to resample the training
data while achieving a good performance. DistSMOGN is able to preserve the spatial
relationships between the rare examples allowing the generation of high quality synthetic
cases for the rare ranges of the target variable.

5. Conclusion

This paper presented DistSMOGN, the first distributed resampling method for tackling
imbalanced regression problems. DistSMOGN uses scalable KMeans++ to partition the
dataset and then applies SMOGN to each cluster formed. Our Spark-based algorithm relies
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LR SVM RF NN

MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ

No Sampling 0.046 0.058 0.049 0.06 0.038 0.046 0.056 0.068
RUS 0.044 0.056 0.046 0.057 0.042 0.053 0.054 0.066
ROS 0.045 0.057 0.041 0.051 0.041 0.052 0.049 0.057
SMOGN 0.044 0.055 0.045 0.055 0.037 0.045 0.049 0.055
DistSMOGN (k = 2) 0.045 0.056 0.041 0.051 0.039 0.049 0.051 0.066
DistSMOGN (k = 4) 0.045 0.057 0.042 0.052 0.039 0.048 0.051 0.067
DistSMOGN (k = 8) 0.045 0.057 0.042 0.052 0.042 0.052 0.051 0.067

Table 6: MAEϕ and RMSEϕ of the best model variant for each regression algorithm with
different resampling strategies for the Bank8FM dataset. (Best results for each
regression algorithm and resampling strategy are highlighted.)

LR SVM RF NN

MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ

No Sampling 16.583 23.391 25.999 33.306 2.681 3.463 10.112 14.843
RUS 12.221 15.902 21.225 27.93 4.72 6.121 14.599 20.596
ROS 12.508 16.223 9.426 12.969 2.687 3.443 9.585 14.055
SMOGN 12.014 16.168 13.926 20.159 3.142 4.135 9.54 14.581
DistSMOGN (k = 2) 16.649 21.173 13.553 18.607 4.405 5.89 9.179 14.82
DistSMOGN (k = 4) 12.124 15.755 13.201 17.974 4.222 5.821 9.6 14.315
DistSMOGN (k = 8) 12.744 16.241 12.951 17.621 4.503 5.948 9.144 14.89

Table 7: MAEϕ and RMSEϕ of the best model variant for each regression algorithm
with different resampling strategies for the heat dataset. (Best results for each
regression algorithm and resampling strategy are highlighted.)

LR SVM RF NN

MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ

No Sampling 11.002 17.245 4.937 6.945 2.833 4.264 9.247 14.627
RUS 10.064 11.974 4.74 6.471 3.142 4.52 36.196 41.295
ROS 10.028 12.019 3.494 4.926 2.827 4.175 15.524 19.405
SMOGN 9.766 12.019 3.896 5.351 3.263 5.073 42.675 46.611
DistSMOGN (k = 2) 10.119 12.034 3.732 5.178 2.868 4.274 39.584 43.134
DistSMOGN (k = 4) 10.104 12.043 3.801 5.325 2.963 4.324 23.281 24.696
DistSMOGN (k = 8) 10.081 11.999 3.818 5.352 2.868 4.207 41.823 44.921

Table 8: MAEϕ and RMSEϕ of the best model variant for each regression algorithm
with different resampling strategies for the cpuSm dataset. (Best results for each
regression algorithm and resampling strategy are highlighted.)
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LR SVM RF NN

MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ

No Sampling 130.37 192.78 122.279 189.287 92.343 143.363 130.142 192.642
RUS 145.583 176.061 152.833 176.316 145.808 176.074 136.94 165.441
ROS 143.783 174.478 123.782 164.308 91.84 130.273 143.337 173.009
SMOGN 133.621 174.571 123.249 163.144 91.064 133.345 144.917 173.577
DistSMOGN (k = 2) 133.291 174.079 124.528 163.684 92.329 135.685 142.774 172.28
DistSMOGN (k = 4) 133.158 173.949 123.843 163.388 90.962 135.697 142.416 171.75
DistSMOGN (k = 8) 134.362 174.509 124.882 164.229 92.786 136.964 142.433 171.637

Table 9: MAEϕ and RMSEϕ of the best model variant for each regression algorithm
with different resampling strategies for the energy dataset. (Best results for each
regression algorithm and resampling strategy are highlighted.)

LR SVM RF NN

MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ MAEϕ RMSEϕ

No Sampling 12.022 16.62 12.29 17.704 5.734 11.222 9.793 15.65
RUS 29.775 44.719 44.11 47.595 17.878 23.146 27.161 33.384
ROS 14.348 19.526 12.174 17.673 5.786 11.423 10.84 17.203
SMOGN 14.275 19.305 13.727 18.927 7.201 13.281 11.836 17.299
DistSMOGN (k = 2) 14.224 19.372 13.403 18.652 7.281 13.997 11.09 16.484
DistSMOGN (k = 4) 13.871 18.873 13.085 18.391 7.046 13.365 11.223 16.24
DistSMOGN (k = 8) 14.491 19.631 13.236 18.532 7.025 13.788 11.465 17.064

Table 10: MAEϕ and RMSEϕ of the best model variant for each regression algorithm with
different resampling strategies for the superconductivity dataset. (Best results
for each regression algorithm and resampling strategy are highlighted.)
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on the MapReduce paradigm and is significantly faster than the original sequential imple-
mentation when it comes dataset with a large number of samples. Moreover, DistSMOGN
is able to achieve better or comparable results when considering SMOGN strategy in most
scenarios. This happens because DistSMOGN allows to effectively distribute the samples
across multiple machines while preserving the spatial relationships between the examples
which allows the fast generation of high quality synthetic cases. The execution time of
DistSMOGN as well as its ability to keep the spatial relationships between rare examples
are two of its key advantages.

The time complexity of our algorithm is still currently constrained by the KNN algorithm
that we used which is based on a brute-force implementation for exact KNN search. We
believe that exploring the embedding of approximate KNN solutions is a promising future
research direction that may provide more interesting results. Furthermore, we are also
considering embedding in our algorithm an automatic method for determining the best
number of partitions to use for the given dataset. This could make the end-user task easier.
We are planning to carry out more experiments using multiple runs for each dataset to
allow to observe the variability of the results and to overcome the potential bias of only
using one train/test split. Finally, we consider that extending the experiments to more and
larger datasets and extending the DistSMOGN algorithm to other resampling techniques
are interesting research avenues.

References

Ehsan Aminian, Rita P Ribeiro, and João Gama. Chebyshev approaches for imbalanced
data streams regression models. Data Mining and Knowledge Discovery, 35(6):2389–2466,
2021.

Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, and Sergei Vassilvit-
skii. Scalable k-means++. arXiv preprint arXiv:1203.6402, 2012.
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