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Abstract

Limited Memory Influence Diagrams (LIMIDs) are implemented for statistical process con-
trol (SPC) to monitor the quality of the output from a production process where the number
of defective units in a sample is measured at each time period. The observed defectives
provide the input to a decision on whether to stop the process and repair a problematic
cause of variation. The model also allows the decision maker to increase the size of the
next sample in order to better discern whether or not the process actually requires investi-
gation. The model only requires the user to know the size and result of the current sample
to make a decision, in contrast to Bayesian methods that require calculations based on all
prior samples and a history of actions. Despite the limited information, the model provides
competitive quality costs to existing methods for a wide range of production time horizons.

Keywords: Attribute data; limited memory influence diagram; control chart; defectives;
quality control; scatter search; statistical process control.

1. Introduction

Quality can be defined for a business as meeting customer expectations for its products
and services. Statistical process control (SPC) tools are utilized to monitor processes to
determine whether or not customer expectations are being met. This paper describes a
limited memory influence diagram (LIMID) model that can be applied when data on the
number of defective items in a sample is available to monitor a production process. The
model yields a strategy that informs the manager whether or not the process should be
stopped to investigate potential causes of variation that affect the quality of the output.
The method also allows the sample size in the interval to be adjusted based on the current
result, and this feature reduces the quality costs as compared to static sample size methods.

The production process operates in either an “in-control” and fully functional state or
is “out-of-control.” A randomly occurring assignable cause of variation shifts the working
process from the in-control state. Assignable causes of variation can be traced to a machine,
person, or material not performing as intended, and controlling the process requires the
operator to distinguish these from normal, common causes of variation. The process state
is not directly observable, so a random sample of output is collected at equal intervals and
the number of defective units is recorded. The decision problem facing the process manager
is whether to stop and intervene to return the process to the in-control state.

Control charts were originally created by Shewhart (1931) to distinguish between com-
mon and assignable causes of variation in production processes. The traditional approach
to SPC using control charts is to examine a plot of sample data and evaluate whether a
sample mean, range, or proportion falls outside of control limits established using either the
sample data or a desired process average. The process is allowed to operate for a certain
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number of periods while the sample data is collected, then a judgment is made using the
sample data regarding whether an assignable cause may have occurred.

Duncan (1956) introduced economic design of control charts where the user-defined pa-
rameters of the control chart – the sample size, sampling interval, and control limits – were
chosen to minimize relevant costs. This paper employs an economic design with LIMIDs
to determine optimal decision rules and minimize relevant costs. LIMIDs were introduced
by Lauritzen and Nilsson (2001) as an alternative to traditional influence diagrams (Howard
and Matheson, 2005) and partially-observed Markov decision processes (POMDPs) (Small-
wood and Sondik, 1973) where prior observations of chance variables and previous decisions
are not required in the solution procedure – a limited memory assumption. LIMIDs were
recently applied in SPC to monitor process output using qualitative (or attribute) data for
the number of defectives in a sample of the output (Cobb, 2021). The goal of this paper is
to extend the application of LIMIDs to SPC with data on the number of defectives when the
sample size for the next period can be adapted based on the current result. This is referred
to as a variable sample size (VSS) feature and is effective at reducing quality-related costs.

Methods for SPC exist that allow sample size and sampling intervals to vary throughout
the production horizon, and Bayesian SPC methods have been created that incorporate all
sample data collected since the last process repair to be considered in the current decision
on whether to investigate the process. The most closely related SPC methods to the one
presented in this paper are the POMDP model of Calabrese (1995) that incorporates the
number of defectives from a fixed sample size, a Bayesian control chart for sample number of
defectives with adaptive sample sizes developed by Kooli and Limam (2009), the adaptive
chart for number of defectives introduced by Kooli and Limam (2015), and the LIMID
designed to utilize data on sample defectives from fixed sample sizes Cobb (2021). Section 4
will compare the VSS LIMID approach to these methods.

The paper proceeds as follows. The next section describes the process assumptions
and the LIMID model. Section 3 gives parameters for example problems and results for
solutions to these problems. Section 4 compares the results for the VSS LIMID model to
closely related techniques. Section 5 describes potential future research in this area.

2. Model Description

This section describes the production process and LIMID model considered in this paper.

