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Abstract

Learning the graphical structure of Bayesian networks is key to describing data generat-
ing mechanisms in many complex applications and it poses considerable computational
challenges. Observational data can only identify the equivalence class of the directed
acyclic graph underlying a Bayesian network model, and a variety of methods exist to
tackle the problem. Under certain assumptions, the popular PC algorithm can consistently
recover the correct equivalence class by reverse-engineering the conditional independence
(CI) relationships holding in the variable distribution. Here, we propose the dual PC
algorithm, a novel scheme to carry out the CI tests within the PC algorithm by leveraging
the inverse relationship between covariance and precision matrices. By exploiting block
matrix inversions we can efficiently supplement partial correlation tests at each step with
those of complementary (or dual) conditioning sets. The multiple CI tests of the dual
PC algorithm proceed by first considering marginal and full-order CI relationships and
progressively moving to central-order ones. Simulation studies show that the dual PC
algorithm outperforms the classic PC algorithm both in terms of run time and in recovering
the underlying network structure, even in the presence of deviations from Gaussianity.

Keywords: Bayesian Networks; Graphical Models; Directed Acyclic Graphs; Structure
Learning; PC Algorithm.

1. Introduction

Understanding and modelling the relationships among a set of random variables remains a
central question in statistics. Probabilistic graphical models compactly describe a joint prob-
ability distribution and subsequently enable inferences about features of interest. Bayesian
networks (BNs) are a particular class of probabilistic graphical models that employ directed
acyclic graphs (DAGs) to describe the set of informational dependencies among variables
(Pearl, 2009). Every node of the graph indicates a variable and edges between pairs of nodes
encode conditional independence (CI) relations among the variables. All the nodes with an
edge directed towards a certain variable X in the graph G constitute the parent set Pa(X)
of X. Consider a set of random variables X = {X1, ... , Xn}. A BN (Pearl, 1988; Koller
and Friedman, 2009) is a pair ⟨G, P ⟩ of a DAG G and a joint probability distribution P ,
where P factorizes according to G into a product of conditional probability distributions:
P (X) =

∏n
i=1 p(Xi|Pa(Xi)). When the graph G reflects all and only the CI relationships

holding in the distribution P they are faithful to each other (Spirtes et al., 1993). Aiming
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to imitate real-world data generating processes, BNs find application in a wide array of
diverse fields, such as genomics (Friedman et al., 2000; Friedman, 2004; Kuipers et al., 2018),
psychology (Moffa et al., 2017, 2021; Bird et al., 2018), text classification (de Campos and
Romero, 2009), social sciences (Elwert, 2013) and epidemiology (Neil et al., 2020).

1.1 Structure Learning

Structure learning in BNs refers to the task of estimating their underlying graph G from a
collection of observed realizations of the random vector X = {X1, ... , Xn}. The number of all
possible DAGs grows super-exponentially with the nodes n (Robinson, 1977), and recovering
the network structure from observational data is NP-hard (Chickering, 1996). In particular,
imposing the global acyclicity constraint constitutes a computational bottleneck. Given
its practical relevance and the computational challenge, structure learning BNs is a very
active area of research with new algorithms in continuous development. For a comparative
study and an overview of well-established algorithms, we refer the reader to Constantinou
et al. (2021) and Rios et al. (2021). Structure learning algorithms for BNs fall into two
main categories: constraint- or score-based. Constraint-based methods employ CI tests to
determine the presence or absence of an edge between each pair of nodes in the network
structure. Score-based methods assign a global score to each network to quantify their
overall ability to describe the data and search the space of all structures to find high-scoring
networks. In this work, we focus on constraint-based methods.

Since a DAG entails a set of CI relationships (Pearl, 2009), it is possible to at least
partially learn the graphical structure by estimating the CIs holding between elements of X
from a collection of its observed realizations. However, different graphical structures can
describe an identical set of CI relations, since the same joint distribution P may factorize
according to different DAGs. Such a set of DAGs form a Markov equivalence class, and in
practice, the underlying graph of a BN is only identifiable up to its equivalence class. A
completed partially directed acyclic graph (CPDAG) commonly describes an equivalence
class of DAGs. A CPDAG is a graph with both directed and undirected edges, and it encodes
all the CI statements of a Markov equivalence class (Andersson et al., 1997). Conveniently,
CPDAGs uniquely represent a Markov equivalence class, therefore in the absence of prior
information about the graph the objective of structure learning reduces to recovering the
correct CPDAG. The skeleton of a DAG G is an undirected graph over the same set of nodes
that contains an undirected edge for every edge in G.

