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Abstract

In this paper a modular approach to single-microphone source separation is proposed. A
probabilistic model for mixtures of observations is constructed, where the independent un-
derlying source signals are described by non-linear autoregressive models. Source separation
in this model is achieved by performing online probabilistic inference through an efficient
message passing procedure. For retaining tractability with the non-linear autoregressive
models, three different approximation methods are described. A set of experiments shows
the effectiveness of the proposed source separation approach. The source separation per-
formance of the different approximation methods is quantified through a set of verification
experiments. Our approach is validated in a speech denoising task.

Keywords: Kalman filtering; Message passing; Non-linear autoregressive models; Prob-
abilistic inference; Source separation.

1. Introduction

Source separation is a fundamental problem with the goal of extracting the constituent
sources from an observed signal. This problem underlies applications such as denoising,
where the observed signal constitutes a signal of interest and a noise signal. The field of
source separation is well-developed (Comon, 1994; Hong et al., 2004; Fevotte and Godsill,
2006; Erdogan, 2008; Rennie et al., 2010; Magron and Virtanen, 2018), and a wide variety of
methods have been developed to solve this problem. We constrain our scope to online source
separation: given current and previous observations y1:t composed of a signal of interest s1:t
and noise signal n1:t, the goal is to extract the samples st and nt. We follow the probabilistic
school of thought, as brilliantly presented by Knuth (2013). In this approach, a generative
model for the observations is constructed as a function of the constituent sources. Source
separation is then phrased as a probabilistic inference problem, where we aim to track
the latent constituent sources. This approach allows us to incorporate any available prior
information about the constituent sources to aid the source separation process.

Despite the elegance of this approach, it is often hard to find tractable inference solutions,
especially when more complicated source models are involved. Although many approximate
inference solutions exist (Beal, 2003; Minka, 2001; Dauwels et al., 2005), most of them suffer
from error-prone lengthy manual derivations of posterior updates. This reflects the need of
flexible source models that easily submit to (approximate) inference. This paper introduces
a modular and easily explainable source separation approach where the individual signals
are independently modeled by non-linear autoregressive models. However, extensions to ar-
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bitrary non-linear functions, such as neural networks, are trivial. Approximate probabilistic
inference then is enabled through linearization (Särkkä, 2013, Ch.5) or different versions
of the unscented transform (Julier and Uhlmann, 1997; Wan and Van Der Merwe, 2000;
Julier, 2002, 2003). With respect to earlier works (Wan and Nelson, 1997; Dutt et al.,
2021), we modularize our approach by phrasing inference as an efficient and automatable
message passing procedure that allows for the straightforward extension towards multiple
sources. Furthermore, we compare the different approximate inference solutions through
experiments.

In short, this paper proposes an online approach to single microphone-based source
separation using non-linear autoregressive models and makes the following contributions:

• We propose a modular probabilistic model for a signal mixture in Section 2, in which
the constituent sources are represented by non-linear autoregressive models.

• Online probabilistic inference in this model is realized in Section 3 through automated
message passing in a factor graph, leading to the separation of the constituent sources.

• Three approximation techniques for obtaining efficient and tractable inference in this
model with the non-linear state transitions are provided in Section 3.3.

• We verify the proposed methodology through a set of verification experiments and
compare the performance of the different approximation techniques in Section 4. Fur-
thermore, we apply the proposed model in a speech denoising task.

2. Model specification

Let y = [y1, y2, . . . , yT ]
⊤ ∈ RT denote a vector of T observations. Observation yt at index

t is modeled by the independent signal of interest st and noise signal nt. We assume the
joint distribution over y, s = [s0, s1, . . . , sT ]

⊤ and n = [n0, n1, . . . , nT ]
⊤ to be factorized as

p(y, s,n) = p(s0)p(n0)︸ ︷︷ ︸
prior

T∏
t=1

p(yt | st,nt)︸ ︷︷ ︸
mixing model

p(st | st−1)p(nt |nt−1)︸ ︷︷ ︸
state transition models

. (1)

