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Abstract

Discovering and parameterising latent confounders represent important and challenging
problems in causal structure learning and density estimation respectively. In this paper,
we focus on both discovering and learning the distribution of latent confounders. This task
requires solutions that come from different areas of statistics and machine learning. We
combine elements of variational Bayesian methods, expectation-maximisation, hill-climbing
search, and structure learning under the assumption of causal insufficiency. We propose two
learning strategies; one that maximises model selection accuracy, and another that improves
computational efficiency in exchange for minor reductions in accuracy. The former strategy
is suitable for small networks and the latter for moderate size networks. Both learning
strategies perform well relative to existing solutions.

Keywords: Ancestral graphs; EM algorithm; greedy search; hill-climbing search; hidden
variables; probabilistic graphical models; variational inference.

1. Introduction

Methods from both machine learning and statistical sciences have contributed to the ad-
vancements in probabilistic graphical models, and specifically in learning Bayesian Networks
(BNs). The structure of a BN is typically represented by a Direct Acyclic Graph (DAG),
containing nodes that represent variables and edges that represent conditional relationships.
The process of learning BNs from data is separated into two tasks. An unsupervised struc-
ture learning approach is first used to determine the graph of the BN, followed by parameter
estimation of the conditional distributions given the learnt structure.

The task of structure learning is known to be both difficult and computationally ex-
pensive, and it is NP-hard even for small networks containing just 10 variables. These
challenges are elevated when noise is present in the data, or when the data are incomplete
(Constantinou et al., 2021). One such example is when the input data do not capture all
the variables; often referred to as the problem of learning under the assumption of causal
insufficiency (Spirtes et al., 2001). A special case of a latent variable is the latent confounder
which represents a missing common cause of two or more observed variables, and tends to
lead to spurious edges between its children.

Structure learning algorithms that assume causal insufficiency generate ancestral graphs
that represent an extension of a DAG. These algorithms generate either a Maximal Ances-
tral Graph (MAG) that contains bi-directed edges indicating confounding and directed
edges indicating causal or ancestral relationships, or a Partial Ancestral Graph (PAG) that
represents the Markov equivalence class of a set of MAGs, in the same way a Completed
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Partial DAG (CPDAG) represents the Markov equivalence class of a set of DAGs. As we
later explain in subsection 2.1, a PAG also captures the possible existence of multiple latent
confounders. Well-established algorithms that generate PAGs tend to be constraint-based
or hybrid, and largely rely on FCI by Spirtes et al. (2001). Some variants of FCI include the
constraint-based RFCI algorithm by Colombo et al. (2012), cFCI by Ramsey et al. (2012),
mFCI by Colombo and Maathuis (2014), and the hybrid GFCI algorithm by Ogarrio et al.
(2016) which combines elements of constraint-based and score-based learning.

In this work, we describe two learning strategies that take a PAG as an input, along with
observed data, to determine the existence of latent confounders and learn their underlying
latent distributions. We propose two algorithms: one that maximises accuracy and another
that balances accuracy with computational complexity. The paper is organised as follows:
Section 2 provides preliminary information through past related works, Section 3 describes
the two algorithms, Section 4 describes the experimental setup, Section 5 presents the
results, and we provide our conclusions and directions for future work in Section 6.

2. Preliminaries

2.1 Ancestral Graphs

As discussed in the introduction, a MAG represents a DAG extension that captures informa-
tion about possible latent confounders. A PAG, which represents a set of Markov equivalent
MAGs that entail the same set of Conditional Independencies (CIs) or m-separation crite-
ria, is represented by a tuple (V,E) where V is the set of observed variables and E is the
set of the edges. The edges in a PAG can be: —, ↔, →, o→ or o—o, where — indicates
selection variables, ↔ indicates latent confounders, and → indicates that all MAGs in the
equivalence class contain this directed edge. The circle edge mark (o) indicates that the
endpoint of the edge could be either a tail (–) or an arrowhead (>). For example, o→
indicates that the corresponding MAGs will contain either → or ↔, whereas o—o indicates
that the edge can be →, ← or ↔. Because we do not deal with selection bias in this paper,
we will not be considering ancestral graphs that contain undirected edges (—). Both PAGs
and MAGs are acyclic and do not assume partially directed cycles when A↔B; but instead
assume that either B is an ancestor of A, or A is an ancestor of B (Richardson and Spirtes,
2000).

