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Abstract

Score-based structure learning in Bayesian networks, where local structures in the graph
are given a score and one seeks to recover a high-scoring DAG from data, is an NP-hard
problem. While the general learning problem is combinatorial, the more restricted frame-
work of linear structural equation models (SEMs) enables learning Bayesian networks using
continuous optimization methods. Large scale structure learning has become an important
problem in linear SEMs and many approximate methods have been developed to address
it. Among them, feedback arc set-based methods learn the DAG by alternating between
unconstrained gradient descent-based step to optimize an objective function and solving a
maximum acyclic subgraph problem to enforce acyclicity. In the present work, we build
upon previous contributions on such heuristics by first establishing mathematical conver-
gence analysis, previously lacking; second, we show empirically how one can significantly
speed-up convergence in practice using simple warmstarting strategies.

Keywords: Bayesian networks; Structure learning; Linear structural equation models;
Convex optimization; Maximum acyclic subgraph.

1. Introduction

Bayesian networks are a class of probabilistic graphical models where the conditional inde-
pendencies between variables are expressed using a directed acyclic graph (DAG). We are
interested in the structure learning problem, that is, how to construct the DAG based on
data. We take a score-based approach to structure learning where every DAG is assigned
a score based on how well it fits to the data and one tries to find a DAG that optimizes
the score. Typically, the score decomposes into a sum of local scores that are computed for
node-parent set pairs. This yields a combinatorial optimization problem where one picks a
parent set for each node and tries to maximize the sum of the local scores while constraining
the resulting graph to be acyclic. This problem is known to be NP-hard (Chickering, 1996).

In this paper, we concentrate on linear structural equation models (linear SEMs) which
are a subclass of Bayesian networks. They are used to model continuous variables and the
value of a variable depends linearly on values of its parents. From the learning perspective,
linear SEMs simplify the optimization because the score function depends only on the arc
weights and not the node-parent set pairs. However, the structure learning problem remains
combinatorial due to the acyclicity constraint imposed to the graph.

Recently, Zheng et al. (2018) introduced a continuous acyclicity constraint that enables
learning SEMs with continuous optimization instead of combinatorial optimization. How-
ever, learning DAGs using the acyclicity function proposed in Zheng et al. (2018) proves
impractical in large scale settings owing to the complexity of the matrix exponential, which
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exhibits cubic time complexity and quadratic space complexity with respect to the number
of nodes. Various methods have been recently developed in order to circumvent this prob-
lem and enable learning large structures. As a rule, these methods avoid encoding acyclicity
with hard constraints and instead formulate alternative problems that can be solved with
lower complexity per iteration. We note however that these new problems remain largely
non-convex in nature and one cannot hope to find a global minimizer in general. In Yu
et al. (2021), a cyclic solution is first computed and then projected to the DAG space using
a novel characterization based on Hodge decomposition of graphs. In Zhu et al. (2021), the
hard constraint encoded by the acyclicity function is relaxed and an upped-bound on the
spectral radius of a non-negative adjacency matrix of the graph is derived instead. In Dong
and Sebag (2022), low-rank solutions are combined with an efficient approximation for the
computation of the gradient of the acyclicity function.

Alternatively, combining feedback arc set heuristics with continuous optimization schemes
has proved successful in learning large scale DAGs. Such methods consist in decoupling the
optimization of the objective function from acyclicity itself by alternating between fast
gradient-based optimization steps without acyclicity and projection of cyclic solutions to
“close” acyclic approximations; while Park and Klabjan (2017) greedily fit parameters of
a newly discovered acyclic structure at every step, instead Gillot and Parviainen (2022)
dynamically construct a sequence of convex objective functions penalized to remain in the
vicinity of a trail of acyclic solutions discovered online, resulting in better scalability but
losing theoretical guarantees on the convergence of their method.

The present paper has two contributions. The first contribution is theoretical. We show
that the ProxiMAS algorithm presented in Gillot and Parviainen (2022) converges under
certain conditions (Lemma 2, Theorem 3). We note that the conditions are stronger than
for the GD algorithm by Park and Klabjan (2017). Second, we analyse the convergence
of ProxiMAS empirically. We also show that clever warmstarting strategies can lead to
substantially faster convergence for feedback arc set heuristic-based structure learning.

