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Mateusz Lango mlango@cs.put.poznan.pl

Institute of Computer Science, Poznan University of Technology, Poznań, Poland
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Abstract

Although many methods have been proposed for dealing with class imbalance, the problem
of multi-class imbalanced classification still received significantly smaller attention. This
problem is particularly important in image imbalanced classification since it has many
critical applications, e.g., in the medical domain. One group of effective methods for im-
balanced data are oversampling algorithms; however, they are usually not designed to work
with image data. The current methods also work in separation from the learning algorithm,
not considering the difficulties encountered during the training. In this work, we propose a
new oversampling algorithm for neural networks that changes oversampled instances during
training to further expand the decision region of minority classes, providing better recog-
nition of minority classes. Experiments performed on various datasets with several config-
urations of class-imbalanced distributions demonstrate that the proposed method provides
significant F-measure and G-mean improvements on imbalanced classification tasks.

Keywords: multi-class imbalanced data, image classification, adversarial examples, re-
sampling methods

1. Introduction

Learning from imbalanced datasets still poses a significant challenge for modern machine
learning methods (Branco et al., 2016). Such problems include one or several underrepre-
sented classes, called minority classes, that usually are crucial from the application point
of view (detecting rare disease vs. heathy patients). Unfortunately, such classes are diffi-
cult to learn for standard classifiers and, as a consequence, are poorly represented by the
induced model. Since imbalanced problems occur in many important application domains,
for instance in medicine (Wang et al., 2020) or in business analytics (Lango, 2019), the
problem received significant research attention and many algorithms dealing with it has
been proposed (He and Garcia, 2009; Fernández et al., 2018). Nevertheless, some problems
remains open and require further investigation.

One of such problems is dealing with multi-class imbalanced datasets (Krawczyk, 2016),
particularly in the high-dimensional settings that naturally occur while handling image
datasets. In general, the number of proposed methods for learning from multi-class im-
balanced datasets is relatively small, especially in the comparison to the large amount of
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methods for binary problems. The proposed algorithms can be roughly divided into de-
composition methods that transform problems into a series of binary ones, and ad-hoc
approaches that mostly include various resampling methods (Fernández et al., 2018). The
resampling ad-hoc methods are the most popular ones both in research and in practice,
since they are universal i.e. they can be applied together with virtually any learning algo-
rithm, and at the same time they do not ignore the global view of the multi-class problem
(e.g. they can take into account class interrelations).

Despite these advantages, the performance of standard resampling methods while train-
ing a deep neural network classifier on image data is rather limited (Buda et al., 2018). This
can be partially attributed to the fact that standard methods based on SMOTE (Chawla
et al., 2002) construct new data points as linear interpolations of existing ones, which in
case of image data usually results in producing examples out of the distribution. There-
fore, constructing such examples do not impact significantly the classification performance
on minority classes. Recent resampling methods for image data (Zhang et al., 2020; Ali-
Gombe and Elyan, 2019) try to alleviate this problem by producing new instances with deep
generative models like Generative Adversarial Networks (GAN) (Goodfellow et al., 2016).
However, such methods come with a significant computational overhead, since training deep
generative models is computationally-intensive. Moreover, successful training of GAN it-
self is known to be problematic due to the existing challenges that include mode collapse,
instability, etc. (Saxena and Cao, 2021). These challenges are especially prominent while
training from small datasets that often arise in imbalanced domains like medicine.

Additionally, a recent systematic study of the difficulty of multi-class problems (Lango
and Stefanowski, 2022) highlighted the importance of dealing with so-called data difficulty
factors like class-overlapping or different class size configuration. Unfortunately, taking into
account data difficulty factors in high-dimensional data is problematic since most methods
detects them leveraging k-nearest neighbours or local kernel estimation (Stefanowski, 2013)
that suffer from the curse of high-dimensionality. Another arising issue is that influential
data difficulty factors like class-overlapping depend on the example’s position in the feature
space, which, in the case of training neural networks, is automatically constructed by the
model and constantly changes during training. For instance, an example can be in the
class-overlapping region in the original space, but be far away from the decision boundary
in the constructed hidden space.