Skeletons are core components of hybrid approaches to structure learning. Hybrid
methods (Tsamardinos et al., 2006) aim to combine the computational advantage of CI
testing with the higher accuracy of score-based methods to achieve better overall performance.
First they employ a constraint-based algorithm to restrict the DAG search space via CI
testing. A search-and-score then runs over the reduced space of structures to find high-
scoring networks. Analogously, reliable skeletons may also provide a good preliminary search
space for sampling methods (Kuipers et al., 2021), so that developing fast and accurate
constraint-based methods remains a relevant topic of research.

In section 2 we briefly review the PC algorithm and CI testing under Gaussian data.
Section 3 introduces the dual PC algorithm, our novel variation on the scheme, which
provides substantial improvements both in terms of accuracy and run-time by supplementing
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the CI tests at each step with complementary (or dual) tests. Finally, section 4 reports on a
comparative evaluation of the PC algorithm and its dual version on simulated data. To ease
reproducibility we provide full R implementations of our simulation studies with the code
available at https://github.com/enricogiudice/dualPC.

2. The PC Algorithm

One of the most popular constraint-based structure learning methods is the PC algorithm
(Spirtes et al., 1993). The approach assumes faithfulness of the probability distribution of
the observed variables X to the unknown DAG G and the absence of latent confounders
(causal sufficiency) for the relationships among X. The algorithm proceeds in two phases:
first it estimates the skeleton by performing a series of CI tests between variables. Starting
from zero-order (marginal) independence between all pairs of variables, it recursively deletes
an edge from the complete graph every time it fails to reject a hypothesis of conditional
independence. In a second phase, it directs as many edges as possible while preserving
compatibility with the pattern of CIs learned in the first phase. Estimating the undirected
skeleton is the most critical part of the algorithm since directing the edges depends entirely
on the results of the CI tests in the first phase.

Under the special case of jointly Gaussian data, and as long as the faithfulness and causal
sufficiency assumptions hold, the PC algorithm enjoys interesting consistency properties
even for asymptotically limited data for sparse graphs, (see e.g. Kalisch and Bühlmann,
2007, for details and pseudo-code). In general, as the sample size goes to infinity it produces
the correct CPDAG. Its consistency guarantees and relatively simple implementation make
the PC algorithm one of the most popular for structure learning, though it is inefficient
when applied to high-dimensional datasets such as gene expression data (Duy Le et al.,
2015). As a result, several methods aim to improve its efficiency (Silverstein et al., 2000;
Sondhi and Shojaie, 2019). However, they either learn local modules of the structures
instead of producing an entire CPDAG, thus compromising the structural accuracy, or rely
on additional assumptions concerning the DAG structure to ensure consistency.

Another limitation of the PC algorithm is that it may produce different CPDAGs
depending on the order of the variables in the dataset. Colombo and Maathuis (2014)
propose a modification to the original algorithm called PC-stable with the property of being
order-independent for the skeleton. PC-stable implements no pruning of the graph until it
moves to the next size of the conditioning set, so it needs to carry out more tests compared
to its standard version. Consequently, the running time is longer, further exacerbating the
complexity problem.

2.1 Sample Version

A common assumption is that an observed N × n data matrix follows a jointly Gaussian
distribution; where N denotes the number of observations and n the number of variables.
One reason is the availability of conventional testing procedures for CI (Glymour et al., 2019).
In practice, however, deviations from Gaussianity are common and we study their impact on
the results in section 4.2. Partial correlation extends Pearson’s correlation to measure the
degree of association between two random variables conditional on a set of other variables.
Full-order partial correlation between two variables in a set measures their correlation when
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conditioning on all other variables in the set. Under a multivariate Gaussian distribution an
explicit relationship links the full-order partial correlations to the entries of the precision
(inverse covariance) matrix. Let P be the precision matrix of the random vector X , with
Pij the element in the i-th row and the j-th column. Then

ρXiXj |X\{Xi,Xj} =
−Pij√
PiiPjj

(1)

which mimics the form of the marginal correlation ρXiXj =
Σij√
ΣiiΣjj

ensuing from the

covariance matrix Σ. More generally the concept of partial correlation allows for conditioning
on any set S ⊆ X \ {Xi, Xj} of a lower order. In the Gaussian case, a partial correlation
coefficient of zero characterizes CI (Lauritzen, 1996) leading to an efficient way of testing for
CIs within the PC algorithm framework.