The mixing model p(yt | st,nt) in (1) describes how the observation yt is formed from the
latent states st = [st, st−1, . . . , st−Ms+1]

⊤ ∈ RMs and nt = [nt, nt−1, . . . , nt−Mn+1]
⊤ ∈ RMn ,

where Ms and Mn represent both the lengths of the state vectors and the orders of the
non-linear autoregressive models. This mixing model is defined as

p(yt | st,nt) = N (yt | e⊤1 st + e⊤1 nt, σ2
y), (2)

where σ2
y ∈ R>0 denotes the observation noise variance and where e1 = [1, 0, . . . , 0]⊤ rep-

resents the first Cartesian unit basis vector of appropriate length. The inner product of st
and nt with this vector denotes the selection of the first entry as st = e⊤1 st.

The state transition models for the underlying signals st and nt are specified as

p(st | st−1) = N (st | gs(st−1), Σs), (3a)

p(nt |nt−1) = N (nt | gn(nt−1), Σn), (3b)
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Figure 1: A Forney-style factor graph representation of a single time slice of the probabilistic model of
Section 2. Probabilistic inference in this model corresponds to the source separation algorithm.
For efficient probabilistic inference, some elementary factor nodes are combined in compound
nodes, as denoted by the dashed boxes. The encircled numbers denote the messages correspond-
ing to the efficient message passing schedule. The messages 9 and 11 yield the solution to (5).

where gs(·) and gn(·) describe the non-linear autoregressive behavior of st and nt, respec-
tively. These functions are similarly defined as

gs(st) = [fs(st), st, st−1, . . . , st−Ms+2]
⊤ (4)

performing a unit delay with non-linear prediction fs(·). For demonstration purposes, the
non-linearities fs and fn in (4) are both represented by a multilayer perceptron throughout
this paper, as depicted in Figure 2. However, any non-linear function will suffice. The
parameters Σs and Σn describe the process noise covariance matrices. As g(·) predominantly
performs a unit delay, the state transition only models the process noise of the first element.
Therefore the covariance matrices are sparse and can be represented as Σs = σ2

se1e
⊤
1 , with

σ2
s ∈ R>0 denoting the variance of the non-linear prediction fs(·). Finally, the underlying

signals are initialized with Normal priors p(s0) and p(n0) as specified in Section 4.

Figure 1 shows the Forney-style factor graph (FFG) (Forney, 2001) of a single time slice
of the probabilistic model specified by (1)-(3). An FFG is an undirected graphical model
that visualizes the factorization of a function as a graph, where nodes and edges represent
factors and variables, respectively. An edge connects to a node only if the variable associated
with the edge is an argument of the node function. Throughout this paper we use FFGs
with notational conventions adopted from Loeliger (2004) to visualize probabilistic models.
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where

hi(x) = Wix+ bi
ϕi(x)j = max(lxj , xj)

Figure 2: Overview of non-linearity z = fθ(x) in the non-linear autoregressive model g as in (4). Through-
out the experiments of Section 4, f represents a multilayer perceptron. The values denote the
dimensionality of the (intermediate) variables. θ = {W1,W2,W3, b1, b2, b3} denotes the param-
eters of the model. The hyperparameter of the leakyReLU function is set to l = 0.1.

3. Probabilistic inference

3.1 Online state tracking

Separating the sources s and n from observations y using the probabilistic model of (1)-(3)
is phrased as a probabilistic inference task. Probabilistic inference concerns the computation
of the posterior marginal distributions in the generative model. Specifically, the goal is to
infer the posterior marginal distributions of the latent signals s and n given observations
y, also known as latent state tracking.