2. Background

2.1 Linear Structural Equation Models and Bayesian Network Structure
Learning

Let V be a node set. Furthermore, let G = (V,A) be a DAG where A is the arc set. The
parent set of node v in G is denoted by Av.

Formally, a Bayesian network is a pair (G,Θ) where its structure G is a DAG and Θ
are its parameters. The joint distribution factorizes as follows:

P (V ) =
∏
v∈V

P (v|Av, θv)

where θv are parameters of the conditional distribution of v given its parents.

Linear SEMs are a special case of Bayesian networks. To specify a model, we have
a weight matrix W ∈ Rd×d, where d is the cardinality of the node set V . The weight
matrix specifies both the structure and parameters of the Bayesian network. Specifically,
W (i, j) ̸= 0 entails there is an arc going from i to j in the DAG. Given a d-dimensional
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data vector x, a linear SEM can be written as

x = xW + ϵ

where ϵ is a d-dimensional error vector. The elements of ϵ are independent. The data
consists of n such samples x, forming a data matrix X ∈ Rn×d. We note that when the
errors are Gaussian, linear SEMs encode multivariate Gaussian distributions.

To learn a linear SEM, we need to constrain W to represent an acyclic graph. Fur-
thermore, one typically uses the least squares loss and adds a regularization term inducing
sparsity in the structure. Thus, the objective function in structure learning becomes

argmin
W

1

2n
||XW −X||2 + λg(W ) s.t. W is acyclic (1)

where ∥·∥ is the Frobenius norm and g(W ) is for regularization, whose strength is controlled
by the hyperparameter λ>0.

2.2 Feedback Arc Set-Based Structure Learning

At a general level, feedback arc set-based methods learn a DAG (under the linear SEMs
framework) by iteratively repeating the following steps:

• Given an acyclic graph, find a graph (possibly cyclic) which is better in terms of the
objective function value.

• Given a cyclic graph, find a close acyclic graph by approximately solving a maximum
acyclic subgraph instance.

In particular, these methods entirely decouple acyclicity from the optimization process
itself, via the integration of (weighted) maximum acyclic subgraph (MAS) problems, whose
definition we recall now: given a directed graph G = (V,E) and a weight function w(e)
that assigns a weight for each arc e ∈ E, the goal is to find an acyclic graph G′ = (V,E′)
such that E′ ⊂ E and

∑
e∈E′ w(e) is maximized. The dual problem is called the feedback

arc set (FAS) problem: given a directed graph G = (V,E) and a weight function w(e), the
goal is to find an arc set E′′ ⊂ E such that G′′ = (V,E \ E′′) is acyclic and

∑
e∈E′′ w(e) is

minimized. Given a cyclic graph G as input, it is well known that G′ is an optimal solution
of MAS if and only if G \ G′ is an optimal solution of FAS. Moreover, both problems are
NP-hard (Karp, 1972).

Intuitively, using the maximum acyclic subgraph problem in order to learn linear SEMs
DAGs is sensible, in that given any acyclic solution to linear SEMs, one can always extend
this solution into a tournament (a dense acyclic graph) having the exact same score, by
completing the solution with zero-weight arcs. Unlike traditional approaches that involve
a smooth characterization of acyclicity (Zheng et al., 2018; Ng et al., 2020; Yu et al., 2021;
Zhu et al., 2021; Dong and Sebag, 2022), feedback arc set-based methods also offer the clear
advantage that they return strictly acyclic solutions, in the sense that one never needs to
threshold a solution as a form of postprocessing in order to recover a DAG.

Two variants have been studied so far. In Park and Klabjan (2017), the authors propose
the GD algorithm which works by repeating the following steps:
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1. Fix the structure of the last obtained acyclic solution, then fit the linear SEMs objec-
tive constrained by this structure to get a new fitted acyclic solution.

2. Make an unconstrained optimization step on the linear SEMs loss at the previously
obtained fitted acyclic solution to get a new cyclic solution.

3. Project the previously obtained cyclic solution to its maximum acyclic subgraph ap-
proximation to get a new acyclic solution.