In this paper, we present a method for training deep neural networks on multi-class
imbalanced data, called Adversarial OverSampling (AOS), that successfully produces new
instances of minority classes that improve the recognition of images from underrepresented
classes by a neural network. To generate new examples, the method leverages Fast Gradient
Sign Method (FGSM) proposed by Goodfellow et al. (2015) as a method of attacking ma-
chine learning systems with spurious images that are consistently misclassified. In this work,
FGSM is utilized in a new context of multi-class imbalanced data and generating minority
instances in the unsafe regions of the feature space. The AOS method actively oversamples
minority instances, adapting its working according to difficulty factors in the examples’ hid-
den space that changes during network training. Contrary to the other imbalanced methods
for deep neural networks based on GANs, AOS do not require a cost-intensive training of
additional deep neural model and can be easily integrated in the training loop of any clas-
sifier’s architecture. Despite the fact that AOS uses a rather basic method of generating
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adversarial examples, the performed experimental evaluation demonstrated that it obtains
better results in terms of G-mean and F-score measures than other popular resampling
methods like random oversampling, random undersampling and SMOTE.

2. Related works

A dataset is imbalanced when the numbers of examples representing each class are not equal.
However, when talking about learning from imbalanced data, we have in mind datasets in
which disproportions between class sizes are significant (He and Garcia, 2009). The level
of class imbalance can be easily measured with imbalance ratio defined as a ratio between
the size of the largest majority class and the number of examples in the smallest minority
class:

ρ =
maxi{|Ci|}
mini{|Ci|}

where C is a set of all classes and |Ci| denotes i-th class cardinality. In the multi-class
setting, the imbalanced datasets are additionally characterized by class sizes configuration
(e.g. whether they contain intermediate classes, many majority classes or many minority
classes etc.). One very simplistic indicator of class configuration is the fraction of classes
being minority ones (Buda et al., 2018):

µ =

∑
i∈{1,2,...,|C|} 1[Ci is a minority class]

|C|

where C is a set of all classes and 1 is the indicator function.
As mentioned in the introduction, the number of proposed methods for imbalanced

classification is very large and making even a short review of them is out of scope of the
current paper. We refer the interested reader to one of the excellent reviews of the field (He
and Garcia, 2009; Branco et al., 2016; Fernández et al., 2018) and limit this chapter to a
brief description of the methods later used in the experiments or being directly related to
the current research.

Resampling methods for imbalanced data can be roughly divided into random resam-
pling and informed resampling methods. One of the most popular random methods is
random undersampling (RUS) that randomly removes majority instances from the dataset
until the cardinalities of all classes are equal. Another technique is random oversampling
(ROS) that duplicates randomly selected minority instances until obtaining a fully balanced
distribution. In the context of image classification and convolutional neural networks, both
these methods were investigated by Buda et al. (2018). The study revealed that random
resampling methods offer improvement over the baseline neural network. It was also demon-
strated that while working with image data and deep classifiers, ROS usually obtains better
results than RUS. Only in the most extremely imbalanced cases, RUS and ROS achieved
similar classification performance.

The most prominent example of informed resampling methods is SMOTE (Chawla et al.,
2002) which is an oversampling method that constructs new instances by taking a linear
interpolation of two randomly selected minority class instances. Even though it was origi-
nally proposed for binary problems, its simple extension that iteratively runs SMOTE for
each minority class is also used for multi-class data (Fernández-Navarro et al., 2011). The
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usefulness of SMOTE method was also confirmed in the context of convolutional neural
networks and image classification by several earlier works (Gao et al., 2019; Özdemir et al.,
2021), however, its performance can be limited since a linear interpolation of two images,
unlike in the case of tabular data, usually result in an example that is out of the data
distribution.