This paper focuses on online source separation, where we wish to infer the values of st
and nt given current and previous observations y1:t. Concretely, we are interested in comput-
ing the posterior distribution p(st,nt |y1:t). From this posterior distribution the marginal
posterior distributions p(st |y1:t) and p(nt |y1:t) can be extracted through marginalization.
The posterior distribution can be computed through a modified version of the Chapman-
Kolmogorov equation (Särkkä, 2013, Ch.4) as

p(st,nt |y1:t)︸ ︷︷ ︸
posterior

∝ p(yt | st,nt)︸ ︷︷ ︸
mixing model

∫
p(st−1,nt−1 |y1:t−1)︸ ︷︷ ︸

prior

p(st | st−1)p(nt |nt−1)︸ ︷︷ ︸
state transition models

dst−1dnt−1, (5)

where the mixing model and state transition models have already been specified in (2) and
(3), respectively. The prior distribution p(st−1,nt−1 |y1:t−1) is then recursively updated by
the posterior distribution p(st,nt |y1:t).

3.2 Message passing-based inference

Because of the assumed factorization in the generative model, the global integration of (5)
can be performed by smaller localized computations. The results of these computations are
called messages and are propagated over the edges of the graph. This procedure is known
as message passing. We choose this methodology because of its modularity, efficiency,
automatability and scalability (Loeliger et al., 2007; Cox et al., 2019). The sum-product
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message µ⃗(zj) (Kschischang et al., 2001) flowing out of some node f(z1, z2, . . . , zK) with
incoming messages µ⃗(z\j) is given by

µ⃗(zj) =

∫
f(z1, z2, . . . , zK)

∏
k ̸=j

µ⃗(zk) dz\j . (6)

We represent the edges by arbitrarily directed arrows in order to distinguish between forward
and backward messages propagating in or against the direction of an edge zj as µ⃗(zj) and
⃗µ(zj), respectively. The marginal distribution of variable zj can be computed from the

colliding messages as p(zj) ∝ µ⃗(zj) ⃗µ(zj).

From a message passing perspective, computing the result of (5) encompasses computing
the messages and products µ⃗(st) ⃗µ(st) and µ⃗(nt) ⃗µ(nt). Automating the message passing
procedure requires deriving the message passing computation rules of (6) for common factor-
message pairs. For almost all elementary factors in the probabilistic model of (1)-(3), as
shown in Figure 1, the computation rules have been derived in Loeliger et al. (2007). The
next subsection will elaborate on the missing message computation rules through the non-
linear state transition.

A naive message passing implementation yields sub-optimal computational efficiency.
Some messages represent multivariate Normal distributions and some nodes require partic-
ular parameterizations of these messages. As an example, the addition node accepts and
outputs messages with a mean-covariance parameterization, whereas the equality node ac-
cepts and outputs Normal messages in the canonical form. Converting between the different
parameterization is expensive as it requires matrix inversions. For improved computational
efficiency only messages with a mean-covariance parameterization are passed along the
graph. To allow for this, some pairs of factor nodes are combined in compound nodes as
illustrated in Figure 1, whose more efficient computation rules are specified in Loeliger et al.
(2007, Table 4). The message passing schedule for efficient inference is shown in Figure 1.
The messages 9 and 11 yield the solution to (5).

3.3 Approximate message passing

Probabilistic inference in the model of (1)-(3) through (5) requires propagating messages
with a Normal distribution through non-linear autoregressive state transition nodes. Specif-
ically, the computation of the messages 1 and 4 in Figure 1 involves computing

µ⃗(z) ∝
∫

δ(z − g(x))µ⃗(x)dx, (7)

where µ⃗(x) = N (x |µx,Σx) represents the messages 9 and 11 from the previous time step.
The outgoing message µ⃗(z) often does not belong to the exponential family of distributions
for non-linear functions g, leading to intractable inference in consecutive parts of the model.
To retain tractability, the integration of (7) needs to be approximated. Following are three
different approaches for approximating this integration: 1) linearization (Särkkä, 2013,
Ch.5), 2) the unscented transform (Julier and Uhlmann, 1997; Wan and Van Der Merwe,
2000) and 3) the scaled spherical simplex unscented transform (Julier, 2002, 2003).
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3.3.1 Linearization

