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Universidad de Castilla-La Mancha, Albacete, Spain

Juan A. Aledo JuanAngel.Aledo@uclm.es
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Abstract

The label ranking problem consists in learning preference models from training datasets
labeled with a (possibly incomplete) ranking of the class labels, and the goal is to predict a
ranking for a given unlabeled instance. In this work, we focus on the particular case where
the training dataset and the prediction given as output allow tied class labels (i.e., there
is no particular preference among them), known as the partial label ranking problem. This
paper transforms the ranking with ties into discrete variables representing the preference
relations (precedes, ties, and succeeds) among pairs of class labels. We then use Bayesian
network classifiers to model the pairwise preferences. Finally, we input the posterior proba-
bilities into the pair order matrix used to solve the corresponding rank aggregation problem
at inference time. The experimental evaluation shows that our proposals are competitive in
accuracy with the state-of-the-art mixture-based probabilistic graphical models while being
much faster.

Keywords: Naive Bayes; Averaged one-dependence estimators; Bayesian network classi-
fiers; (Partial) label ranking

1. Introduction

The label ranking (LR) problem (Cheng et al., 2009) is a natural extension of conventional
classification, the goal of which is to predict a ranking (a.k.a. permutation) of the class labels
instead of a single one. It is worth noting that, although the LR problem considers ranking
with ties (a.k.a. partial rankings), in general, the algorithms available in the literature are
constrained to output a ranking. Therefore, we refer to this more general interpretation as
the partial label ranking (PLR) problem (Alfaro et al., 2021a), where (possibly incomplete)
partial rankings are allowed in the training datasets, and a partial ranking is requested as
prediction.

A variety of methods exists for tackling the PLR problem. For instance, we may find
methods that adapt machine learning algorithms to deal with the new target structure,
such as nearest neighbors (Alfaro et al., 2021a), decision trees (Alfaro et al., 2021a), and
mixture-based algorithms (Alfaro et al., 2021b). Moreover, averaging ensemble methods of
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decision trees are proposed in (Alfaro et al., 2022), where the performance over a single
classifier is improved.

This paper proposes transforming the PLR problem into a set of conventional classifi-
cation problems, and then using Bayesian network classifiers to deal with the new problem
structure. Thus, we introduce a pairwise variable with the preference information (precedes,
ties, and succeeds) for each pair of class labels. We use this pairwise variable in several ways,
which give rise to the methods proposed in this paper: pairwise classifiers, classifier chains
(Read et al., 2009), and bivariate classifiers. The probabilities of the predictions obtained
for the pairwise variables are then used for constructing the pair order matrix used to solve
the corresponding rank aggregation problem, i.e., the optimal bucket order problem (OBOP)
(Gionis et al., 2006; Ukkonen et al., 2009).

This paper is organized as follows. Section 2 revises the PLR problem, the OBOP, and
the two base estimators used for our proposals: naive Bayes and averaged one-dependence
estimators (Webb et al., 2005). Section 3 introduces the Bayesian network classifiers pro-
posed in this paper. Section 4 presents the experimental evaluation carried out. Finally,
Section 5 concludes the paper and provides some lines for future work.

2. Preliminaries

This section reviews some notions to be considered throughout the paper: optimal bucket
order problem (Gionis et al., 2006; Ukkonen et al., 2009), naive Bayes classifier and averaged
one-dependence estimators (Webb et al., 2005).

2.1 Optimal bucket order problem

The optimal bucket order problem (OBOP) (Gionis et al., 2006; Ukkonen et al., 2009) is a
rank aggregation problem which obtains a ranking with ties (a.k.a. partial ranking, bucket
order) as consensus from a set of (possibly incomplete) partial rankings.

Before formalizing the OBOP, let us revise some related concepts. A bucket order B
(Fagin et al., 2004) is an ordered sequence of k disjoint subsets (buckets), B1, . . . ,Bk defined
over a finite set of items I = {1, . . . , n}, where 1 ≤ k ≤ n and ∪k

i=1Bi = I. In particular,
given two buckets Bi,Bj ∈ B, we write Bi ≻ Bj to express that Bi precedes Bj in B. In the
same way, given two items u, v ∈ I, we write u ≻B v to express that u is preferred to v in B
and u ∼B v if u and v are tied. A bucket order B may be represented with an n× n bucket
matrix B (Ukkonen et al., 2009) such that B(u, v) = 1, if u ≻B v; B(u, v) = 0, if v ≻B u;
and B(u, v) = 0.5, if u ∼B v, for u, v ∈ I. In particular, B(u, u) = 0.5 for all u ∈ I, and
B(u, v) +B(v, u) = 1 for all u, v ∈ I with u ̸= v.