2.2 Conjugate-exponential family models

We consider conjugate-exponential family models for discrete data. We assume a Dirichlet
prior that serves as a conjugate prior of a multinomial likelihood (Bishop, 2006), whose
posterior distribution is also Dirichlet. We use the empirical Bayes method by Gelman et
al. (2003) to determine the prior parameters from data. For density estimation of latent
confounders, we assume a Dirichlet prior Dir (θi|αik) where αik is a hyperparameter set to
‘1’ for uniform distribution, and θi denotes parameters

∑
k θik = 1 where k represents the

number of states. Since we perform structure learning and density estimation under causal
insufficiency, some variables will not be observed in the data, leading to an incomplete-data
marginal likelihood p(D|G) of a DAG G.
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2.3 Variational Bayesian Expectation-Maximization (VBEM) algorithm

Marginalising out the parameters over latent confounders Lj in p(D|G) makes the task of
learning prohibitively expensive and intractable. We address this issue by approximating
distributions of latent variables using the computationally efficient Variational Bayesian
Expectation-Maximization (VBEM) algorithm (Beal and Ghahramani, 2003) that enables
tractable solutions. The VBEM algorithm combines elements of variational inference (Jor-
dan et al., 1999) and Expectation-Maximisation (EM; Friedman, 2013). It uses an alternated
optimisation technique to find a surrogate distribution q (L, θ) from any exponential fam-
ily Q (e.g., Gaussian, Dirichlet, multinomial) and optimises towards the true distribution
p (L, θ|D,G). VBEM offers an approximate solution that guarantees to monotonically in-
crease the objective score, and scales better with large data compared to MCMC (Hastings,
1970).

The objective of VBEM is to minimise the discrepancy between two distributions q (L, θ)
and p (L, θ|D,G). It uses the reverse Kullback-Leiber (KL) divergence for this task, which
is the standard choice for variational inference, defined as follows:

KL (q ∥ p) =
∫∫

dLdθq (L, θ) log q(L,θ)
p(L,θ|D,G)

= Eq

[
log q(L,θ)

p(L,θ|D,G)

]
= Eq [logp (D|G)]− {Eq [logp (L, θ,D|G)]− Eq [logq (L, θ)]} (1)

Because the incomplete-data marginal likelihood p (D|G) is intractable to compute, we
consider p (D|G) to be a constant. The aim is to minimise KL (q ∥ p), which is equivalent
to maximising the Evidence Lower Bound (ELBO). Therefore, we can minimise KL (q ∥ p)
without having to know the true distribution p (L, θ|D,G) and p (D|G). We can describe
ELBO as the objective function:

ELBO = Eq [logp(L, θ,D|G)]− Eq [logq (L, θ)] (2)

where q (L, θ) is assumed to be the factorisation of the free distributions qL (L) and qθ (θ).
We maximise ELBO using a function F of both qL (L) and qθ (θ) as follows (Beal and
Ghahramani, 2006):

ELBO = F (qL (L) , qθ (θ)) =
∫∫

dLdθqL (L) qθ (θ) [logp (L, θ,D|G)− log (qL (L) qθ (θ))] (3)

To maximise F , VBEM calculates qL (L) and qθ (θ) while holding the other fixed at iteration
t. The two steps for each iteration t are:

1) VB-E step: estimates the posterior distribution over latent confounders qt+1
L (L) =∏|L|

i=1 q
t+1
Li

(Li) given qtθ (θ) from the last iteration by taking the functional derivatives in
Equation (3) with respect to qLi (Li), where |L| is the number of latent confounders.