If appropriate, the function g can be linearized using a first-order Taylor series expansion
around the mean of the incoming distribution according to Särkkä (2013, Ch.5) as

g(x) ≈ g (E[x]) + Jg (E[x]) (x− E[x]) , (8)

where E[·] is the expected value operator and Jg(·) denotes the Jacobian matrix of g. Based
on this linearization procedure the outgoing message µ⃗(z) in (7) can be determined as

µ⃗(z) = N
(
z | g(µx), Jg(µx)ΣxJg(µx)

⊤
)
. (9)

3.3.2 Unscented transform

Downsides of the linearization approach are that it requires access to the Jacobian matrix
of the non-linear function g and that the linearization assumption might not hold for highly
non-linear functions g. In Julier and Uhlmann (1997); Wan and Van Der Merwe (2000) the
unscented transform is proposed based on the observation that directly approximating the
result of (7) is easier than approximating the non-linear function. The unscented transform
is a deterministic sampling procedure with a pre-specified set of 2M + 1 weighted samples,
called sigma points, which capture the first- and second-order moment of the input distri-
bution. These sigma points are propagated through the non-linear function g and (7) is
approximated by a Normal distribution, based on the weighted sample mean and covariance
of the transformed sigma points. Table 1 gives an overview of the unscented transform.

3.3.3 Scaled spherical simplex unscented transform

Although the computational complexity of the unscented transform equals the computa-
tional complexity of the linearization approach (Wan and Van Der Merwe, 2000), it scales
linearly with the number of sigma points. Therefore it is advantageous to use as little sigma
points as possible whilst still capturing the first- and second-order moment of the input
distribution. In Julier (2003) the spherical simplex unscented transform is proposed which
only uses M+2 sigma points, located on a hypersphere with radius

√
M . The spread of the

sigma points in the original spherical simplex unscented transform potentially also captures
non-local effect of the non-linear function. In order to reduce this spread, the sigma points
can be rescaled according to the scaled unscented transform (Julier, 2002). Table 1 gives
an overview of the scaled spherical simplex unscented transform.

4. Experiments

All experiments1 have been performed using the state-of-the-art probabilistic programming
package ReactiveMP.jl2 (Bagaev and de Vries, 2021) in Julia (Bezanson et al., 2017).

4.1 Verification experiments

For verification of the proposed approach, three signals were generated: a square wave, saw-
tooth and chirp signal. These signals overlap each other in the frequency domain, limiting

1. All experiments are available at https://github.com/biaslab/PGM2022-SourceSeparationNAR.
2. ReactiveMP.jl is publicly available at https://github.com/biaslab/ReactiveMP.jl.
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Table 1: (left) An overview of the unscented transform (Julier and Uhlmann, 1997; Wan and Van
Der Merwe, 2000). (

√
·)i denotes the ith row of the matrix square root. The weights are de-

noted by Wi. α, β and κ denote the hyperparameters as in (Wan and Van Der Merwe, 2000).
(right) An overview of the scaled spherical simplex unscented transform (Julier, 2002, 2003). The
M + 2 sigma points Xi are iteratively generated, based on the weights Wi. Their scaled counter-
parts X ′

i and W ′
i are constructed using the scaling parameter c.

Unscented transform
Scaled spherical simplex
unscented transform

Incoming message

µ⃗(x) = N (x | µx,Σx)

Initialization

λ = α2(M + κ)−M

X0 = µx

Xi=

µx+
(√

(M + λ)Σx

)
i
i = 1, . . . ,M

µx−
(√

(M + λ)Σx

)
i
i = M+1, . . . , 2M

W
(m)
0 = λ/(M + λ)

W
(c)
0 = λ/(M + λ) + (1− α2 + β)

W
(m)
i = W

(c)
i = 1/(2M + 2λ) i = 1, . . . , 2M

Initialization

W0 ∈ [0, 1]

Wi = (1−W0)/(M + 1) i = 1, . . . ,M + 1

X 0
0 = 0, X 1

1 = −1/
√
2W1, X 1

2 = 1/
√
2W1

for j = 2, . . . ,M :