A pair order matrix (Ukkonen et al., 2009) is an n×nmatrix C, satisfying that C(u, v) ∈
[0, 1] for all u, v ∈ I, with C(u, v) + C(v, u) = 1 if u ̸= v and C(u, u) = 0.5. Thus, a pair
order matrix C may be viewed as a precedence matrix, where the entry C(u, v), for u, v ∈ I,
expresses the probability of item u preceding item v. If we consider the matrix distance

D(B,C) =
∑
u,v∈I

|B(u, v)− C(u, v)| , (1)
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where C is a pair order matrix (maybe obtained from a set of (possibly incomplete) partial
rankings), the goal of the OBOP is to find the bucket matrix B (associated with a bucket
order B) which minimizes D(B,C).

Several algorithms have been proposed to tackle the OBOP (Gionis et al., 2006; Ukkonen
et al., 2009; Aledo et al., 2017, 2018, 2021). In this work, we use the instance named
LIAMP2

G of the BPALIA algorithm (Aledo et al., 2017) to balance between accuracy and
computational efficiency.

2.2 Partial label ranking problem

The partial label ranking (PLR) problem (Alfaro et al., 2021a) can be seen as a more general
interpretation of the label ranking (LR) problem (Cheng et al., 2009). In the standard LR
scenario, every instance x = (x1, . . . , xm) from an input space X = dom(X1) × · · · ×
dom(Xm), where m is the number of predictive variables (a.k.a. features), is associated
with a total order defined over the values in the domain of the class variable Y , dom(Y ) =
{y1, . . . , yn}. In the PLR problem, instead of associating every instance x with a total order,
x is associated with a bucket order defined over the values in dom(Y ). It is worth pointing
out that although it is possible to allow incomplete partial rankings in the training dataset,
we deal only with complete ones in this paper.

2.3 Naive Bayes classifier

Naive Bayes classifiers are well-known probabilistic graphical models based on the assump-
tion of conditional independence between every pair of features given the class variable.
Naive Bayes classifiers follow the maximum a posteriori (MAP) estimation principle, i.e.,
they predict the most probable class label y ∈ dom(Y ) given an input instance x ∈ X as
evidence

y∗ = argmax
y∈dom(Y )

P(y | x) = argmax
y∈dom(Y )

P(x, y)

P(x)
= argmax

y∈dom(Y )
P(y) ·

m∏
i=1

P(xi | y) (2)

according to Bayes’ theorem, the naive conditional independence assumption, and also using
that P(x) is constant given the input.

The different naive Bayes classifiers vary depending on their assumptions regarding the
distribution of the above conditional distributions.

2.4 Averaged one-dependence estimators classifier

Averaged one-dependence estimators (AODE ) (Webb et al., 2005) is a probabilistic classi-
fication learning technique that seeks to address the primary concern of the naive Bayes
classifiers, i.e., the conditional independence assumption. To do that, it constructs a sep-
arate ODE for each feature Xj , 1 ≤ j ≤ m, such that the remaining features Xi, where
1 ≤ i ≤ m and i ̸= j, depend on their corresponding parent feature Xj and the class variable
Y . Thus, ODE estimates the joint probability for a class label y ∈ dom(Y ) given an input
instance x ∈ X as follows
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P(x, y) = P(xj , y) ·
m∏
i=1

P(xi | xj , y). (3)

In this sense, ODE considers a weaker independence hypothesis than naive Bayes clas-
sifiers. Therefore, ODE creates a classifier with less bias, although it slightly increases the
variance because the base probability estimates are conditioned by two variables rather
than one. To reduce this variance, AODE averages the probability estimates provided by
each ODE. Finally, AODE obtains the prediction using the MAP estimation principle as in
naive Bayes classifiers

y∗ = argmax
y∈dom(Y )

m∑
j=1

P(xj , y) ·
m∏
i=1
i ̸=j

P(xi | xj , y). (4)

3. Bayesian network classifiers for the partial label ranking problem

This section describes the Bayesian network classifiers proposed to deal with the PLR
problem, mainly inspired by the multi-label scenario: pairwise classifier, classifier chains
(Read et al., 2009), and bivariate classifier.