2.1 Production Process

The production process includes a set of assumptions common to many SPC models, in-
cluding the early research of Duncan (1956), as well as the Bayesian techniques for attribute
data outlined by Calabrese (1995) and Kooli and Limam (2009). The process begins in-
control. The rate of occurrence of the assignable cause is exponential with parameter λ
such that the mean time until occurrence is 1/λ. The probability of an assignable cause
occurring in a time interval of length h is γ = 1− e−λh. Inspections occur at time periods
indexed by t = 1, . . . , T − 1 and the random variable for the system state at time t is St

with states s0t (in-control) and s1t (out-of-control). For all variables, if the time period is
clear from the context, the t in the subscript may be dropped.
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The process is evaluated by collecting a random sample of either n1 or n2 units, where
n1 ≤ n2, from the process in each period t (every h hours). The number of defective units
in the sample is a random variable Rt with values r0, . . . , rn1 for the smaller sample size
and r0, . . . , rn2 for the larger sample size. The number of defectives observed at time period
t is denoted by rkt. The proportion of defective units produced is p0 when the process is
operating in control. Eventually, an assignable cause of variation will shift the proportion
of defective output to p1 > p0.

Two possibilities are considered regarding the length of the production horizon:

Finite horizon: The production horizon is a finite number of hours H such that the T
time periods are each of h hours, H ≈ T · h. The horizon H can be the time until the
next scheduled maintenance.

Infinite horizon: The process operates perpetually and only undergoes maintenance
when the model indicates. Though the solution process for the LIMID model requires
a finite number of time periods, to approximate the system operating in an infinite
horizon we can establish a horizon H long enough that the probability the process
shifts to the out-of-control state is high. The resulting strategy is adequate to monitor
an infinite horizon process. Two such horizons H will be considered. With γ =
1 − e−λh, a time horizon that equates to the 95th percentile of the time between
occurrences of the assignable cause will be denoted by Hm = − ln (0.05)/λ (subscript
m for maximum). An alternate solution will be determined for the expected time
between assignable causes He = 1/λ (subscript e for expected).

Based on the observation Rt = rkt of the number of defectives, a decision At is made
with three choices ajt possible: a0t signifying no investigation with a sample of n1 units in
the next period, a1t with no investigation but a larger sample of n2 units in the next period,
and a2t representing an investigation and repair (if required). When the latter action is
taken, the sample size returns to n1 in the next period. These decisions are represented
by the rectangles in the graphical representation of the LIMID utilized for monitoring the
production process as shown in Figure 1 for the scenario where T = 5.

Sample Result 
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System 
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S2

R3
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Figure 1: LIMID for monitoring the production process with a variable sample size.
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2.2 Numerical Representation

In the LIMID representation of Figure 1, conditional probability potentials are assigned to
each random variable represented by an oval in the diagram.

The probability distributions for St given the prior state of the system St−1 and prior
action At−1 are composed as follows:

P (St = s0|{St−1 = s0, At−1 = a0}) = 1− γ , P (St = s1|{St−1 = s0, At−1 = a0}) = γ

P (St = s0|{St−1 = s0, At−1 = a1}) = 1− γ , P (St = s1|{St−1 = s0, At−1 = a1}) = γ

P (St = s0|{St−1 = s0, At−1 = a2}) = 1− γ , P (St = s1|{St−1 = s0, At−1 = a2}) = γ

P (St = s0|{St−1 = s1, At−1 = a0}) = 0 , P (St = s1|{St−1 = s1, At−1 = a0}) = 1

P (St = s0|{St−1 = s1, At−1 = a1}) = 0 , P (St = s1|{St−1 = s1, At−1 = a1}) = 1

P (St = s0|{St−1 = s1, At−1 = a2}) = 1− γ , P (St = s1|{St−1 = s1, At−1 = a2}) = γ

The probabilities when the process was previously in state s1 and action a2 was not pursued
are defined assuming the process does not spontaneously repair itself.

The sample results Rt are binomially distributed as:

Rt| {At−1 = a0, St = s0} ∼ B (n1, p0) , Rt| {At−1 = a0, St = s1} ∼ B (n1, p1)

Rt| {At−1 = a1, St = s0} ∼ B (n2, p0) , Rt| {At−1 = a1, St = s1} ∼ B (n2, p1)

Rt| {At−1 = a2, St = s0} ∼ B (n1, p0) , Rt| {At−1 = a2, St = s1} ∼ B (n1, p1)

2.3 Utility (Cost) Functions

The following cost assumptions are made in the problem. An investigation cost I > 0
is incurred if the process is stopped in order to determine whether an assignable cause is
present. If the process requires repair, a repair (fix) cost F ≥ 0 is added to I to bring the
process back into control. The cost per hour with higher defective output is M > 0.