More recent works on imbalanced image classification try to solve this problem by train-
ing an additional deep generative model of the data and using it to generate new instances.
An example of such method is BAGAN (Mariani et al., 2018) that first trains an autoen-
coder and use it to initialize weights in a GAN model. Later, the GAN model is trained
and used to generate minority class instances. BAGAN was also further extended to a
BAGAN-GP (Huang and Jafari, 2021) which adopts additional gradient penalty and differ-
ent autoencoder initialization. Another method is MFC-GAN (Ali-Gombe and Elyan, 2019)
that trains a GAN model with additional fake classes to oversample the dataset. Despite
being effective, these methods come with a significant additional training cost: they require
training one or two deep learning models that serve to generate additional data.

3. Adversarial OverSampling

In this work, we explore another possibility to oversample image data through generating
adversarial examples using machine learning attack methods that do not require training
an additional learning model.

The idea behind AOS algorithm is best explained when considering images as points in
a data space. Consider other oversampling methods like Random Oversampling that copies
and pastes examples from minority classes into the existing dataset. In the data space, it
results in adding data points exactly in the same places as existing ones. We end up with
the same empirical class’ data distribution with only the prior class probability changed.
Random Oversampling has no means to alter the topology of data points. Contrary to
ROS, algorithms from SMOTE family do change the topology of original data points by
producing new examples as linear interpolations. However, new examples can never be
produced outside the convex hull of minority class data points. SMOTE, therefore, only
intensifies representation of minority class in its convex hull but is not able to increase its
area.

Our proposed approach influences the model’s decision boundary more directly. It ex-
torts the change of the decision boundary by generating exogenous minority examples placed
closer to the decision boundary than existing examples, or even exceeding it, i.e. pushing
additional minority examples towards majority ones in the class overlapping regions. Such
behaviour results in forcing the classifier to move the decision boundary away from the
minority class examples, possibly assigning more feature space to the minority class. Sub-
sequently, it leads to classification performance gains since in the case of imbalanced data,
the decision boundary of the model is expected to be falsely misplaced towards minority
class concepts (Wallace et al., 2011). In comparison to the aforementioned methods, AOS
is capable of enlarging the area designated by convex hulls of the minority class data points.

In order to achieve it, AOS alters existing minority examples in a specific way. First, it
is seeking the direction towards the currently induced decision boundary for every minority
example. Later, a selected portion of minority instances is moved according to the computed
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vectors. More concretely, AOS employs Fast Gradient Sign Method (FGSM) (Goodfellow
et al., 2015) to alter examples with a gradient of loss function optimized during classifier
training with respect to a given example. Such gradient indicates the direction of the
fastest local increase of loss function, which in practice means that the examples moved
according to it will have higher probability of misclassification, i.e., they will be relatively
closer to the decision boundary. Since FGSM is a method of attacking machine learning
models, increasing the number of misclassified examples, many of such produced minority
examples will effectively be in the region dominated by majority class examples. AOS
method has two configurable parameters. The length of the translation vector that is applied
to minority examples is controlled by ϵ parameter and roughly corresponds to the degree
of the aggressiveness of influencing decision boundary of the model. Another parameter is
τ which controls the percentage of minority instances that will be altered according to the
translation vector.

The pseudocode of AOS is presented in Algorithm 1. The procedure starts with an
imbalanced dataset X, which is oversampled with standard Random Oversampling (line
1). This step is performed because at the beginning of training the network weights are
randomly initialized and generation of new samples basing on completely noisy hidden space
will not be beneficial. Additionally, this step provides a fully balanced dataset which will
be modified in an online fashion during training. Datasets with new instances effectively
will be copies of randomly oversampled data with a portion of examples modified with a
non-random noise.