First, we define a pairwise variable, the critical point to transform the PLR problem into
a set of standard classification problems (followed by an aggregation procedure to solve the
OBOP). We introduce a discrete variable Zuv to codify the preference relation (precedes,
ties, and succeeds) between two class labels yu, yv ∈ dom(Y ) such that Zuv = z1, if yu ≻ yv;
Zuv = z2, if yu ∼ yv; and Zuv = z3, if yv ≻ yu. We then train Bayesian network classifiers to
obtain the posterior probability distribution for all the Zuv variables. Finally, these values
are the entries of the pair order matrix C required to solve the OBOP. Note that it is not
necessary to compute all the pairwise variables Zuv given that C(u, v) = 1 − C(v, u). The
discrete variables Zuv are used in various ways by the models proposed. Let us describe
each of them.

3.1 Pairwise classifier

The pairwise classifier proposed in this paper relates to the binary relevance method used
in the multi-label classification scenario. In the same way that the binary relevance method
decomposes the multi-label problem into several independent binary learning tasks, the
pairwise classifier assumes that there are no relations among the Zuv variables. Although
this independence assumption among the targets is not valid for the general case, they
generally lead to fast methods with good accuracy results.

Figures 1a and 1b show the representation of the pairwise classifier for both naive Bayes
and AODE as base estimators. In particular, the pairwise classifier learns an estimator
for each pair of class labels yu, yv ∈ dom(Y ) using the Zuv variable as a class label, where
1 ≤ u < v ≤ n. Although the AODE classifier considers dependencies among the predictive
features, naive Bayes and AODE assume independence among the Zuv class variables.
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Figure 1: Representation of the Bayesian network classifiers: (a) Pairwise classifier + Naive
Bayes, (b) Pairwise classifier + AODE, and (c) Bivariate classifier + Naive Bayes

3.2 Classifier chain

Classifier chains (Read et al., 2009) combine multiple conventional classification models
into a single multi-label or multi-dimensional model, in a such a way that they are capable
of exploiting the correlations among the class variables. To do so, a chain order among the
models is defined such that each one of them is then fit to the training dataset plus the
class variables that were assigned a lower order in the chain. At inference time, since the
true class labels for each variable are not available, the predictions are used as features by
the subsequent models in the chain.

In this paper, we transform the PLR problem into a multi-dimensional classification
problem, given that each pairwise variable Zuv may be seen as a class variable. Therefore,
we can apply classifier chains to exploit the possible correlations among pairs of class labels
yu, yv ∈ dom(Y ).

Note that the order of the chain is essential. In this sense, the first model has no
information regarding the other class variables, while the last model has features indicating
the presence of all the remaining ones. In our case, we consider two possible orders for the
chain:

• Random. We take a random ordering of the class labels.

• Heuristic. We apply a modified version of the Borda count algorithm (Borda, 1770) to
deal with rankings with ties, where we assign the same number of points to the tied
class labels. The ordering is then considered according to the number of points, from
the highest to the lowest. In the case of ties, the class label with the lowest index is
selected first.
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3.3 Bivariate classifier

Contrary to the pairwise classifier described in Section 3.1, the bivariate classifier considers
all the combinations among every pair of pairwise variables as class labels. Therefore,
one may relate the label powerset method of the multi-label scenario with the bivariate
classifier. In this sense, the label powerset method trains a classifier for all the unique
class label combinations found in the training dataset, and the bivariate classifier learns an
estimator for every two pairs of class labels.

Figure 1c shows the representation of the bivariate classifier for naive Bayes as a base
estimator. Specifically, the bivariate classifier learns an estimator for every two pairs of
class labels yu1 , yv1 , yu2 , yv2 ∈ dom(Y ), where 1 ≤ u1 < v1 ≤ n, 1 ≤ u2 < v2 ≤ n, and
(u1 < u2) ∨ (u1 = u2) ∧ (v1 < v2). In this case, the joint probability for a particular pair of
class labels zk ∈ dom(Zu1v1) and zl ∈ dom(Zu2v2) given an input instance x is computed as
follows

P(x, zk, zl) = P(zk, zl)

m∏
i=1

P(xi | zk, zl). (5)

To obtain the conditional probability distribution of each pairwise variable Zu1v1 , where
1 ≤ u1 < v1 ≤ n, we have to marginalize Equation 5 according to zl.

It is worth pointing out that a quartic factor roughly bounds the number of base esti-
mators that the bivariate classifier learns. Thus, although it is suitable for naive Bayes as a
base estimator, we exclude AODE due to the high computational complexity. Nevertheless,
we may reduce the number of pairs of pairwise classifiers using structural learning (p.e.,
Markov blanquet (Jensen and Nielsen, 2007)).