X j
i =



[
X j−1

0

0

]
for i = 0 X j−1

i
−1√

j(j+1)W1

 for i = 1, . . . , j 0j−1

j√
j(j+1)W1

 for i = j + 1

Scaling

W ′
i =

{
Wi/c

2 + 1− 1/c2 i = 0

Wi/c
2 i = 1, . . . ,M + 1

X ′
i = µx + c

√
ΣxXM

i

Transformation

Zi = g(Xi) i = 0, . . . , 2M

Transformation

Zi = g(X ′
i ) i = 0, . . . ,M + 1

Outgoing message approximation

µ⃗(z) ≈ N (z | µz,Σz)

µz =

2M∑
i=0

W
(m)
i Zi

Σz =

2M∑
i=0

W
(c)
i (Zi − E[z])(Zi − E[z])⊤

Outgoing message approximation

µ⃗(z) ≈ N (z | µz,Σz)

µz =

M+1∑
i=0

W ′
iZi

Σz =

M+1∑
i=0

W ′
i (Zi − E[z])(Zi − E[z])⊤

+ (1− c2)(Z0 − E[z])(Z0 − E[z])⊤
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the use of conventional filtering solutions. 2000 instances of each signal were generated with
a length of 1000 samples for varying amplitudes and phase delays. The first 1000 instances
of the signals were used for training the corresponding non-linear autoregressive models
of order Ms = Mn = 16 with the backpropagation algorithm using the Adam optimizer
(Kingma and Ba, 2014) for a mean squared error loss. The latter 1000 were combined to
form the observed signals under the mixing model of (2).

With the trained non-linear autoregressive models and the generated observed signals
the solution to (5) was computed using message passing-based inference for the various
approximation methods from Section 3.3. The unscented transform uses the default hyper-
parameters α = 1e− 3, β = 2 and κ = 0 as introduced in Wan and Van Der Merwe (2000).
The hyperparameters of the spherical simplex unscented transform are set to c = 1 and
W0 = 0.1. The latent state priors p(s0) and p(n0) were initialized to be uninformative with
a random mean vector and a diagonal covariance matrix with relatively large entries. The
observation noise variance was set to σ2

y = 10−10 and the process noise variance variables
σ2
s and σ2

n were set to the average mean squared error loss during training.

The performance of the different approximation methods from Section 3.3 was evaluated
based on the inferred signal of interest s and the actual underlying signal ŝ. For assessing
the performance we calculated the mean squared error (MSE), the average log-likelihood
(ALL) and the signal-to-noise ratio improvement (∆SNR), defined as

MSE =
1

T

T∑
t=1

∥E[st]− ŝt∥2, (10a)

ALL =
1

T

T∑
t=1

ln p(st = ŝt |y1:t), (10b)

∆SNR = 10 log10

∑T
t=1 ∥yt − ŝt∥2∑T

t=1 ∥E[st]− ŝt∥2
. [dB] (10c)

Table 2 reports the performance of the different approximation methods, averaged over
all 1000 generated observed signals. Figure 3 shows fragments of the true underlying and
inferred signal components of the inference result with the most median performance in
terms of MSE for the linearization approximation method.

As shown in Figure 3 the proposed source separation approach is capable of accurately
separating the constituent sources. From Table 2 we observe that the linearization approach
yields the best MSE for all different signals. In terms of ALL and ∆SNR there is no definitive
optimal approximation method.

4.2 Validation experiments

To validate the proposed source separation framework, we apply this methodology to a
speech denoising task. The experimental setup equals the one of Section 4.1. The speech
model gs is trained on 100 speech recordings of the LibriSpeech ASR corpus (Panayotov
et al., 2015), lasting 23 minutes in total. This dataset contains in total 1000 hours of 16 kHz
read English speech. The noise model gn is trained on 10 air conditioner noise recordings
of the Microsoft scalable noisy speech (MS-SNSD) Dataset (Reddy et al., 2019), lasting 9
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Table 2: Performance evaluation of the approximation methods in Section 3.3 based on the metrics in (10).
The mean performance is evaluated with respect to the signal of interest, which corresponds to
first waveform in the combination. The signal-to-noise ratio is expressed in decibels. The best
performing approximation method per metric and signal combination is depicted in bold.