The key design choice in GD lies in the fact that unconstrained optimization steps are only
performed after a newly found structure has been fitted with respect to the linear SEMs
objective. From a theoretical perspective, this leads to a simplified convergence analysis
and GD is guaranteed to converge in a fix number of iterations under mild conditions (see
(Park and Klabjan, 2017), Lemma 1). On the practical side however, the GD algorithm
“greedily” explores the search space which can lead to overfitting and incurs solving a
LASSO subproblem for every node in the graph at every iteration, heavily impacting the
scalability of the algorithm. In Gillot and Parviainen (2022), an alternative approach is
proposed that would fix the scalability concern observed in GD. This new variant changes
steps 1 and 2 from GD (step 3 is left unchanged) as follows:

1’. Construct a new objective function as the sum of the linear SEMs loss plus a least-
squared term penalizing deviation from the last obtained acyclic solution.

2’. Make an unconstrained optimization step on the previously constructed objective
function to get a new cyclic solution.

In other words, this second approach jumps from an acyclic structure to another, with-
out fitting these structures to optimality. As a trade-off, the optimization process now
evolves dynamically, making a convergence analysis less straightforward (and such analy-
sis is presently missing, to the best of our knowledge). The pseudocode of this variant is
described in Algorithm 1.

Algorithm 1 (Gillot and Parviainen, 2022)

Input: X∈Rn×d, λ > 0, µ > 0
1: W̃0,W0 = 0d×d

2: for 1 ≤ k ≤ . . . do
3: New objective function: ϕk :W 7→ 1

2n∥XW −X∥2 + µ
2∥W −Wk−1∥2 + λ∥W∥1

4: Optimization step: W̃k = step(ϕk, optimizer)

5: MAS projection: Wk = MAS
(
W̃k

)

In short, the algorithm keeps track of both cyclic and acyclic solutions, represented
respectively by W̃k and Wk. At every iteration, a new objective function is constructed: let
f :W 7→ 1

2n∥XW−X∥2 and g :W 7→ λ∥W∥1 represent the linear SEMs loss and the sparsity
inducing penalization term respectively; let fk : W 7→ f(W ) + µ

2∥W −Wk−1∥2 represent
the linear SEMs loss penalized to remain in the vicinity of the previously discovered acyclic
structure; then the new objective function is ϕk = fk + g, where both fk and g are convex,
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the fk are differentiable and their gradient share the same optimal Lipschitz constant L =
1
n∥X

tX+nµId∥∗ (where ∥·∥∗ is the spectral norm). From a practical standpoint, this means
that one can exploit the stationary properties of the ϕk in order to make fast progress with
a proximal gradient-based optimizer, though Algorithm 1 can embed instead any gradient-
based first-order optimizer. The authors dub the former ProxiMAS and the latter OptiMAS.
We note that while the objective functions ϕk are all convex, the overall optimization scheme
itself remains largely non-convex, in that every function ϕk carries structural information
which can evolve in a non-convex fashion from an iteration to another. This structural
information is encapsulated within the acyclic solutions Wk. In order to construct them a
feedback arc set heuristic is used, which at every iteration k constructs a topological order πk
from the cyclic solution W̃k; the acyclic projectionWk is obtained by nullifying those weights
in W̃k corresponding to feedback arc set arcs (with respect to πk). Both Park and Klabjan
(2017) and Gillot and Parviainen (2022) make use of a variant of the greedy feedback arc set
heuristic originally presented in Eades et al. (1993). More specifically, this variant iteratively
constructs a topological order from its last/rightmost up to its first/leftmost element. A
node is greedily selected if it has the smallest sum of incoming squared weights among the
remaining nodes. In other words, this heuristic treats forward arcs (with respect to the
constructed topological order) as feedback arc set arcs. It is described in Algorithm 2.

Algorithm 2 Greedy feedback arc set heuristic

Input: W̃ ∈Rd×d
1: V1 = {0, . . . , d− 1}, π = 0d×1

2: for 1 ≤ r ≤ d do
3: π[−r] = argmin

j∈Vr

∥∥W̃ [:, j]
∥∥2
Vr\{j}

4: Vr+1 = Vr \ π[−r]
5: return π

3. Convergence Analysis

Minimizing a composite convex function is a standard problem in convex analysis: let
ϕ := f + g : U 7→ R denote a composite convex function on a convex open set U ⊂ Rm such
that: f and g are convex on U , f is differentiable and its gradient is Lipschitz-continuous
with constant L on U . Then it is well known that the non-accelerated proximal gradient
descent optimizer generating the sequence (xk)k defined as

xk = argmin
x∈U

{
γ−1
k
2

∥∥x−
(
xk−1 − γk∇f(xk−1)

)∥∥2 + g(x)
}

where 0 < γk ≤ L−1 (2)

achieves O
(
1
k

)
convergence rate in function value (where k is the number of iterations)