4. Experimental evaluation

This section compares the algorithms proposed in this paper in terms of accuracy and
computational efficiency. Below, we describe the datasets used, the algorithms tested, the
methodology adopted, and the results obtained.

4.1 Datasets

Table 1 contains a summary of the benchmark datasets used to test the proposed al-
gorithms (see https://www.openml.org/search?type=data&sort=runs&status=active&
uploader_id=%3D_25829 for the details). In particular, they were obtained by turning
standard classification datasets from the UCI repository (Dua and Graff, 2017) into PLR
datasets using the procedure proposed in (Alfaro et al., 2021a). Note that the columns
display the number of instances (#instances), the number of features (#attributes), the
number of class labels of the standard classification problem (#labels), the number of dis-
tinct bucket orders in the PLR dataset (#rankings), the mean number of buckets per bucket
order (buckets), and the field of application (Domain), respectively.

4.2 Algorithms

We included the following algorithms in the experimental evaluation:
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Table 1: Description of the datasets

Dataset #instances #attributes #labels #rankings buckets Domain

authorship 841 70 4 47 3.063 Sociology

blocks 5472 10 5 116 2.337 Bioinformatics

breast 109 9 6 62 3.925 Medicine

ecoli 336 7 8 179 4.140 Biology

glass 214 9 6 105 4.089 Criminology

iris 150 4 3 7 2.380 Eugenics

letter 20000 16 26 15014 7.033 Letter classification

libras 360 90 15 356 6.889 Hand movement classification

pendigits 10992 16 10 3327 3.397 Digit classification

satimage 6435 36 6 504 3.356 Satellite image classification

segment 2310 18 7 271 3.031 Outdoor image classification

vehicle 846 18 4 47 3.117 Silhouette classification

vowel 528 10 11 504 5.739 Vowel classification

wine 178 13 3 11 2.680 Chemistry

yeast 1484 8 10 1006 5.929 Biology

• Pairwise algorithm (see Section 3.1). As base classifiers, we considered naive Bayes
and AODE. We estimated the conditional probability distributions with univariate
normal distributions for naive Bayes as a base estimator. Moreover, we binned the
predictive variables into three intervals using an equal-width discretization technique.
In this case, we estimated the parameters of the model with univariate categorical
distributions. We followed the standard approach for AODE, i.e., we considered only
categorical features.

• Classifier chain (see Section 3.2). Similar to the previous case, but also estimating
the conditional probability distributions of the chain with univariate categorical dis-
tributions. Moreover, we considered both the random and heuristic ordering of the
chain.

• Bivariate algorithm (see Section 3.3). We considered only naive Bayes as a base
classifier due to time complexity problems with AODE.

• Gaussian mixture algorithm (Alfaro et al., 2021b). We considered the algorithm
modeling the continuous features with a multivariate normal distribution and a tied
covariance matrix, where all components share the same general covariance matrix.

We used the following procedure to decide if numerical or categorical features were
employed. First, we trained a standard naive Bayes estimator with both versions (univariate
normal distributions and univariate categorical distributions) and used as a class label the
one ranked first in the ranking (in case of ties, the one with the lowest index was chosen).
We then evaluated the performance of both estimators, and the one with higher accuracy
classification score over the training dataset was selected.
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4.3 Methodology

We adopted the following methodology decisions for the experimental evaluation according
to the existing (P)LR literature (Cheng et al., 2009; Alfaro et al., 2021a):

• The algorithms were evaluated by a ten-fold cross-validation method repeated five
times.

• The accuracy results were derived in terms of the τX rank correlation coefficient. See
Section 4 in (Emond and Mason, 2002) for the details.

• The results were analyzed using the procedure described in (Demšar, 2006; Garćıa
and Herrera, 2008) with the exreport software tool (Arias and Cózar, 2015). First, a
Friedman test (Friedman, 1940) with the null hypothesis that all the algorithms have
equal performance was applied. Second, if this hypothesis was rejected, a post-hoc test
using Holm’s procedure (Holm, 1979) was performed to compare all the algorithms
against the one ranked first by the Friedman test. Both tests were conducted at a
significance level of 5%.

4.4 Results

This section analyzes the results of the algorithms proposed in this paper in terms of accu-
racy and computational efficiency.