If the process shifts from s0 to s1 in time period t, the expected time of occurrence in
the interval is

τ =

(∫ (t+1)h

th
e−λuλ(u− th) du

)/(∫ (t+1)h

th
e−λuλ du

)
=

1− (1 + λh)e−λh

λ(1− e−λh)
.

This means that (h − τ) is the expected length of the process shift in the h hour interval,
so γM(h − τ) = M(h − γ/λ) is the expected cost of producing at the higher defect rate,
with the inspection cost I and repair cost F added when action a2 is taken. The fixed cost
of drawing a sample is c1, and the cost per unit for sampling is c2, so sampling costs of
either c1 + c2 · n1 or c1 + c2 · n2 are incurred depending on the action taken. An additional
c1+ c2 ·n1 is added in the first period assuming the first sample is size n1, and no sampling
cost is incurred in period T −1 because no sample is drawn in period T . These utility values
are consistent with the closely related prior research (Calabrese, 1995; Kooli and Limam,
2009, 2015; Cobb, 2021).

The utility function ut for period t is summarized in Table 1.
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Table 1: Utility (cost) values for the LIMID.
St At u1 uT−1

s0 a0 M(h− γ/λ) + 2 · (c1 + c2 · n1) M(h− γ/λ)
s0 a1 M(h− γ/λ) + 2c1 + c2 · (n1 + n2) M(h− γ/λ)
s0 a2 I +M(h− γ/λ) + 2 · (c1 + c2 · n1) I +M(h− γ/λ)
s1 a0 Mh+ 2 · (c1 + c2 · n1) Mh
s1 a1 Mh+ 2c1 + c2 · (n1 + n2) Mh
s1 a2 I + F +M(h− γ/λ) + 2 · (c1 + c2 · n1) I + F +M(h− γ/λ)

St At ut, t = 2, . . . , T − 2 uT
s0 a0 M(h− γ/λ) + c1 + c2 · n1 M(h− γ/λ)
s0 a1 I +M(h− γ/λ) + c1 + c2 · n2 M(h− γ/λ)
s0 a2 I +M(h− γ/λ) + c1 + c2 · n1 M(h− γ/λ)
s1 a0 Mh+ c1 + c2 · n1 Mh
s1 a1 Mh+ c1 + c2 · n2 Mh
s1 a2 I + F +M(h− γ/λ) + c1 + c2 · n1 Mh

2.4 Policies and Strategies

The strategy δ composed of policies δ1, . . . , δT−1 for A1, . . . , AT−1 has values δti,j,k for i =

0, 1, 2 and j = 0, 1, 2. The values for δt are defined for k = 0, . . . , n2 when i = 1 and for
k = 0, . . . n1 otherwise. The index i references the prior action a0, a1, or a2 taken at node
At−1, and the index j represents the selected value of the current action node At. The index
k references an observed number of defects in the current sample result Rt.

Each policy δt is composed of (6 · (n1 + 1)) + (3 · (n2 + 1)) elements. Suppose that for
n1 = 1 and n2 = 3, the policy δt contains the value 1 for{

δt0,0,0, δ
t
0,1,1, δ

t
1,0,0, δ

t
1,1,1, δ

t
1,1,2, δ

t
1,2,3, δ

t
2,0,0, δ

t
2,1,1

}
and values of zero for all other elements. For example, the strategy dictates with the value
δt0,1,1 = 1 that when At−1 = a0 and the current sample is Rt = r1 (one defective unit), the
action At = a1 should be selected and the next sample should be of size n2. For a prior
value of At−1 = a1, a sample size of n2 = 3 was employed and the policy specifies three
scenarios. If Rt = 0 (no defective units), the value δt1,0,0 = 1 recommends that the sample
size revert to n1 = 1. Values δt1,1,1 = δt1,1,2 = 1 specify that for an observation of one or two
defective units, the sample size of n2 = 3 should be maintained in the next period. If three
defectives are observed, action a2 should be pursued and the process should be investigated
and (if necessary) repaired (indicated by δt1,2,3 = 1).