3. The Dual PC Algorithm

In its established implementation, the PC algorithm tests for CI starting from zero-order
(marginal) independence and incrementally moving to higher-order conditioning sets. The
strategy is justified because computing partial correlation coefficients for large conditioning
sets is generally computationally costlier. Estimating an ℓ-order partial correlation coefficient
analogously to equation (1) requires inverting an (ℓ+ 2)× (ℓ+ 2) covariance matrix. The
inversion step has a polynomial time complexity in the number of variables, slowing the overall
procedure whenever evaluating high-order CIs is needed. For denser graphs, however, testing
high-order partial correlation coefficients may be unavoidable in the skeleton estimation
phase. In such a case variables may share a large number of parents requiring the PC
algorithm to test a large number of subsets before finding one large enough to render a pair
of variables conditionally independent.

To overcome the above limitation we propose an alternative ordering of the CI tests,
prioritising certain high-order partial correlations. The idea is to start testing for CI from
both zero-order (marginal) and full-order partial correlations on the basis of the covariance
and precision matrices. Our algorithm then proceeds to test more central-order conditioning
sets from both directions, starting with first-order and (|S| − 1)th order partial correlation
coefficients, where S is the current set of neighbouring nodes of any pair of variables (see
figure 1). Furthermore, we aim to improve upon the implementation efficiency of the classic
PC algorithm by inverting the covariance and precision matrices in blocks to cheaply estimate
the partial correlation coefficients.

Let V[I] denote the subset indexed by a set I of a vector V . If A is a matrix and I
and J are two index sets, then A[I],[J ] denotes the |I| × |J | submatrix of A formed by the
entries located in the rows indexed by I and the columns indexed by J . For example

A[1,3],[1,3,4] =

(
A11 A13 A14

A31 A33 A34

)
. Starting with the covariance matrix Σ of the data, our

approach first identifies all pairs of variables for which marginal independence cannot be
rejected, as in a classic PC procedure. After deleting all edges between such pairs of nodes
from the initial complete undirected graph, we invert the covariance matrix to evaluate the
precision matrix and additionally delete any edges between variables for which we cannot
reject full-order CI. The following step tests pairwise independencies when conditioning on
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Figure 1: Order of testing of the different conditioning set sizes for a given pair of variables
in the PC (top) and the dual PC algorithm (bottom). S is the current set of
variables adjacent to the pair; blue and red sets are complementary to each other.
The conditioning set size increases gradually for blue nodes; the dual PC algorithm
proceeds to tests from both ends, in decreasing order for the red nodes.

sets of size 1, again as in the classic PC approach. For every ordered pair Xi, Xj of nodes
still adjacent in the current instance of the skeleton, we find the set S of nodes adjacent to
Xi, excluding Xj . Next we build the local covariance matrix U = Σ[i,j,ζ],[i,j,ζ] and the local
precision matrix T = U−1, where ζ is the index set of S: Xζ = S. There are two advantages
in computing T : first, it allows us to perform the tests for the complement sets of size |S|− 1
more efficiently. The algorithm will typically need to test a large number of such dual sets,
and we can reuse T in the same way we reuse U for testing multiple sets of size 1. Second,
by applying equation (1) to T we directly obtain the estimated partial correlation coefficient
ρ̂XiXj |S . If we reject the independence of Xi and Xj conditionally on the whole set S, we
test conditionally on each variable XK ∈ S. Let k denote the index of variable XK within
the local covariance matrix U with k ∈ {3, . . . , |S|+ 2} and the shift mapping ζ(k−2) =K .
Using block inversion on U[1,2,k],[1,2,k] we extract its first 2× 2 submatrix:(

U[1,2,k],[1,2,k]

)−1

[1,2],[1,2]
=

(
U[1,2],[1,2] − U[1,2],[k] U

−1
kk U[k],[1,2]

)−1
. (2)