In every epoch of neural network training, standard actions like forward-pass, back-
propagation and optimization of the model’s parameters are performed (lines 15-17). How-
ever, every second epoch1, AOS performs a sampling procedure that alters the oversampled
datasets (lines 3-14). The algorithm iterates over examples in all minority classes and with
probability τ (method’s parameter) decides whether the given image will be altered in the
current training loop iteration (line 7). For each selected image, an adversarial mask is
computed as the gradient of loss function with respect to the original image (line 9). The
computed mask is multiplied by ϵ to control the mask intensity and added to the original
image (line 10). More formally, a new synthetic example is computed according to the
following FGSM formula:

x′ = x + ϵ · sign(∇xJ(NNw, x, y))

where x is the original image, sampled from a minority class y; ϵ is a parameter controlling
masking intensity NNw are the neural network’s parameters; J is the optimized loss function
(e.g. cross-entropy).

4. Experiments

In this chapter, we present experiments performed with convolutional neural networks in
order to investigate the effectiveness of AOS in handling multi-class imbalanced image
datasets.

1. The procedure is not performed every epoch to ensure more stable training by give the optimizer more
time to exploit newly constructed examples.
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Algorithm 1: Adversarial OverSampling (AOS)

Input: X - dataset, Cmin - set of minority classes, NoEpochs - number of traning
epochs, ϵ, τ - parameters of the method

Output: NN , the trained neural network
1 X ← RandomOversampling(X)
2 for epoch← 0 to NoEpochs− 1 do
3 if epoch%2 = 0 then
4 aos X ← X
5 for x ∈ aos X do
6 if C(x) ∈ Cmin then
7 decision ← draw(X ∼ B(1, τ))
8 if decision=1 then
9 mask ← sign(∇xJ(NNw, X, Y ))

10 x← x + ϵ ·mask

11 end

12 end

13 end

14 end
15 NN.forward(aos X)
16 NN.backpropagate(aos X)
17 NN.optimization step()

18 end
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4.1. Experimental setup

We have compared the performance of AOS with three other resampling algorithms that
were used in the literature in the context of image classification: Random Oversampling
(ROS), Random Undersampling (RUS) and SMOTE2. Additionally, we also report results
on the imbalanced dataset without any oversampling or undersampling method applied
(BASELINE). We have excluded from the experiments methods that require training addi-
tional deep generative models as they are much more computationally heavy than AOS or
other standard methods.

We conduct experiments on four different image datasets, which are diverse with respect
to the number of classes, image resolution or color format. The datasets are the following:

• CIFAR-10: CIFAR-10 is a more difficult dataset that consists of images of every day
objects like boats or planes. It has 10 classes. The images are of size 32x32x3 and are
of RGB format. The dataset has 50k images for training, which gives approximately
5k images per class.

• Intel Image Classification: dataset provided by Intel, which contains images of natural
sceneries. It has 6 classes. The images are of size 150x150x3 and are of RGB format.
The dataset has 14k images for training, which gives approximately 2.3k images per
class.

• MIT Indoor Scene Recognition: dataset provided by Massachusetts Institute of Tech-
nology, which contains photos of many different indoor scenes. It has 67 classes. The
images are of size 240x240x3 and are of RGB format. The dataset has 15620 images
for training with at least 100 images per class.

• MNIST: MNIST is a classic dataset for image classification, it consists of images of
digits with 10 classes corresponding to 10 digits. The images are of size 28x28 and
are gray-scale. The dataset has 60k images for training, which gives approximately
6k images per class.

Since most of the presented datasets are balanced, in the experiments we have used
modified versions of them that are class imbalanced. Additionally, to better evaluate the
area of competence of the algorithm, we have prepared datasets with different numbers of
minority classes. Therefore, the problems in the resulting collection of datasets are ranging
from multi-minority to multi-majority problems, where the percentage of minority classes
is denoted by µ.