2.5 Solution

The LIMID is solved by single policy updating (SPU) via message passing in a junction
tree (Cowell et al., 1999). The SPU algorithm proceeds by passing messages toward a root
node containing a decision variable and its parents from all other nodes in the junction tree.
As each root node for each decision variable, At, is encountered, the policy δt is updated.
A forward and backward pass through all the root nodes containing decisions constitutes
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one iteration of SPU. In a subsequent iteration, some policies δt can change to improve the
solution based on the best policy for the other decision variables. Iterations of SPU are
continued until the minimum total cost TC∗ is unchanged. This is the optimal solution
to the LIMID and the current strategy set δ is the best set of policies. Further details of
the solution algorithm are omitted here, but the reader can refer to Lauritzen and Nilsson
(2001) for complete details.

The LIMID solution procedure avoids the no forgetting assumption of traditional IDs
that would require the current action At to be a function of all prior actions A1, . . . , At−1 and
all prior sample and current sample results R1, . . . , Rt. Despite utilizing limited information,
the iterative nature of the SPU procedure allows the LIMID to develop decision policies
that provide expected utility values that are similar to a traditional ID model in many
cases. While there is some expected utility loss due to a lack of memory as compared to
traditional influence diagrams or the method employed by Kooli and Limam (2009), the
LIMID is more tractable when implemented for longer time horizons, as will be shown in
the next section.

For some production processes, the parameters T , n1, and n2 may be established opera-
tionally based on the judgment of a manager. In this situation, the LIMID is simply solved
to determine the best strategy and expected cost for those parameters. In other cases, an
economic design can be used to select T , n1, and n2 to minimize quality control costs. This
involves solving the LIMID for a wide range of values for each parameter to establish a set of
parameters that performs well. In this paper a scatter search approach is utilized (Laguna
and Mart́ı, 2003) to iteratively narrow the search for a desired parameter set, {T ∗, n∗

1, n
∗
2}.

Scatter search begins by selecting a set of random values for the decision variables within
reasonable operational bounds. For examples in the next section, the initial solutions in-
clude n1 and n2 in the range [1, 150] and T in the range [2, 2H]. The model is solved for the
initial parameter sets to create a reference set of solutions ranked by total cost. The param-
eter set is then refined to include convex combinations of those parameters in the previous
reference set that produced the lowest cost solutions, i.e. these are in the neighborhood of
the best solutions in the previous reference set. Some new randomly generated parameter
sets are added at each iteration to reduce the likelihood that the procedure becomes settled
on a local minimum. This continues until there is no change in the minimum total cost for
the best parameter set on two iterations.

3. Results

To examine the VSS LIMID method, the example case with parameters in Table 2 is solved
as a baseline scenario and changes in individual inputs are considered in sensitivity analysis.

Table 2: Parameters for baseline example case.

M I F c1 c2 λ p0 p1 He

100 500 250 1 1 0.01 0.05 0.20 100
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Table 3 displays the average hourly cost (AHC) for the LIMID model with a static sample
size along with the AHC for the VSS LIMID model, along with the optimal parameters for
each model. Note that the hourly interval between samples h∗ = H/T ∗. Results for time
horizons up to Hm = 300 are displayed. The term optimal in this case simply means
the best solution as determined by the SPU technique, not the best solution that could
be provided by a traditional influence diagram model, if it were in fact tractable. This is
discussed extensively in (Cobb, 2021). The rows corresponding to time horizons He and Hm

for baseline assumptions are shown in italics and bold font, respectively. The left panel of
Figure 2 displays the AHC values for production horizons between H = 40 and Hm = 300.

Table 3: Results for AHC in example case.

Static VSS Static VSS

H AHC n∗ T ∗ h∗ AHC n∗
1 n∗

2 T ∗ h∗ c2 AHC AHC

40 16.04 21 6 6.67 14.34 1 36 45 0.89 0.10 11.59 11.52
60 16.77 22 9 6.67 15.18 2 35 40 1.50 0.25 13.34 12.80
80 17.13 30 11 7.27 15.53 1 28 83 0.96 0.50 15.11 14.31
100 17.32 31 13 7.69 15.79 2 20 73 1.37 0.75 16.34 15.06
120 17.46 30 16 7.50 16.04 2 22 73 1.64 1.00 17.32 15.79
150 17.59 31 20 7.50 16.27 3 29 80 1.88 1.25 18.20 16.51
180 17.67 31 23 7.83 16.41 3 29 84 2.02 1.50 18.79 17.23
240 17.77 31 31 7.74 16.88 4 34 90 2.67 1.75 19.41 17.94
300 17.84 31 38 7.89 17.06 4 34 100 3.00 2.00 20.01 18.64
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Figure 2: Average hourly cost for LIMID models in example case for various production
horizons H and variable sampling costs c2.