(Beck and Teboulle, 2009a). A key aspect of the convergence analysis is to show that one
in fact always has (see for instance (Beck and Teboulle, 2009a), Lemma 1.6):

0 < γk ≤ L−1 =⇒ ϕ(xk) ≤ ϕ(xk−1)−
γ−1
k
2 ∥xk − xk−1∥2, (3)

that is the proximal gradient descent update generates a sequence guaranteed to decrease
the objective function value. Algorithm 1 equipped with the same convex optimizer subtly
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differs from this framework, in that at every iteration a convex descent step is performed
on a new composite convex function ϕk = fk + g: this describes a dynamic system and the
notion of optimal solution is ill-defined, thus the O

(
1
k

)
convergence rate in function value

is lost. In the rest of this section, by ProxiMAS we refer to Algorithm 1 equipped with
both Algorithm 2 for the FAS heuristic and the non-accelerated proximal gradient descent
optimizer described above, i.e. ProxiMAS makes convex descent steps of the form:

W̃k = argmin
W∈Rd×d

{
γ−1
k
2

∥∥∥W−
(
W̃k−1−γk∇fk

(
W̃k−1

))∥∥∥2+λ∥W∥1
}

where 0 < γk ≤ L−1, (4)

where all fk have Lipschitz-continuous gradient with the same constant L. We aim to derive
a set of conditions such that ProxiMAS converges to a fixed acyclic structure in a finite
number of iterations, that is the acyclic solutionsWk have the same support, or equivalently
the topological orders πk constructed by Algorithm 2 are the same. Lemma 1 provides a
necessary condition, agnostic from the choice of the optimizer (in Algorithm 1: line 4):

Lemma 1 Let
(
W̃k

)
k
, (Wk)k and (πk)k respectively denote the sequence of cyclic solutions,

acyclic solutions and topological orders in Algorithm 1. Assume topological orders stabilize,
i.e. ∃k1 : ∀k ≥ k1, πk = π. Then the following convergence condition necessarily holds:

∃k0 : ∀k ≥ k0,
∥∥W̃k −Wk

∥∥ ≤
∥∥W̃k −Wk−1

∥∥. (5)

Proof Notice that
∥∥W̃k−Wk

∥∥2 ≤ ∥∥W̃k−Wk−1

∥∥2 ⇐⇒
∥∥Wk−Wk−1

∥∥2 ≥ 2
〈
W̃k−Wk,Wk−1

〉
.

Assuming that for large k, πk = π, one must then have
〈
W̃k −Wk,Wk−1

〉
= 0. Indeed,

non-zero values in W̃k −Wk must correspond to forward arcs whereas non-zero values in
Wk−1 must correspond to backward arcs (both with respect to π for large enough k).

In order to get the convergence of acyclic solutions Wk, we must first ensure we get the
convergence of cyclic solutions W̃k. We stress that by convergence we imply toward a local
extremum and that converging does not guarantee good performance of found solutions,
that is we are concerned with the stability of ProxiMAS. We prove the following:

Lemma 2 Let
(
W̃k

)
k
, (Wk)k and (γk)k respectively denote the sequence of cyclic solutions,

acyclic solutions and learning rates in ProxiMAS. Assume the learning rate decreases with
rate O

(
1
kα

)
where α > 2, and assume the convergence condition from Lemma 1 holds:

∃k0 : ∀k ≥ k0,
∥∥W̃k −Wk

∥∥ ≤
∥∥W̃k −Wk−1

∥∥. Then W̃k admits a convergent subsequence.

Proof Notice the ϕk have stationary properties (composite convex functions, same optimal
Lipschitz constant L for the gradient of smooth components) hence Equation 3 holds for

every ϕk at step k: ∀k ≥ 1, 0 < γk ≤ L−1 =⇒ ϕk
(
W̃k

)
≤ ϕk

(
W̃k−1

)
− γ−1

k
2

∥∥W̃k − W̃k−1

∥∥2.
Now, by definition: ϕk

(
W̃k−1

)
= ϕk−1

(
W̃k−1

)
+ µ

2

(∥∥W̃k−1 −Wk−1

∥∥2 − ∥∥W̃k−1 −Wk−2

∥∥2).
Due to the convergence condition, we thus get ϕk

(
W̃k

)
≤ ϕk

(
W̃k−1

)
≤ ϕk−1

(
W̃k−1

)
for large

k, implying the (non-negative) sequence
(
ϕk

(
W̃k

))
k
converges to a limit l. Furthermore,

we can now write that for large k,
γ−1
k
2

∥∥W̃k − W̃k−1

∥∥2 ≤ ϕk−1

(
W̃k−1

)
− ϕk

(
W̃k

)
. We then

use the fact that the right-hand side in the previous inequality is a telescopic term, along
with ϕk