2) VB-M step: estimates qt+1
θ (θ) given the posterior distribution qL

t+1 (L) taken from
the VB-E step by taking the functional derivatives in Equation (3) with respect to qθ (θ).
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VBEM iterates over the VB-E and VB-M steps until the difference in ELBO becomes
smaller than a given threshold, indicating convergence. Since ELBO is not a score-equivalent
function, it generates different values for graphs that belong to the same Markov equivalence
class. A revised version called p-ELBO was proposed by Rodriguez-Sanchez et al. (2020)
that includes a penalty term to avoid the |Li|! equivalent ways of assigning sets of parameters
that result in the same distribution (non-identifiability), and it is defined as p-ELBO =

ELBO −
∑|L|

i=1 log |Li|!; where |Li| is the number of states in Li.

2.4 Past relevant work

ELBO was used as the objective function of a neural network in Variational Autoencoder
(VAE) by Kingma and Welling (2013). VAE for heterogeneous Mixed type data (VAEM)
was used by Ma et al. (2020) for density estimation of latent variables in deep generative
models. VAE assumes each observed variable has a latent parent, whereas VAEM is an
extension of VAE that assumes an additional latent confounder that serves as a parent of
all latent variables.

The ELBO score was extended to p-ELBO by Rodriguez-Sanchez et al. (2020; 2022),
which was used as the objective score in Constrained Incremental Learner (CIL) and Greedy
Latent Structure Learner (GLSL) algorithms. CIL learns a tree-structured BN that assumes
any two nodes are connected by one directed path only, whereas GLSL learns a DAG BN.
Both algorithms start from an empty graph and perform various search operations including
a) add or remove latent variables as parents of observed variables, b) increase the number
of states of latent variables, and c) perform edge operations such as add, remove, or reverse
edges, aiming to maximise p-ELBO. Searching for latent confounders often means iterating
over all pairs of observed variables, which can be computationally expensive. Instead, these
algorithms offer a strategy that focuses on a set of pairs of variables that provide the highest
Mutual Information (MI). Empirical results show that GLSL outperforms CIL, but at the
expense of high computational complexity.

3. Two new algorithms for learning latent confounders

This section describes the two learning strategies we have implemented for latent confounder
discovery and density estimation. Subsection 3.1 describes how we use existing algorithms
to draw a PAG that is then given as an input to the two algorithms we propose, which
in turn use the PAG to search for different MAGs and DAGs with parameterised latent
confounders. We describe the two algorithms in subsections 3.2 and 3.3 respectively. Both
algorithms assume the input data are discrete, and that the latent confounders have no
parents but have at least two children. We further assume a Dirichlet prior qθ (θ) over all
parameters as described in subsection 2.2, and we use p-ELBO as the objective function
which is computed using the VBEM algorithm as described in subsection 2.3.

3.1 Searching for MAGs and DAGs given a PAG input

The FCI algorithm and some of its variants discussed in the introduction represent the
state-of-the-art in recovering ancestral graphs under the assumption of causal insufficiency
(Kitson et al., 2021). Any of these algorithms can be used to draw a PAG that can be
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given as input to the two algorithms described in subsections 3.2 and 3.3. A set of Markov
equivalent MAGs can be then derived from the input PAG. However, because the number of
possible latent confounders that can be explored for a given MAG is generally intractable,
we shall assume the minimum number of latent confounders that satisfy the m-separation
criteria. Since the computational cost of working with multiple latent confounders is high,
it becomes necessary that we introduce Assumption 1, as described below.

Assumption 1: The optimal number of latent confounders is the minimum number of
latent confounders that retain the CIs of a given MAG.