The AHC increases with the length of the production horizon H because the process
starts in-control and there is a greater likelihood the process enters the out-of-control state
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more often for longer H. The VSS LIMID provides a lower AHC than the LIMID with
a fixed sample size for all time horizons, with larger savings occurring for shorter time
horizons.

The last two columns of Table 3 also show the sensitivity of the AHC in the two models
to the variable sampling cost parameter c2, all for time horizons of He = 100. When variable
sampling cost is very small, the static LIMID model has a very similar AHC to the VSS
model; however, as sampling becomes more expensive on a per unit basis, the VSS model
is able to provide a decision rule and sampling policy that significantly reduces the average
costs of quality. The right panel of Figure 2 shows the AHC values for each model in these
scenarios.

The policies for the baseline scenario with He = 100 are shown in Figure 3. Separate
elements of the policies are required for the scenarios where the system was operating in
At−1 = a0 and At−1 = a1. The state a0 involves drawing a small sample size of n1 = 2.
In the left panel of Figure 3, note that for t = 1 the policy dictates that the system will
always continue in state a0 to period t = 2. Similarly, the system will never deviate from
a0 after period t = 64. In all other periods, the system stays in a0 if r0t is observed, and
moves to state a1 and a larger sample size of n2 = 20 if 1 or 2 defectives are observed.
When At−1 = a1 was selected (see the right panel of Figure 3), the system moves back to
a0 if rkt < 2 for most of the production horizon, while At = a1 will be maintained when 2
or 3 defectives are observed. When 4 or more defectives are sampled, the system moves to
a2 and an investigation occurs. This policy holds until t = 63 when only a move from a0 to
a2 is recommended at r3,63 = 3. After t = 63, the system always returns to a0.

Figure 4 displays the policies that are determined for the case where the variable sam-
pling cost is c2 = 0.25 (right panel of Figure 2). The optimal sample sizes are n1 = 5 and
n2 = 52, and the decision rules suggest periodically relaxing and tightening the boundaries
for sample results that require a larger sample size or an inspection. This pattern provides
a balance between sampling cost and the other costs of quality.
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rkt

System Operating in At-1 = a0

10 20 30 40 50 60 70
Period (t)

1

2

3

4

rkt

System Operating in At-1 = a1

Figure 3: Policies for baseline case when system is operating in At−1 = a0 (left) and At−1 =
a1 (right).
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Figure 4: Policies for scenario where c2 = 0.25 when system is operating in At−1 = a0 (left)
and At−1 = a1 (right).

4. Comparison

This section provides a comparison of the VSS LIMID model to the four most closely related
models in the literature.

4.1 Comparison to Kooli and Limam (2009)

The Bayesian VSS model presented by Kooli and Limam (2009) is solved via dynamic
programming and enumerates the expected continuation cost associated with each potential
sample size at each sampling interval. The next sample size is selected based on these
calculations. Implementing the model in practice requires all of these continuation values
to be recalculated during the production horizon based on the up-to-date history of actions
and sample results. Kooli and Limam (2009) only implement the model for relatively short
production horizons, likely due to the computational complexity of the method.

The VSS LIMID was implemented for one of the cases in Kooli and Limam (2009) with
parameters and results shown below:

M I F c1 c2 λ p0 p1 H

100 100 600 10 0.30 0.01 0.05 0.20 120

VSS LIMID Bayesian VSS
n∗
1 n∗

2 T ∗ h∗ AHC T ∗ h∗ AHC

38 120 17 7.06 13.69 16 7.50 13.58

The Bayesian VSS has an average hourly cost that is about 0.8% lower than the VSS
LIMID. The examples in Kooli and Limam (2009) are primarily ones that have a relatively
high fixed sampling cost c1 and a low variable sampling cost c2. This scenario is likely to
be one (based for instance on evidence in Figure 2) where the VSS feature has the least
value and the hourly time between samples (and thus the number of sampling periods)
is likely to be low. The latter would be a more tractable scenario for the Bayesian VSS.
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Interestingly, when the VSS LIMID model was implemented, the decision rules typically
only recommended a larger sample size early in the production horizon, as the optimal n∗

1

was relatively large and proved to be adequate for most time periods.
The Bayesian VSS may be well-suited to short time horizons where sampling costs are

low, but carries the burden of a significant computational requirement during production
and may not scale well to longer production horizons.