(
W̃k

)
−→
k→+∞

l, to deduce that the infinite series
∑

k γ
−1
k

∥∥W̃k − W̃k−1

∥∥2 converges;
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necessarily, γ−1
k

∥∥W̃k − W̃k−1

∥∥2 = o(1) 1 holds, which in turn implies
∥∥W̃k − W̃k−1

∥∥ =

O
(√
γk
)
. Now by assumption

√
γk = O

(
1

kα/2

)
where α > 2, hence

∥∥W̃k − W̃k−1

∥∥ = O
(

1
kβ

)
where β > 1 such that the infinite series S :=

∑
k

∥∥W̃k − W̃k−1

∥∥ converges. The triangular
inequality finally yields:

∀K,
∥∥W̃K − W̃0

∥∥ =
∥∥∑

k≤KW̃k − W̃k−1

∥∥ ≤
∑

k≤K
∥∥W̃k − W̃k−1

∥∥ ≤ S < +∞,

therefore sup
k

∥∥W̃k

∥∥ < +∞. The Bolzano-Weierstrass theorem concludes the proof.

We are now ready to present our main result:

Theorem 3 Let
(
W̃k

)
k
and (πk)k respectively denote the sequence of cyclic solutions and

topological orders in ProxiMAS. Assume
(
W̃k

)
k
admits a converging subsequence: W̃∗ :=

lim
k→+∞

(
W̃ψ(k)

)
k
. Define π∗ to be the topological order constructed by Algorithm 2 given W̃∗

as input and assume for all r ∈ [1, d], Algorithm 2 makes a strictly optimal decision when

constructing π∗[−r] (i.e. argmin in Algorithm 2: line 3 is strict at every step r given W̃∗ as
input). Then the topological orders constructed by ProxiMAS in the subsequence ψ stabilize
after a finite number of iterations: ∃k′ : ∀k ≥ k′, πψ(k) = π∗.

Proof idea The proof is technical and revolves around a similar argument as in Park and
Klabjan (2017): Lemma 1. Due to space constraints, we leave out the full proof.

We note that the assumption in Theorem 3 is mild: although one never has access to the
limit of a converging subsequence, arc weights are continuous thus Algorithm 2 easily makes
strictly optimal choices. However, columns of zeros can occur in practice (e.g. when learning
sparse structures), in which case convergence cannot be guaranteed. We also comment on
Lemma 2’s assumptions: the convergence condition from Lemma 1 ensures feedback arc set
costs eventually become less than the distance between past acyclic solutions and new cyclic
solutions; the learning rate must decrease sufficiently fast which can deteriorate the quality
of found solutions. These two assumptions are not needed in the theoretical convergence of
GD (Park and Klabjan, 2017), meaning the theoretical convergence of ProxiMAS (Gillot
and Parviainen, 2022) is weaker. This was expected since unlike GD, ProxiMAS does not
solve LASSO subproblems at every iteration.

4. Experiments

We now conduct an empirical study of feedback arc set-based heuristics for linear SEMs.
This study is divided into three experiments. First, we empirically validate the convergence
analysis of ProxiMAS by investigating the stability of the method in various settings; second,
we assess the influence of the MAS penalization hyperparameter µ with different convex
optimizers in ProxiMAS; third, we compare different warmstarting strategies in order to
speed-up the practical convergence of feedback arc set-based heuristics.