Figure 1. A PAG (a) along with one of its MAGs (b), and three DAGs (c, d, e) with different latent 
confounders (grey nodes) derived from the given MAG, where A ⊥/ B, A ⊥/ C and B ⊥/ C.  

d)   e)   

 

 

 

 

 

 

a)  c)  b)  

Figure 1 presents a simple PAG that contains two bi-directed edges, along with a MAG
and three DAGs that satisfy the CI statements of the PAG. Converting a MAG into possible
DAGs implies that each DAG retains the CIs of that MAG by reducing the criteria of m-
separation to d-separation. In this example, the DAG that contains the minimum number
of latent confounders, with reference to the MAG in Figure 1b, is shown in Figure 1c.
The DAGs in Figures 1d and 1e contain a higher number of latent confounders than the
minimum required to satisfy all the CIs of the given MAG. Because the algorithms we
describe in subsection 3.2 and 3.3 rely on Assumption 1, they will never explore DAGs
that contain a higher number of latent confounders than the minimum required, and would
not visit DAGs such as those shown in Figures 1d and 1e.

3.2 Alg 1: Incremental Latent Confounder search with VBEM (ILC-V)

The first algorithm, which we call Incremental Latent Confounder search with VBEM (ILC-
V), is described in Algorithm 1. It takes a PAG input (Step 1) and uses the ZML algorithm
available in R (Malinsky and Spirtes, 2017) to enumerate all Markov equivalent MAGs of
that PAG (Step 3). It then further constructs DAGs for each MAG, starting from the MAGs
that contain the minimum number of bi-directed edges (Step 4). Each latent confounder
modelled at Step 4 is assumed to be binary, and the optimal DAG is the one that maximises
p-ELBO using the VBEM algorithm made available as a Java library by Rodriguez-Sanchez
(2021).

At Step 5, Algorithm 1 calls Algorithm 1b to determine the optimal number of states for
each latent confounder. This is achieved by iterating over each latent confounder present
in the highest scoring DAG determined at Step 4, and greedily increasing the number of
states by one at a time, for each latent confounder. Algorithm 1b returns a DAG that
contains the optimal number of states for each latent confounder, or the maximum number
of states S if the objective score continues to increase with the number of states. To
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improve computational complexity, the objective score p-ELBO is applied to a subgraph
GS that contains the auxiliary latent confounders and their children, since the conditional
distributions of the remaining nodes remain unchanged in the BN. The final Step 6 generates
the final DAG BN and revises the p-ELBO score.

Algorithm 1: Incremental Latent Confounder search with VBEM (ILC-V) 

Input:    A structure learning algorithm that generates PAG, max Sepset size �, significant threshold ⍺, observational data 
               �, converge threshold �, max number of bi-directed edges �, a runtime limit �. 
Output: A DAG BN that contains latent confounders as observed variables, along with the conditional distributions.   

Step 1 PAG ← Run a structure learning algorithm with ⍺ and � given � 
Step 2 � ← max number of states in � 

current number of bi-directed edges ← count the total number of bi-directed edges in PAG  
score_improve = TRUE 
best_pELBO = - Infinity 

Step 3 List of MAGs ℒ� ← Enumerate all Markov equivalent MAGs from PAG 
Step 4             While score_improve = TRUE or current number of bi-directed edges ≤ � or elapsed time ≤ �   

           best_local_pELBO = - Infinity 

           For each MAG in ℒ� where its #bi-directed edges = current number of bi-directed edges 
                 Construct new DAG � that contains all edges → present in MAG and generate boolean  
                        auxiliary latent confounders for edges ↔ present in MAG as per Assumption 1   

           current_pELBO ← run VBEM until p-ELBO converges with � given � and �                                           
            If current_pELBO > best_pELBO 
                  best_pELBO = current_pELBO   
                  best_DAG = � 
            If current_pELBO > best_local_pELBO 
                  best_local_pELBO = current_pELBO   

                              
            current number of bi-directed edges++ 
            If best_pELBO > best_local_pELBO 
                 score_improve = FALSE 
                                

Step 5  If � > 2  

        get best_DAG with (potentially) multinomial latent confounders ← run Algorithm 1b given best_DAG,   
        �, � and �             

Step 6 get best_pELBO and return Output ← run VBEM until p-ELBO converges with � given � and best_DAG 

Algorithm 1b: Greedy search for the optimal number of states for each latent confounder 

Input:    A DAG � with auxiliary boolean latent confounders, max states � for each latent confounder, observational data  
               �, converge threshold �.           
Output: A DAG � with auxiliary (potentially) multinomial latent confounders. 