The procedure of artificially inducing class imbalance with the imbalance ratio ρ is the
following:

1. Find the class with the lowest cardinality among all the classes in the dataset.

2. Randomly delete images from all the other classes, until all class cardinalities are
equal to the cardinality of class selected in step 1.

3. Assuming |C| is the number of classes, choose ⌊µ|C|⌋ classes randomly and mark them
as minority classes. Mark the rest of the classes as majority ones.

2. Implementation of SMOTE from imbalanced-learn package was used with default parameters.
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4. Randomly delete examples in every minority class, until the ratio between the minority
class cardinality and majority class cardinality is equal to ρ.

For each original dataset, we created four artificially imbalanced datasets with µ = {0.2, 0.4, 0, 6, 0.8},
where µ = 0.2 variation might be considered as the most multi-majority one (20% of all
classes are the minority classes) and µ = 0.8 might be considered as the most multi-minority
setup (80% of all classes are the minority classes). The datasets constructed from the same
original dataset have the same imbalanced ratio ρ, however, ρ for each original dataset were
selected to different values. Our goal was to construct datasets with as high class imbalance
as possible to better observe performance differences between methods handling imbalance.
However, to ensure stable neural network training, we picked high ρ values that leave each
class with a sufficient number of observations (50-100). Therefore, we picked larger imbal-
anced ratios for datasets with originally large classes and smaller imbalanced ratio for these
with smaller classes. The specific parameters of the datasets, including selected values of ρ,
can be found in Table 2.

As a base classifier, we use standard convolutional neural networks build from several
blocks of convolutional layers, Batch Normalization layers, MaxPooling layers and ended
with a softmax layer. As the activation function, a very popular ReLU was used. In order
to provide a fair comparison for every algorithm, each model for a given dataset was trained
with the same number of epochs. Later, the models’ weights from the epoch with the highest
f1-score calculated on the validation set was saved and used for final evaluation on a test
set. We did not employ either learning rate decay or any form of additional regularization
like weight decay or Dropout. The models’ parameter counts were adjusted proportionally
to the dataset size3 and the exemplary network architecture for CIFAR-10 dataset can be
found in Table 1. The network was trained by Adam optimizer with standard cross-entropy
as the loss function.

All reported results are computer on out-of-sample, test set data. For Intel, MNIST
and CIFAR-10 train-test set splits provided by the authors of the datasets were utilized.
For the MIT dataset we have performed a stratified random split, ensuring the same class
distributions in train, validation and test sets. Every test set was used in its original form
and was not artificially made imbalanced. All results were averaged over 3 independent
runs.

4.2. Results

In this section, we present the results of our experiments measured with two commonly used
metrics for imbalanced data: macro-averaged F-score and G-mean. The results of F-score
can be found in the Table 3 and the results of G-mean measure can be found in the Table 5.
For every dataset, we added a row named Avg., which is a mean value over all µ variants
for a given dataset and method. The bottom-most row named Global Avg. is a mean value
over all datasets for a given method.

We also present the number of wins/loses for each pair of methods in Table 4 for f1-score
and in Table 6 for G-mean.

3. Details on network architectures for all datasets can be found at the following link: https://www.cs.

put.poznan.pl/mlango/publications/aos.pdf
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Table 1: Neural network architecture for CIFAR-10 dataset

Layer Dimensions Kernel size Stride

Input (32x32x3) - -
Convolution (32x32x32) (3x3) (1x1)

Batch Normalization (32x32x32) - -
Convolution (30x30x32) (3x3) (1x1)

Batch Normalization (30x30x32) - -
Max pooling (15x15x32) (2x2) (2x2)
Convolution (15x15x64) (3x3) (1x1)

Batch Normalization (15x15x64) - -
Convolution (13x13x64) (3x3) (1x1)

Batch Normalization (13x13x64) - -
Max pooling (6x6x64) (2x2) (2x2)

Fully Connected (1x1x10) - -

Table 2: List of tested dataset variants (left) along with the parameters used for network
training (τ - AOS percentage of altered instances, LR - learning rate, epochs -
number of epoches)