Approximation
Linearization Unscented transform Spherical simplex

method

Metric MSE ALL ∆SNR MSE ALL ∆SNR MSE ALL ∆SNR

chirp - block 1.67e-1 -91.7 17.0 8.06e-1 -72.3 14.7 1.74e-1 -94.1 17.4
chirp - sawtooth 4.35e-1 -1.13 5.93 1.60e0 -2.38 4.09 4.39e-1 -2.38 5.81
sawtooth - block 4.45e-2 -7.24 20.4 1.88e0 -7.01 14.1 5.12e-2 -4.18 19.2

0 20 40 60 80 100 120 140 160 180 200 220 240

−5

0

5 inferred signal
true signal

inferred noise
true noise

0 20 40 60 80 100 120 140 160 180 200 220 240

−5

0

5

si
gn

al
an

d
no

is
e

0 20 40 60 80 100 120 140 160 180 200 220 240

−5

0

5

t

Figure 3: Fragments of the true underlying and inferred signal components for the different mixing com-
binations in the verification experiments of Section 4.1. The inference results achieving median
performance in terms of mean squared error for the linearization approximation method have
been selected here. The transparent areas denote the confidence intervals of ±σ from the mean.

minutes in total. This dataset contains a collection of 16 kHz clean speech files and a variety
of environmental noise files. Mixture signals are generated from different speech recordings
and alternate air conditioner noise recordings.

Probabilistic inference was performed using the scaled spherical simplex unscented trans-
form of Section 3.3, as this yielded the highest ∆SNR on average. The mixture, inferred
speech and underlying speech signals of the fragment with median ∆SNR performance is
shown in Figure 4. The input SNR was -0.16 dB and the obtained SNR improvement on
this fragment was 4.59 dB.

5. Discussion

The proposed source separation model of Section 2 in Figure 1 assumes an additive linear
observation model. However, for some applications the signal can be first warped using some
non-linear transform to a desired domain that might be better suited for the modeling of
the signal. This consequently requires a non-linear mixing model for performing the source
separation. Examples of non-linear mixing models for audio processing are given in Frey
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a) speech + airco
b) inferred speech
c) true speech

Figure 4: Experimental results of Section 4.2 with median performance in terms of ∆SNR. With an input
SNR of -0.16 dB an SNR gain of 4.59 dB was obtained.

et al. (2001); van Erp et al. (2021). However, care should be taken with these non-linear
mixing models as the approximations that are required for tractable inference (Hershey
et al., 2010; Radfar et al., 2006) might limit source separation performance and efficiency.

The authors have purposefully chosen for the simple architecture of the multilayer per-
ceptron in Figure 2 throughout the experiments, to highlight the source separation method-
ology, rather than the underlying neural network. Aware of the immense variety of alter-
native network architectures, we deem the exploration of this model space future research
in the scope of the proposed source separation framework.

The current source separation approach focuses on online filtering, where only informa-
tion from the past is available for predicting current state estimates. Depending on the
application, a (fixed-lag) smoothing operation might be desired for improved performance.
For common non-linear state transitions g only a forward message is defined, preventing ef-
ficient smoothing operations. However, computing the backward messages can be achieved
by enforcing g to be invertible as in van Erp and de Vries (2022), based on previous work
on normalizing flows (Rezende and Mohamed, 2016; Dinh et al., 2015).

6. Conclusion

This paper has introduced an explainable and modular probabilistic model architecture
for mixtures of observations. These observations are formed by their constituent sources,
which are independently modelled by non-linear autogressive models. The tracking of these
sources through probabilistic inference, as executed through efficient message passing, yields
a powerful filtering-based source separation algorithm that is suitable for real-time applica-
tions. Different approximate inference solutions are compared through a set of verification
experiments and the framework is effectively employed in a speech denoising task.
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