Step 1 score_improve = TRUE 
best_pELBO = - Infinity 

Step 2 For each latent confounder � in DAG � 
          While score_improve = TRUE or number of states ≤ �              

                    current_pELBO ← run VBEM until p-ELBO converges with � given � and subgraph ��  
                    If current_pELBO > best_pELBO 
                          best_pELBO = current_pELBO   
                    Else 
                          score_improve = FALSE 
                          number of states of latent confounder � -- 
                  number of states of latent confounder � ++ 
                         Update the number of states of latent confounder � in �� and � 

Step 3 Return � with the optimal number of states for each latent confounder 

3.3 Alg 2: Hill-Climbing Latent Confounder search with VBEM (HCLC-V)

Because ILC-V (Algorithm 1) is computationally expensive, as we later show in Section 5,
one might be interested in a computationally efficient version that minimally decreases the
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objective score of Algorithm 1. A problem with ILC-V is that when the input PAG contains
a high number of invariant edges o—o or o→, enumerating all possible MAGs can quickly
cause memory allocation problems. To address this, we introduce a modified version of
ILC-V, which we call Hill-Climbing Latent Confounder search with VBEM (HCLC-V), that
skips Markov equivalence checks. This means that HCLC-V no longer needs to check the
CIs for each DAG visited, and this saves enormous computational time. Instead, HCLC-V
iterates over possible edge orientations as described in Step 4 of Algorithm 2, and continues
to follow the incremental search strategy of ILC-V in terms of the number of bi-directed
edges. Moreover, a list of the best-found latent confounders from one iteration is carried
forward to the next iteration (see Steps 3 and 4 in Algorithm 2). Lastly, since HCLC-V
relies on hill-climbing search, it stops exploration when a local maximum is reached.

 
Algorithm 2: Hill-Climbing Latent Confounder search with VBEM (HCLC-V) 

Input:    A structure learning algorithm that generates PAG, max Sepset size �, significant threshold ⍺, observational data �,     
               converge threshold �, max number of bi-directed edges �, a runtime limit �. 
Output: A DAG BN that contains latent confounders as observed variables, along with the conditional distributions.   

Step 1 Same as in Algorithm 1 
Step 2 Same as in Algorithm 1 
Step 3 List of best_latent_confounder ℒ� = ∅ 
Step 4 While score_improve = TRUE or current number of bi-directed edges ≤ � or elapsed time ≤ �   

             best_local_pELBO = - Infinity 
             While all pairs A o—o B in PAG are not orientated 
                    Construct new DAG � by changing all o→ present in PAG to → and generate boolean  
                       auxiliary latent confounders for edges ↔ present in PAG as per Assumption 1  

                    Orientate A → B or A ← B in � from all pairs A o—o B with the maximum p-ELBO using VBEM  
             For each pair A o—o B or A o→ B in PAG which is not in ℒ�  
                    Construct new MAG that contains all edges → present in � and add the edge A ↔ B and others 
                         C ↔ D given ℒ�  
                       Construct new DAG �� that contains all edges → present in MAG and generate                                 
                         boolean auxiliary latent confounders for edges ↔ present in MAG as per Assumption 1   

                    current_pELBO ← run VBEM until p-ELBO converges with � given � and ��  
                    If current_pELBO > best_pELBO 
                         best_pELBO = current_pELBO   
                         best_DAG = �� 
                         Add the auxiliary latent confounders to ℒ� 
                    If current_pELBO > best_local_pELBO 
                         best_local_pELBO = current_pELBO    
 

              current number of bi-directed edges++ 
              If best_pELBO > best_local_pELBO 
                    score_improve = FALSE             

Step 5  Same as in Algorithm 1 
Step 6 Same as in Algorithm 1 

 

4. Case studies and evaluation setup

The experimental setup involves four real-world BNs taken from the Bayesys repository
(Constantinou et al., 2020), described in Table 1. We generated synthetic data of 1k and
10k samples for each network using the bnlearn R package (Scutari, 2010). One data set
is created for each latent confounder listed in Table 1. This process was applied to both
sample sizes, and led to a total of 22 data sets.