To compute the first-order partial correlations for every XK ∈ S we can use equation (1).
Note that applying equation (1) to the 2× 2 matrix we obtain in equation (2) before the
inversion yields the same partial correlation coefficient in absolute value. Because the sign
of the partial correlation coefficient does not matter for our testing purposes, we can apply
equation (1) directly without the final inversion, additionally speeding up the procedure.
Therefore, we only need to compute

B(U, k) = U[1,2],[1,2] − U[1,2],[k] U
−1
kk U[k],[1,2] , |ρ̂XiXj |XK | =

∣∣∣∣ B12√
B11B22

∣∣∣∣ . (3)

Every time the algorithm rejects the null hypothesis of independence for a variable XK, it
proceeds to test the complementary (or dual) set S \XK. Naively one could compute the first
2×2 block of (U[−k],[−k])

−1, which would require inverting a matrix of size (|S|−1)×(|S|−1)
for every variable XK. More efficiently we can write the desired 2× 2 matrix in terms of T :(

U[−k],[−k]

)−1

[1,2],[1,2]
=

(
T[−k],[−k] − T[−k],[k] T

−1
kk T[k],[−k]

)
[1,2],[1,2]

= T[1,2],[1,2] − T[1,2],[k] T
−1
kk T[k],[1,2] = B(T, k) . (4)
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Therefore by simply applying equations (3) to the matrix T we can compute ρ̂XiXj |S\XK .
As soon as the algorithm finds a variable XK or a dual set S \XK conditionally on which
it cannot reject independence between Xi and Xj , it deletes the edge between the two
nodes and it moves on to a new pair. After having tested all the remaining edges, the
algorithm moves on to conditioning sets XK of size 2, and their dual counterparts. The
approach for testing CIs does not change for these new sets, since equations (2) and (4)
hold for index sets k of any size. As for the PC algorithm, the size of the conditioning
sets XK progressively increases until there can be no higher-order CIs that would result in
deleting an edge. Because inverting Ukk in equation (2) can be computationally expensive
for larger sets XK, we proceed by computing its Cholesky decomposition Ukk = C ′C, with
C an upper triangular matrix. To solve the linear system Cx = U[k],[1,2] we can then use
back substitution; and finally, compute the matrix block of interest as

B(U, k) = U[1,2],[1,2] − x′x . (5)

In our implementation, we test the whole set S before testing any of its subsets XK since
later dual tests anyway rely on the local precision matrix T . Indeed, if |S| < 2|k| we use
the local precision matrix T to avoid inverting the |k| × |k| matrix Ukk in equation (2). To
compute the partial correlation coefficient ρ̂XiXj |XK it is more efficient to set k equal to its
complementary set {3, ... , |S|+ 2} \ k in equation (4).

The core part of the dual PC algorithm outputs an undirected skeleton. To estimate a
CPDAG we can use the same edge-orienting procedure as the classic PC algorithm. Just
like the original PC algorithm, the dual PC version does not satisfy the order independence
property, since the tested sets depend on the previous (potentially incorrect) edge deletions.
Modifying the dual PC algorithm to achieve order-independence for the skeleton as in
Colombo and Maathuis (2014) is straightforward. In its stable (order-independent) version,
we test independencies between all pairs of variables for a given value of the conditioning set
size ℓ before deleting an edge for each CI we cannot reject.

3.1 Consistency

Under faithfulness of the distribution P to the true DAG G, the classic PC algorithm is
pointwise consistent (Spirtes et al., 1993) i.e., it constructs the CPDAG corresponding to the
equivalence class of G as the sample size approaches infinity. If P is Gaussian, the estimated
covariance matrix converges to the true covariance matrix, determining, in the given limit,
CIs without errors corresponding to the so-called “population version” of the algorithm
which ignores sampling variability. Furthermore, Kalisch and Bühlmann (2007) proved
uniform consistency in the Gaussian case for certain sparse high-dimensional graphs under
additional assumptions. Spirtes et al. (1993) formulated the original proof of consistency in
the context of causal inference, relying on the concept of d-separation (Pearl, 1988). For
BNs ⟨G, P ⟩ where P is faithful to G, CI of Xi and Xj given S ⊆ X \ {Xi, Xj} is equivalent
to d-separation of the nodes Xi and Xj given the set S (Verma and Pearl, 1988). Therefore
the considerations in (Spirtes et al., 1993, theorem 5.1) also apply to the dual PC algorithm,
since the properties of the output graph remain unaffected by the different ordering of the
CI tests. The population version of the dual PC algorithm will share the same properties as
the classic version, and under faithfulness of the Gaussian distribution P to the underlying
DAG G, it will produce the CPDAG corresponding to the Markov equivalence class of G.
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Figure 2: ROC-like curves illustrating the ability of the dual and classic PC algorithms
respectively in recovering the correct CPDAG, with N the sample sizes, and n
the number of nodes in the DAGs.