4.2 Comparison to Kooli and Limam (2015)

The economically designed np control charts with variable sample sizes introduced by Kooli
and Limam (2015) are primarily structured to operate in processes with infinite production
horizons. This is due to the fact that selection of optimal parameters relies on analytical
formulas for total costs that are based on long-run expected values. These analytical solu-
tions are used to enumerate a large number of potential solutions to determine the optimal
sample sizes, time between samples, and control limits.

The VSS LIMID was implemented for one of the cases in Kooli and Limam (2015) with
parameters and results shown below:

M I F c1 c2 λ p0 p1 Hm

160 250 250 1 0.10 0.008 0.03 0.1153 375

VSS LIMID VSS np chart
n∗
1 n∗

2 T ∗ h∗ AHC n∗
1 n∗

2 h∗ AHC

71 91 120 3.13 10.13 72 103 3.27 10.20

Because the VSS np chart is designed for an infinite production horizon, the VSS LIMID
has been tested over the long production horizon of Hm = 375. There is a 95% probability
that the assignable cause occurs during that period of time, so this period is used to make
a reasonable comparison with the infinite horizon. The VSS LIMID average cost is lower
than the VSS np chart for this case. If the VSS np chart is implemented for a shorter time
horizon, the VSS LIMID strategy would likely adapt so that the average cost would be
lower, as illustrated in the left panel of Figure 2.

4.3 Comparison to Calabrese (1995)

The POMDP method of Calabrese (1995) utilizes a static sample size and is implemented
for relatively short time horizons. The comparison of the static LIMID with the POMDP
method is made extensively in Cobb (2021). In general, the static LIMID has average hourly
costs that are very similar (sometimes lower) to the POMDP and the computational time
is often significantly lower. Additionally, the LIMID (either the static or VSS version) does
not require additional calculations during the production horizon, whereas the POMDP
requires the updated probability that the system is in-control to be calculated after each
sample is collected.

For the baseline scenario in the previous section, the POMDP model provides an AHC
of 17.73 with a static sample size of n∗ = 13 and T ∗ = 27 for the He = 100 production
horizon. The computational time is 145 seconds. A VSS version of the POMDP method
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could be developed, but it seems unlikely that it would outperform the VSS LIMID in terms
of cost or computational burden, given the performance of the static version.

4.4 Comparison to Cobb (2021)

This comparison has been made directly in this paper and the reduction in average total
cost from applying the VSS feature to the LIMID is apparent in the results listed in Table 3.
Both the static and VSS methods can be implemented for both short and long time horizons,
with the VSS providing lower costs when changing the sample size is operationally feasible.
Neither method requires further calculations during the production horizon based on the
past history of actions and sample results.

Moving from the static to the VSS model does entail additional computational complex-
ity to determine the optimal sample size(s) and interval between samples. The baseline sce-
nario from the last section requires about 0.50 seconds to run inWolframMathematica® 13.0
on a computer with a 2.80 GHz processor with 16.0 GB of RAM. The VSS model requires
18 seconds of computing time for the same example. Employing the scatter search tech-
nique typically required evaluating about 60 parameter sets for the static model and 100
parameter sets for the VSS model.

4.5 Summary

The significance of the VSS LIMID model is that it provides improved quality control costs
to most of the previous models utilized for the production process introduced in Section 2.1.
This process involves a single assignable cause that shifts the percentage of defective items
produced. The only model that slightly outperforms the VSS LIMID model is the Bayesian
VSS model, although that model would likely be difficult to extend to longer production
horizons. Applying the LIMID in some form to other production processes, such as those
that are subject to more than one assignable cause, can be a topic of future research. The
next section mentions additional future opportunities to adapt LIMID models for SPC.

5. Future Research

The LIMID model can be extended to additional problems in quality control, including:

1. Variable sampling intervals – Varying the sampling interval based on current
sample results, either in place of or in additional to varying the sample size, is an
option to improve SPC models. A LIMID model could be offered as an alternative to
the variable sampling interval np control chart of Kooli and Limam (2015).

2. Attribute data on nonconformities – Some aspects of quality control are appro-
priately measured using data on the number of errors or nonconformities, as opposed
to data on the proportion of defective units. No economically designed or Bayesian
SPC models exist for this scenario. An alternative to the statistically designed c con-
trol chart of Epprecht et al. (2003) would be an interesting extension of the LIMID
in both the static and VSS scenarios.

3. Variable data – This paper has dealt with attribute data on the number of defectives
in a sample, but a wide range of SPC model exist for use with variable data measured
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on a continuous scale. Variable control chart techniques outlined by Nenes (2013)
would potentially be a point of comparison for new LIMID methods.
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