We have used the constraint-based FCI and the hybrid GFCI algorithms to generate
PAGs to be provided as input to ILC-V and HCLC-V. This produced four different result-
combinations, which we refer to as ILC-VFCI, HCLC-VFCI, ILC-VGFCI and HCLC-VGFCI
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in Section 5. The GFCI algorithm was tested using the Tetrad-based rcausal R package
(Wongchokprasitti, 2019), and the FCI algorithm was tested using the pcalg R package
(Kalisch et al., 2012). Regarding the hyperparameters of FCI and GFCI, we set the G-
square significance threshold to α=0.05 and the Sepset size to n=-1 for unlimited size of
conditioning sets. For ILC-V and HCLC-V, we set the maximum number of bi-directed
edges to m=4 to enable us to carry out experiments within reasonable runtime, and the
convergence threshold of VBEM to c=0.01.

BN Variables Edges Max in-degree 
Free 

parameters 
Potential latent confounders 

Asia 8 8 2 18 Smoke 
Sports 9 15 2 1,049 RDlevel 
Property 27 31 3 3,056 propertyPurchaseValue, borrowing, 

otherPropertyExpenses 
Alarm 37 46 4 509 INTUBATION, HYPOVOLEMIA, LVFAILURE, 

ERRCAUTER, PULMEMBOLUS, KINKEDTUBE 

 Table 1. The properties of the four real-world networks considered for evaluation. 

We assess the accuracy of ILC-V and HCLC-V in terms of the objective score p-ELBO
and learning runtime, with reference to those obtained by the GLSL and CIL algorithms
discussed in subsection 2.4. GLSL and CIL are tested using the Java library by Rodriguez-
Sanchez (2021) with mi=10 regarding the number of pairs of variables to be considered with
the highest MI, and with maxNumberParents latent=-1 for GLSL to assume no parents
for density estimation of latent confounders to enable us to carry out experiments within
reasonable runtime.

We impose a runtime limit of 12 hours for each experiment and set hyperparameter T
to 12 hours for both ILC-V and HCLC-V, to ensure that they return a result within the
12-hour runtime limit. Experiments by the other algorithms that do not complete learning
within the specified runtime limit are denoted as “Timeout”. All experiments are based
on 8GB of RAM. The experiments involving the Asia, Sports and Property networks were
carried out on the Intel Core i5-8250 CPU at 1.80 GHz, whereas the experiments involving
the Alarm network on the M1 CPU at 3.2 GHz.

5. Empirical results

5.1 The difference in search space explored by ILC-V and HCLC-V

This subsection investigates the difference in search space explored between the two pro-
posed algorithms, ILC-V and HCLC-V. The comparison assumes that the PAG inputs are
produced by GFCI, and relies on Step 4 (which represents the main difference between the
two algorithms) where the latent confounders are assumed to be binary.

Figure 2 presents the results based on the Property network (27 nodes) for both sample
sizes 1k and 10k. Figure 2a shows that ILC-VGFCI produces a slightly higher p-ELBO score
than HCLC-VGFCI, but that ILC-VGFCI achieved that by exploring considerably more search
space than HCLC-VGFCI; i.e., visited a total of 170 DAGs versus 20 DAGs. The charts depict
different colours to illustrate how the two algorithms differ at visiting DAGs derived from
MAGs that contain increasing numbers of bi-directed edges. Specifically, Figure 2a shows
that ILC-VGFCI visited all DAGs derived from MAGs containing up to three bi-directed
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edges, whereas HCLC-VGFCI ended at a local maximum while visiting DAGs derived from
MAGs containing up to two bi-directed edges.