4. Simulation Study

To evaluate the performance of the dual PC algorithm we sample synthetic data from
randomly generated BNs. To draw a DAG over n nodes we use the function randDAG from
the R package pcalg (Kalisch et al., 2012), with the settings for the Erdős-Rényi model, to
sample DAGs with iid probabilities of edge inclusion. For each DAG we then sample N
instances for every node as a noisy linear function of its parents:

Y =

|Pa(Y )|∑
i=1

wi Pai(Y ) + ϵ , ϵ ∼ N (0, 1) (6)

with the weights wi sampled from a uniform distribution on the interval (0.4, 2). The data are
standardised after generation. To assess how the algorithm behaves for networks of different
sizes, we evaluate the performance across DAGs with 50, 100, 150 and 200 nodes. For every
number of nodes n, we consider different scenarios with 25n, 50n and 100n observations of
each variable. For every combination of n and N , we generate 100 DAGs and a data matrix
from each of them. In the software, we choose a setting designed to achieve an expected
number of parents d = 2 for each node, corresponding to relatively dense networks, typically
more challenging to learn than sparser ones and where we expect the dual PC to make more
of a difference.

4.1 Performance Metrics

A way to assess performance is to compare estimated and ground truth structures across
all scenarios of different sample and graph sizes. Because we can only identify DAGs up to
their equivalence class, we perform the comparison on the space of CPDAGs. The classic

7



Giudice, Kuipers and Moffa

PC algorithm from the R package pcalg serves as benchmark. For the comparative study,
we build receiver operating characteristic (ROC)-like curves by varying the significance
level α of the CI tests and counting true positive (TP) and false positive (FP) edges in the
estimated graph. Then we scale them both by the number of true edges P to obtain the
true positive edge rate (TPR = TP

P ) and a modified false positive edge rate (FPRp = FP
P ).

Scaling FP by P rather than by the total true negative edges, which can be exceedingly large
for DAGs, aims to have measures (TPR and FPRp) on comparable scales. Additionally,
we measure and compare run times. Code to reproduce all simulations in R is available at
https://github.com/enricogiudice/dualPC.

4.2 Results

The scatter plots of figure 2 display FPRp and TPR, on the space of CPDAGs, for values of
the significance level α ranging from 0.002 to 0.25. The solid lines represent (partial) average
ROC-like curves constructed by averaging the FPRps and TPRs of every method for each
value of α. The comparison includes four distinct algorithms: the dual PC algorithm and its
order-independent counterpart (“dual PC” and “dual PC stable”), as well as the standard
and stable versions of the classic PC algorithm. The performance of the dual algorithms
is on average superior in all simulated scenarios, reaching higher sensitivity for the same
level of FPs. The dual PC achieves both a lower FPRp and higher TPR than the classic PC
algorithm for the same value of the significance level α. One possible explanation is that
the dual PC runs far fewer CI tests. In the simulated scenarios, the dual version of the PC
algorithm performed on average at most one-third of the number of tests carried out by
its classic counterpart. Performance evaluation in terms of structural Hamming distance
(SHD) is also in agreement with the ROC-like curves. Results for the average number of
tests and the SHD, as well as on sparser networks, and pseudo-code are available in an
extended version of this manuscript at https://arxiv.org/abs/2112.09036.

Figure 3 shows the distribution of run-times for the different methods to estimate the
CPDAG, with significance level α = .05. On average the dual PC algorithm is roughly one
order of magnitude faster than the classic implementation of the PC algorithm. The result
persists across different simulation settings.