1. If kγ−1
k

∥∥W̃k − W̃k−1

∥∥2
has a limit in R+ ∪{+∞}, one in fact has γ−1

k

∥∥W̃k − W̃k−1

∥∥2
= o

(
1
k

)
(due to the

divergence of the harmonic series); in that case γk = O
(

1
kα

)
where α > 1 suffices for Lemma 2 to hold.
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4.1 Setup

We consider a setup similar to that found in Zheng et al. (2018). Data generation is as
follows: we start by generating an undirected graph with d nodes from two classes of random
graphs, namely Erdős-Rényi (“ER”) and scale-free (“SF”). Assuming the graph is sampled
to have average degree δ, we refer to this graph as “ERδ” (respectively “SFδ”). A random
permutation is then sampled and assigned to the graph which yields a DAG. Next, arc
weights W are uniformly sampled in the range [−2,−0.5] ∪ [0.5, 2]. The last step is to
generate linear SEMs samples X=E(I −W )−1, where E ∈ Rn×d represents n noise samples,
with n=0.1×d (low sample count) or n=10×d (large sample count). We restrict E to be
generated from Gaussian noise only and study both the equal variance setting (“EV”: all σ
equal 1.0) and the non-equal variance setting (“NV”: all σ uniformly sampled in [0.5, 1.5]).
In all considered experiments, 20 instances are randomly generated as described above; we
represent variance in our figures with shaded regions.

We always fix the sparsity-inducing hyperparameter λ to 0.1, as in Gillot and Parviainen
(2022). The number of iterations allowed for tested methods is always set to ten times the
number of nodes (e.g. 10000 iterations when d=1000). Every 100 iterations a snapshot is
recorded and different metrics are extracted, such as the loss (Equation 1) of the current
acyclic solution and its average precision with respect to the true DAG (Markov equivalence
is ignored). We consider as well metrics to assess the convergence of tested heuristics,
such as: the order matching metric which gives the percentage of matching nodes in two
consecutive topological orders constructed by Algorithm 2; the convergence condition metric
which evaluates the quantities

∥∥W̃k−Wk

∥∥−∥∥W̃k−Wk−1

∥∥ (remember that these quantities
must remain negative after a finite number of iterations to guarantee structural convergence,
see Lemma 1). Both the order matching and the convergence condition metrics are averaged
over the past 100 iterations to get smoother estimates. Implementation is based on pytorch
1.10 and experiments were run on a cluster with Intel Xeon-Gold 6138 2.0 GHz / 6230R
2.1 GHz CPU cores. Table 1 lists the hyperparameters for each experiment. To save space
we only show a subset of all figures.

Exp d δ µ Convex opti Const lr % Cyclic % Convex %

1 1000 1, 2, 4 10δ I, F 0, 50, 100 0 100

2 1000 4 10i, 1 ≤ i ≤ δ I, F, G, N 100 0 100

3 2000 4, 8 10δ F 100 0, 50 0, 20, . . . , 100

Table 1: Experiments hyperparameters (I: ISTA; F: FISTA; G: Greedy FISTA; N: Nesterov)

4.2 Experiment 1

In the first experiment we consider the classical iterative shrinkage-thresholding algorithm
(ISTA) implementing in closed-form Equation 2 and its well known accelerated variant
FISTA (Beck and Teboulle, 2009b), with different learning rate strategies. The learning rate
is implemented to decrease with rate 1

k1.001
, but remains constant for x% of the total number

of iterations before decreasing (x varies as described in Table 1: column “Const lr %”). Fig-

8



Convergence of FAS-Based Heuristics for Linear SEMs

ure 1 illustrates Experiment 1. Looking at the average precision curves, clearly ProxiMAS
stabilizes once the learning rate starts decreasing (orange curves). When applied too early,
decrease in learning rate hurts performance (pink curves). Comparing the optimizers, ISTA
is a much slower learner than FISTA and fails to learn denser graphs (δ=4). Looking at
the convergence condition metric, a decreasing learning rate yields infinitesimal quantities∥∥W̃k −Wk

∥∥ −
∥∥W̃k −Wk−1

∥∥ for ISTA. With constant learning rate (teal curves) FISTA

learns fast and eventually satisfies the convergence condition
∥∥W̃k −Wk

∥∥ ≤
∥∥W̃k −Wk−1

∥∥.
Experiment 1 suggests that ProxiMAS is stable in practice: even when the convex optimizer
is accelerated, the learning rate is constant and the convergence condition from Lemma 1
does not exactly hold, ProxiMAS reaches a performance plateau.

Convergence condition metric Average precision

Figure 1: Experiment 1: learning rate policy varies (d=1000, n=10000, NV).