Figure 2b, on the other hand, shows that the higher sample size helped ILC-VGFCI to
both find a higher objective score and complete learning faster than HCLC-VGFCI. This
is because ILC-VGFCI found no DAG derived from MAGs containing two bi-directed edges
to have a higher score than the highest scoring DAG derived from MAGs containing one
bi-directed edge, which caused ILC-VGFCI to skip MAGs containing three bi-directed edges.
On the other hand, HCLC-VGFCI ended up visiting a higher number of DAGs, but note this
does not necessarily imply that the algorithm was slower; i.e., recall that HCLC-V skips
checking for Markov equivalence between graphs.
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Figure 2. The p-ELBO scores produced at Step 4 by the two algorithms, where ● indicates the highest 
score achieved by the specified algorithm. The results in a) and b) are based on the Property network with 
variable ‘otherPropertyExpenses’ being the latent confounder and in c) and d) are based on the Alarm 
network with variable ‘INTUBATION’ being the latent confounder, and assume the input PAG is 
produced by GFCI. 
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Figure 2c and 2d repeat the analysis of Figure 2a and 2b with application to the Alarm
network (37 nodes), and show that the results are consistent with those produced for the
Property network. The only difference here is that, at 10k sample size, the p-ELBO score
of HCLC-VGFCI matched that of the generally slower ILC-VGFCI.

5.2 Performance of ILC-V and HCLC-V relative to other algorithms

We compare the results produced by ILC-V and HCLC-V to those produced by the CIL
and GLSL algorithms described in subsection 2.4 which, to the best of our knowledge, are
the two algorithms that are most relevant to this work, which involves both the discovery
and density estimation of latent confounders.
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Table 2 presents the p-ELBO score for each algorithm and data set combination, plus
the p-ELBO scores of the true DAGs, for both sample sizes 1k and 10k. The average ranks
show that ILC-VGFCI performs best in terms of maximising the p-ELBO score across both
sample sizes, followed by HCLC-VGFCI. CIL algorithm is found to be the worst performing
algorithm at sample size 10k, whereas GLSL mostly outperforms both ILC-VFCI and HCLC-
VFCI, but not ILC-VGFCI and HCLC-VGFCI. This means that ILC-V and HCLC-V benefit
from the PAG input of GFCI, and suggests that the hybrid learning GFCI might be better
than FCI at recovering PAGs; an observation consistent with previous studies (Constantinou
et al., 2021). Note that while the true DAG will not always have the highest p-ELBO score,
the highest scores produced by the algorithms tend to be very close to those of the true
DAG, and this helps to validate the results.
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Asia (smoke) 

p-ELBO (sample size 1k) 

-2258 -1845 -1845 -1807 -1807 -1796 -1679 
Sports (Rdlevel) -11742 -9296 -9417 -9296 -9417 -10228 -10228 

Property (propertyPurchaseValue) -25254 -34496 -34532 -24565 -24596 -29040 -28076 

Property (borrowing) -25254 -35042 -35080 Memory -24044 -28518 -27534 

Property (otherPropertyExpenses) -25254 -35929 -35979 -24079 -24079 -29382 -28363 

Alarm (INTUBATION) -11220 Memory -14802 -10966 -11068 -13777 -11581 

Alarm (HYPOVOLEMIA) -11220 Memory -14660 -10908 -11010 -13721 -11117 

Alarm (LVFAILURE) -11220 Memory -14821 -11074 -11075 -13989 -11307 

Alarm (ERRCAUTER) -11220 Memory -14678 -11024 -11017 -13693 -11254 

Alarm (PULMEMBOLUS) -11220 Memory -15081 -11053 -11055 -13994 -11294 

Alarm (KINKEDTUBE) -11220 Memory -14948 -10889 -10963 -13896 -11203 

Average rank  5.1 5.0 1.8 1.9 3.8 2.9 
 p-ELBO (sample size 10k) 
Asia (smoke) -22508 -17860 -17860 -17601 -17601 -17039 -16135 