Dataset ρ µ τ LR epochs

CIFAR-10 50 0.2 0.4 10−4 20
50 0.4 0.4 10−4 20
50 0.6 0.4 10−4 20
50 0.8 0.4 10−4 20

INTEL 20 0.2 0.6 10−3 35
20 0.4 0.8 10−3 35
20 0.6 0.8 10−3 35
20 0.8 0.8 10−3 35

MIT 2 0.2 0.6 10−3 60
2 0.4 0.8 10−3 60
2 0.6 0.6 10−3 60
2 0.8 0.6 10−3 60

MNIST 60 0.2 0.4 10−4 20
60 0.4 0.4 10−4 20
60 0.6 0.8 10−4 20
60 0.8 0.6 10−4 20
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Table 3: The results of F1-score measure for different datasets and preprocessing methods.

Dataset ρ µ AOS SMOTE ROS RUS BASELINE

CIFAR-10 50 0.2 0.6023 0.5948 0.5929 0.0802 0.6007
0.4 0.5116 0.4623 0.4695 0.0795 0.4536
0.6 0.4294 0.3813 0.3741 0.0849 0.3345
0.8 0.3748 0.3415 0.3666 0.0969 0.2986

Avg. 0.4795 0.4450 0.4508 0.0854 0.4219

INTEL 20 0.2 0.7844 0.7746 0.7868 0.1634 0.7601
0.4 0.7369 0.7261 0.7166 0.1666 0.7268
0.6 0.6633 0.6414 0.6248 0.1415 0.6132
0.8 0.6516 0.6564 0.6456 0.1569 0.6112

Avg. 0.7090 0.6996 0.6934 0.1571 0.6778

MIT 2 0.2 0.3154 0.3191 0.3038 0.2761 0.3148
0.4 0.2983 0.2863 0.2768 0.2503 0.2726
0.6 0.2860 0.2993 0.2738 0.2618 0.2729
0.8 0.2810 0.2605 0.2635 0.2662 0.2709

Avg. 0.2950 0.2913 0.2795 0.2636 0.2828

MNIST 60 0.2 0.9824 0.9806 0.9808 0.9133 0.9769
0.4 0.9748 0.9726 0.9732 0.9160 0.9669
0.6 0.9641 0.9574 0.9583 0.9195 0.9481
0.8 0.9550 0.9484 0.9548 0.9203 0.9456

Avg. 0.9691 0.9648 0.9668 0.9173 0.9594

Global Avg. 0.6132 0.6002 0.5976 0.3558 0.5855

Table 4: The number of wins/loses while comparing algorithms pairwise on F1-score
AOS SMOTE ROS RUS BASELINE

AOS - 13/3 15/1 16/0 16/0
SMOTE 3/13 - 8/8 16/0 13/3

ROS 15/1 8/8 - 15/1 12/4
RUS 0/16 0/16 1/15 - 0/16

BASELINE 0/16 3/13 4/12 16/0 -
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Table 5: The results of G-mean measure for different datasets and preprocessing methods.

Dataset ρ µ AOS SMOTE ROS RUS BASELINE

CIFAR-10 50 0.2 0.5169 0.5115 0.5015 0.0059 0.4901
0.4 0.4467 0.3806 0.4030 0.0000 0.3252
0.6 0.3390 0.2880 0.2761 0.0000 0.1907
0.8 0.3005 0.2533 0.2775 0.0000 0.1651

Avg. 0.4008 0.3583 0.3645 0.0015 0.2928

INTEL 20 0.2 0.7756 0.7596 0.7789 0.0028 0.7475
0.4 0.7226 0.7116 0.6926 0.0270 0.7112
0.6 0.6446 0.6075 0.5895 0.0064 0.5829
0.8 0.6257 0.6413 0.6237 0.0024 0.5831