4.3 Experiment 2

In the second experiment we compare the behaviour of various convex optimizers with
respect to the hyperparameter µ controlling the strength of the MAS penalization terms. In
addition to the classical ISTA and FISTA optimizers, we consider the Greedy FISTA variant
described in Liang et al. (2022) that relies on restarting. We consider as well the Nesterov
variant outlined in Nesterov (2014) (refer to “Constant Step Scheme, III”) which unlike
aforementioned optimizers exploits the fact that the objective functions ϕk are µ-strongly
convex rather than just convex. We focus on denser graphs (δ=4) for which obtaining good
solutions is challenging. Figure 2 illustrates Experiment 2. We notice that no matter the
choice of µ, ISTA satisfies the convergence condition but fails to learn anything significant.
Both FISTA and its greedy variant display similar behavior and performance as they learn
significantly better solutions when µ is set high. This explains the lower performance of
ProxiMAS in Gillot and Parviainen (2022) for denser graphs (δ=4) since the authors used
FISTA with µ = 20 in all experiments. As a rule, we observe that the larger the µ the
more the convergence condition

∥∥W̃k −Wk

∥∥ ≤
∥∥W̃k −Wk−1

∥∥ is satisfied. Interestingly, the
behavior of the Nesterov optimizer is opposite to that of FISTA: it learns better DAGs when
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µ is set smaller. Our hypothesis is that since it accounts for the µ-strong convexity of the
ϕk objectives, it optimizes too well the MAS penalization terms µ

2∥W −Wk−1∥2, preventing
progress due to new cyclic solutions W̃k remaining too close to last acyclic solutions Wk−1.

Convergence condition metric Average precision

Figure 2: Experiment 2: convex optimizer and µ vary (d=1000, n=10000, NV).

4.4 Experiment 3

In the third experiment, we investigate different warmstarting strategies in order to speed-
up practical convergence of FAS-based heuristics. A first form of warmstarting consists in
presolving Algorithm 1 without enforcing acyclicity (⇐⇒ µ=0); a second form is to first use
a convex optimizer, then use a non-convex one. The hyperparameter “Cyclic %” controls
the ratio of iterations dedicated to “cyclic presolving”; “Convex %” controls the ratio of
iterations (excluding cyclic presolving) that use the FISTA optimizer before swapping for the
adaptative optimizer Adam (Kingma and Ba, 2014) (see Table 1). For instance, assuming
20000 iterations in total, Cyclic %=50 and Convex %=20 means cyclic presolving occurs up
to iteration 10000, FISTA is used up to iteration 12000, after which we use Adam. Figure 3
illustrates Experiment 3. Based on the empirical study in Gillot and Parviainen (2022),
cyclic presolving is ideal when learning very sparse DAGs (δ≤ 2). Experiment 3 suggests
that when δ ≥ 4, an hybrid optimizer strategy yields superior performance boost. These
boosts are more pronounced when both the number of nodes d and the number of samples
n are sufficiently large. We suspect the non-linear nature of Adam makes it efficient at
learning complex structures, but the non-differentiability of the ϕk in Algorithm 1 could
explain why Adam benefits from warmstarting instead of starting from the zero matrix.

5. Discussion

We have studied theoretical convergence and demonstrated that FAS-based heuristics as
presented in Gillot and Parviainen (2022) with a non-accelerated convex optimizer have

10



Convergence of FAS-Based Heuristics for Linear SEMs

Average precision
n = 200 n = 20000

Figure 3: Experiment 3: warmstarting strategy varies (d=2000, NV).

provable structural convergence (of subsequences) in a finite number of iterations, albeit a
weaker form than in Park and Klabjan (2017). More specifically, additional assumptions are
necessary, in the form of a) a learning rate decreasing sufficiently fast and b) a convergence
condition ensuring feedback arc set costs eventually become less than the distance between
past acyclic solutions and new cyclic solutions. Our empirical study provides evidence that
these assumptions are mild: in practice, FAS-based heuristics are sufficiently stable in that
they tend to reach a performance plateau even with constant learning rate and using an
accelerated convex optimizer, thus one can decrease the learning rate only at a later stage,
as a safeguard. Moreover, our study suggests that setting the hyperparameter µ sufficiently
high helps satisfying the convergence condition, especially when learning denser acyclic
structures. Finally, we investigated different forms of warmstarting strategies to speed-
up the practical convergence of FAS-based heuristics. We uncovered an interesting effect,
in that an hybrid optimizer strategy (convex optimizer followed by non-convex optimizer)
consistently provides tangible acceleration when learning sufficiently dense and large DAGs.
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