Sports (Rdlevel) -108800 -92014 -92864 -92014 -92864 -99741 -99741 

Property (propertyPurchaseValue) -235622 -285084 -285084 -238090 -238267 -283142 -275212 

Property (borrowing) -235622 -277035 -277035 -239289 -239520 -277440 -269719 

Property (otherPropertyExpenses) -235622 -284024 -284038 -237178 -236998 -285975 -277949 

Alarm (INTUBATION) -105739 -119906 -119845 -104919 -105096 -133084 Timeout 

Alarm (HYPOVOLEMIA) -105739 Memory  -126194 -101997 -102960 -131819 Timeout 

Alarm (LVFAILURE) -105739 Memory  -129574 -103761 -103720 -134606 Timeout 

Alarm (ERRCAUTER) -105739 Memory  -121536 -103492  -103530 -132280 Timeout 

Alarm (PULMEMBOLUS) -105739 Memory  -126811 -103652  -103624 -135116 Timeout 

Alarm (KINKEDTUBE) -105739 Memory  -125698 -108480 -102803 -134869 Timeout 

Average rank  4.4 3.7 1.5 1.8 4.4 4.2 
 

Table 2. The p-ELBO scores for each algorithm and data set combination and across both sample sizes, 
where Memory indicates out-of-memory error in enumerating the possible MAGs, and Timeout indicates 

failure to complete learning within the 12-hour time limit. The best scores are indicated in bold. 

While ILC performs best in general, it does not scale well with the size of the network.
As shown in Table 2, ILC-V returns an out-of-memory error (for 8GB RAM) for most
experiments with Alarm, specifically when paired with FCI, caused by the large number of
possible MAGs derived from the input PAG. The cumulative runtime across all 10k sample
sizes was 14, 34, 46 and 88 hours for CIL, HCLC-VGFCI, ILC-VGFCI and GLSL respectively,
with a similar trend observed across 1k sample sizes. On average, HCLC-V is found to be
1.4 times faster than ILC-V, which in turn is found to be 1.6 times slower than CIL and
4.5 times faster than GLSL which failed to complete the Alarm network experiments at 10k
sample size; suggesting that its computational efficiency might not scale well with sample
size.
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6. Conclusions

This work investigated two novel algorithms that can be used for both discovery and density
estimation of latent confounders in BN structure learning from discrete observational data.
The first algorithm (ILC-V) aims to maximise model selection accuracy by exploring sets of
Markov equivalent MAGs, starting from the set of MAGs that contain the lowest number
of bi-directed edges and, while the objective score increases with each set, moving to sets of
MAGs with increasing numbers of bi-directed edges. The second algorithm (HCLC-V) aims
to balance accuracy relative to computational efficiency by employing hill-climbing over the
MAG space, enabling application to larger networks.

Both algorithms require a PAG to be provided as an input, which means that the
proposed algorithms need to be paired with a structure learning algorithm that recovers
ancestral graphs. Because the input PAG will typically indicate multiple possible latent
confounders, the ILC-V and HCLC-V algorithms use p-ELBO as the objective function to
determine the number as well as the position of the latent confounders, thereby contributing
to the discovery process, in addition to density estimation, of latent confounders.

The two proposed algorithms are evaluated relative to two recent and relevant implemen-
tations that also optimise for p-ELBO. The empirical results show meaningful improvements
in maximising the objective score, and in some ways in reducing time complexity; although
the latter remains a major issue. Two important limitations are that a) both algorithms
rely on a PAG input to be provided by some other structure learning algorithm, and b) the
results are based on experiments that assume a single latent confounder only, which was
necessary to ensure that most experiments complete within the 12-hour runtime limit.
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