To determine the sensitivity to the assumption of strict Gaussianity of the data, we
repeat the simulations with the noise ϵ in equation (6) following a Student’s t-distribution
instead. Figure 4 shows the ROC-like curves under varying degrees of freedom ν of the noise
distribution, for networks with 50 nodes and 2500 observations per node. Additionally, we
add greedy equivalence search (GES) (Chickering, 2003) as a benchmark, generally known
to produce more FP edges than PC, while finding more TPs at higher FP rates (Rios et al.,
2021). To define a skeleton for hybrid methods, the sparser output of the dual PC provides
a smaller initial DAG space and therefore it may be preferable. The results indicate that
deviations from Gaussianity do not greatly affect the performance of the dual PC algorithm
relative to the other methods and it remains competitive.

5. Conclusions

In this work, we proposed a novel scheme for running the CI tests within the PC algorithm
framework. Our strategy consists of running the tests proceeding from both sides, starting
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Figure 3: Running times for estimating the CPDAG for all variations of PC algorithms we
considered (dual/classic, standard/stable), for a significance level α = 5%. Time is
measured in seconds and is displayed on a log scale. N indicates the data sample
sizes and n the number of nodes in the DAGs.
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Figure 4: The ability of different methods in recovering the correct CPDAG for varying levels
of non-Gaussianity. The data generating model at each node is a linear function
of its parents plus a Student’s t-distributed noise with ν degrees of freedom.

from zero and full-order conditioning sets and progressively moving to central-order tests.
We harness the properties of the precision matrix to efficiently compute partial correlation
coefficients for the dual conditioning sets. This new approach results in faster run times
compared to the classic PC by performing CI tests at a lower computational cost, while also
requiring overall fewer tests. As a consequence, the dual PC strategy accurately identifies
high-order CI relations more effectively than the classic version of the PC algorithm. Our
simulation studies show that the dual PC algorithm achieves a better performance in terms
of both structure accuracy and run time than the classic PC algorithm. Hence the dual PC
will extend more easily to efficiently estimate graphs in high-dimensional settings.
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BNs provide a natural representation for causally induced CIs and are extensively
used for modelling causal relationships between variables (Pearl, 2009). Unsurprisingly,
constraint-based structure learning algorithms such as PC are popular tools for learning
causal diagrams (Spirtes et al., 1993). Improving on their speed and accuracy will benefit
and extend the possibilities for exploratory causal analyses in high-dimensional settings.
Notably, constrained-based methods also constitute an important component of some hybrid
methods for structure learning of Bayesian networks. The PC algorithm in fact may serve
to restrict the search space of DAGs for a search-and-score strategy. Pruning the space with
a constrained-based algorithm before proceeding to search-and-score may help to explore
the space more efficiently (Tsamardinos et al., 2006). The dual PC may also provide an
opportunity to further improve sampling methods since its increased accuracy and speed
compared to the classic PC algorithm would enable a more efficient sampling from the
bulk of the posterior probability mass. As such, combining the dual PC algorithm with
state-of-the-art MCMC sampling schemes (Viinikka et al., 2020; Kuipers et al., 2021) holds
the potential to improve the Bayesian treatment of larger networks.

A limitation of the dual PC algorithm is that a (partial) correlation coefficient of zero
only characterizes (conditional) independence in the jointly Gaussian case. Nevertheless,
our simulations show that moderate deviations from Gaussianity do not affect the relative
performance of our method, though more general data types may require non-parametric
conditional independence testing procedures. Thanks to its versatility, there have been
several successful attempts at extending the PC algorithm to handle non-Gaussian continuous
data (Zhang et al., 2012; Chakraborty and Shojaie, 2021). In its current form, the dual PC
algorithm relies for computational efficiency on the relationship holding under Gaussianity
between the precision matrix and the partial correlation. However, it is reasonable to expect
improved network learning performance when we supplement low-order CI tests with tests
of their complement sets. This argument is supported by our simulations showing that
the dual PC requires fewer tests compared to the classic PC algorithm. Therefore, we
anticipate that the reduction in the number of tests might translate into shorter run times
and higher accuracy despite the additional computational burden of non-parametrically
testing high-order CIs. On these grounds we speculate that there may be a value in adapting
the dual PC algorithm to deal with non-Gaussian data, holding the potential to improve the
structure learning accuracy and lower the computational cost.
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M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the
PC-algorithm. Journal of Machine Learning Research, 8:613–636, 2007.
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