4.4.1 Accuracy

The summary of the accuracy results is shown in Table 2. Each cell contains the mean
and the standard deviation of the τX rank correlation coefficient between the real and the
predicted partial rankings averaged over the test datasets. The algorithm(s) leading to
the best accuracy results for each dataset has been highlighted. Before a deeper statistical
analysis, we can conclude that the chain using the heuristic order performs better than
the random one. Therefore, we decide to omit this method from the statistical analysis
from this point on. Moreover, the empty cells correspond to algorithms leading to excessive
memory usage errors.

To analyze these results, we followed the procedure described in Section 4.3. Thus, we
rejected the null hypothesis that all the algorithms have equal performance with computed
p-value of 8.516×10−5. The results for the post-hoc test are shown in Table 3. In particular,
the rank and p-value columns contain the ranking provided by the Friedman test and the
p-value adjusted by the Holm’s procedure, respectively. The columns win, tie and loss refer
to the number of times that the algorithm ranked first by the Friedman test wins, ties
and loses with respect to the corresponding algorithm. The boldfaced values correspond to
non-rejected null hypotheses. According to these results, we can conclude that:

• The Gaussian mixture algorithm is ranked first by the Friedman test. However, three
algorithms with significantly less training time are not statistically different. More-
over, these three algorithms can cope with all the datasets, while the experiments of
the Gaussian mixture algorithm for the letter dataset caused an excessive memory
usage error.
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Table 3: Post-hoc test results for the mean accuracy

Method Rank p-value Win Tie Loss

Gaussian mixture algorithm 2.13 - - - -

Bivariate algorithm + Naive Bayes 2.37 7.327× 10−1 9 0 6

Pairwise algorithm + AODE 3.43 1.141× 10−1 12 1 2

Pairwise algorithm + Naive Bayes 3.70 6.548× 10−2 11 0 4

Classifier chain + AODE 4.47 2.545× 10−3 13 0 2

Classifier chain + Naive Bayes 4.90 2.561× 10−4 12 1 2

• The classifier chain algorithms result in the worst performance, meaning that they
are not capable of exploiting the pairwise correlations.

• The bivariate algorithm is ranked ahead of the pairwise algorithms, and it shows a
better performance in almost all the scenarios. Hence, we can improve the performance
of the algorithms by considering pairs of pairwise comparisons as possible outcomes
in the classifiers.

4.4.2 Computational efficiency

Tables 4 and 5 show the CPU time for the learning and inference steps of the algorithms
considered in the experimental evaluation. The CPU time for the whole procedure (learning
with the training dataset and validating with the test one) is usually reported. However,
since we deal with the same machine learning paradigm, we consider it more interesting to
report the values separately. In light of these results, we can conclude that:

• The algorithms with naive Bayes as a base estimator give rise to the fastest classifiers.

• The bivariate algorithm is faster than the pairwise algorithm using AODE as a base
classifier, except for those datasets where the number of classes is higher than the
number of features (e.g., letter or yeast), because the number of classes bounds the
complexity of the bivariate algorithm. In contrast, the number of features bounds the
complexity of the algorithms using AODE as a base classifier.

• The CPU time of the Gaussian mixture algorithm is much higher than the one of the
rest of algorithms.

Therefore, considering a balance between accuracy and computational efficiency, the
bivariate algorithm becomes the best choice.

5. Conclusions

This paper explores using Bayesian network classifiers to deal with the PLR problem. The
main drawback is to model the target variable, as it takes value in the set of bucket orders
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Bayesian network classifiers to deal with the partial label ranking problem

defined over the values in the domain of the class variable. We solve this issue by introducing
a pairwise variable that codifies the preference relation between two class labels. The OBOP
is solved using the pair order matrix built according to the preference information provided
by the pairwise variables to obtain the prediction for an input instance.

The experimental evaluation shows that the bivariate and pairwise classifiers using naive
Bayes and AODE as base estimators are comparable in accuracy to the existing Gaussian
mixture algorithm. However, the classifier chain algorithms are not competitive with these
algorithms. This situation may be due to the existing correlations between the target
class variables and, therefore, they are not following the independent assumption among
the predictive variables. Regarding the computational efficiency, the Gaussian mixture
algorithm is much slower than the proposals in this paper. Moreover, the algorithms using
naive Bayes as a base classifier give rise to fast classifiers in both learning and inference.

We propose two lines for future work. First, we plan to extend the algorithms proposed
in this paper to cope with incomplete information in the target partial rankings, as it turns
out to be important from a practical point of view. Second, we plan to use other base
estimators that better approximate the predicted class probabilities, given that the aim is
to use that information for the pair order matrix to solve the OBOP.
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