Avg. 0.6921 0.6800 0.6712 0.0096 0.6562

MIT 2 0.2 0.2910 0.2833 0.2802 0.2528 0.2792
0.4 0.2718 0.2643 0.2499 0.2334 0.2425
0.6 0.2617 0.2721 0.2475 0.2409 0.2488
0.8 0.2604 0.2348 0.2316 0.2497 0.2419

Avg. 0.2712 0.2636 0.2523 0.2442 0.2531

MNIST 60 0.2 0.9823 0.9804 0.9806 0.9127 0.9765
0.4 0.9745 0.9722 0.9728 0.9150 0.9661
0.6 0.9635 0.9565 0.9575 0.9189 0.9464
0.8 0.9545 0.9477 0.9543 0.9195 0.9447

Avg. 0.9687 0.9642 0.9663 0.9165 0.9584

Global Avg. 0.5832 0.5665 0.5636 0.2930 0.5401

Table 6: The number of wins/loses while comparing algorithms pairwise on G-mean
AOS SMOTE ROS RUS BASELINE

AOS - 14/2 15/1 16/0 16/0
SMOTE 2/14 - 9/7 15/1 15/1

ROS 15/1 9/7 - 15/1 13/3
RUS 0/16 1/15 1/15 - 1/15

BASELINE 1/15 3/13 3/13 15/1 -
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Starting the analysis from the Global Avg. values, we can see that on average the
AOS algorithm yields the best results for both metrics, followed by SMOTE and ROS.
RUS is the only imbalanced learning method studied in the experiment that, on average,
does not achieve higher results than the baseline. Considering averages over results on a
given dataset, AOS is always better than the next best method which oscillates between
SMOTE and ROS, depending on the dataset. AOS is also substantially better than the
baseline results for both metrics. On some dataset configurations, AOS offer very significant
improvements, up to 5% on both metrics in comparison to the second-best method. It also
seems that the advantage of AOS over SMOTE/ROS grows as µ is getting larger, i.e. the
problem is having more minority classes. Note that multi-minority datasets are considered
to be more difficult than multi-majority ones (Wang and Yao, 2012; Lango and Stefanowski,
2022).

By analyzing the numbers of win/loses for both metrics, we can see that AOS is the only
method that yielded better results than the baseline approach 100% of the time. This could
indicate, that our proposed method is the most flexible one respective to the wide range
of µ parameters we have tested and can be treated as the most universal approach. We
can also notice, that AOS has the biggest win count (summarized number of wins against
every other competitor method) among all of the tested methods. The biggest competitor
is SMOTE, but it provides better results than AOS only for 3 among 16 datasets for F-score
and only for 2 for G-mean. The comparison of informed SMOTE with random ROS is also
interesting, since both methods obtain (almost) equal number of wins for both metrics.
This provides an evidence that using SMOTE on image data is not as effective for standard
tabular data, possibly for the reasons discussed earlier in the paper.

5. Summary

This work explores the possibility of using machine learning attack methods to alleviate
the issue of multi-class imbalance. We have presented Adversarial OverSampling, a new
technique for oversampling imbalanced image datasets while training a deep neural network
classifier. The method can be applied with any backpropagable network architecture and
generates minority data close to or even behind the decision boundary, enlarging the feature
space for minority classes. Conducted experiments demonstrated that the method achieves
better results than other resampling methods used in image classification that do not train
additional deep model for sampling.

The presented work can be further extended. First, AOS use the most basic method of
generating adversarial examples called FGSM which can be replaced with more advanced
methods like, for instance, DeepFool (Moosavi-Dezfooli et al., 2016) or C&W attack (Carlini
and Wagner, 2017) which could lead to better performance of trained network. Moreover,
currently the AOS method generates new instances basing on randomly selected minority
instances which can be suboptimal. Future research can explore the possibilities of gener-
ating more instances basing on most unsafe minority examples e.g. these lying in the class
overlapping area.
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