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Abstract

Several structural learning algorithms for staged tree models, an asymmetric extension of
Bayesian networks, have been defined. However, they do not scale efficiently as the number
of variables considered increases. Here we introduce the first scalable structural learning
algorithm for staged trees, which searches over a space of models where only a small number
of dependencies can be imposed. A simulation study as well as a real-world application
illustrate our routines and the practical use of such data-learned staged trees.

Keywords: Asymmetric conditional independence; Bayesian networks; Probabilistic
graphical models; Staged trees; Structural learning.

1. Introduction

Probabilistic graphical models, and in particular Bayesian networks (BNs), are nowadays
widely used in machine learning to conveniently represent the relationships existing between
the components of a random vector. The directed acyclic graph (DAG) associated to a
BN represents graphically (symmetric) conditional independence statements, which can be
assessed using the d-separation criterion (Pearl, 1988). Although the underlying DAG can
be expert-elicited, this is often learned from data using algorithms that explore the space of
all possible DAGs (see e.g. Scutari et al., 2019).

For quite some time it has been noticed that the strict assumption of symmetric con-
ditional independence may be too restrictive to fully represent the relationship between
variables in a dataset (Boutilier et al., 1996; Chickering et al., 1997; Friedman and Gold-
szmidt, 1996). However, the development and use in practice of probabilistic graphical
models embedding asymmetric conditional independence has been limited (see Hyttinen
et al., 2018; Nicolussi and Cazzaro, 2021; Talvitie et al., 2019, for some recent proposals).
Possible reasons behind the limited use of such models could be: (i) the lack of widely
available software; (ii) the complexity of the learning routines; and (iii) the less intuitive
visualization of the associated independences which are not explicitly represented by a single
graph.

Staged trees (Collazo et al., 2018; Smith and Anderson, 2008) are probabilistic graphical
models which, starting from an event tree, represent any type of asymmetric conditional
independence by a partitioning/coloring of the vertices of the tree. All the model information
and the conditional independences can be read directly from the tree and, in particular,
from the coloring of the vertices. The stagedtrees R package (Carli et al., 2022) provides
a user-friendly implementation of a wide array of structural learning and inferential routines
to fit staged trees to data. Therefore, two of the main limitations to the use of asymmetric
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probabilistic graphical models do not apply to staged trees. Furthermore, a wide toolkit of
procedures to work with staged trees have been developed, including handling missing data,
sensitivity analysis and exploration of equivalence classes, among others (see Collazo et al.,
2018, for details).

On the other hand, learning staged trees from data is complex. Although efficient
structural learning algorithms for such models have been implemented (e.g. Freeman and
Smith, 2011; Leonelli and Varando, 2021; Silander and Leong, 2013), they can only work
with a limited number of variables. The main reason behind this is the explosion of the size
of the model search space as the number of variables considered increases. As an illustration,
the number of DAGs over 6 binary variables is 3781503, whilst there are 1.20019 × 1044

staged trees under the same conditions (Duarte and Solus, 2021). Furthermore, the number
of DAGs remains constant if variables have more than two levels, whilst the number of
staged trees would further increase dramatically.

Recent proposals for efficient structural learning of staged trees look at sub-classes of
staged trees, with the aim of reducing the size of the model space. Carli et al. (2020)
defined naive staged trees which have the same number of parameters of a naive BN over
the same variables. Leonelli and Varando (2022) considered simple staged trees which have
a constrained type of partitioning of the vertices. Duarte and Solus (2021) defined CStrees
which only embed symmetric and context-specific types of independence, and not others
(Pensar et al., 2016).

One of the first solutions to make structural learning of BNs scalable was to limit the
number of parents each variable can have (Friedman et al., 1999; Tsamardinos et al., 2006).
This was imposed not only to restrict the model space of possible DAGs, but it also made
sense from an applied point of view since most often only a limited number of variables
can be expected to have a direct influence on another. The option of setting a maximum
number of parents is also available in the standard bnlearn software (Scutari, 2010).

Here, we define a sub-class of staged trees embedding the same idea of limiting the
number of variables that can have a direct influence to another. As we formalize below, this
means that the BN representation associated to such a staged tree is sparse, meaning that it
has a small number of edges. A structural learning algorithm for this class of staged trees is
introduced and its features are explored in an extensive simulation study.

2. Bayesian Networks and Staged Trees

Before introducing staged trees, we give a formal definition of BNs. We then describe their
relationships with staged tree models.

2.1 Bayesian Networks

Let G = ([p], EG) be a DAG with vertex set [p] = {1, . . . , p} and edge set EG. Let
X = (Xi)i∈[p] be categorical random variables with joint mass function P and sample space
X = ×i∈[p]Xi. For A ⊂ [p], we letXA = (Xi)i∈A and xA = (xi)i∈A where xA ∈ XA = ×i∈AXi.
We say that P is Markov to G if, for x ∈ X,

P (x) =
∏
k∈[p]

P (xk | xΠk
),
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where Πk is the parent set of k inG and P (xk|xΠk
) is a shorthand for P (Xk = xk|XΠk

= xΠk
).

It is customary to label the vertices of a BN so to respect the topological order of G and we
henceforth assume that 1, 2, . . . , p is a topological order of G.

The ordered Markov condition implies conditional independences of the form

Xi ⊥⊥ X[i−1] |XΠi .

Henceforth, P is assumed to be strictly positive. Let G be a DAG and P Markov to G. The
Bayesian network model (associated to G) is

MG = {P ∈ ∆◦
|X|−1 |P is Markov to G}.

where ∆◦
|X|−1 is the (|X| − 1)-dimensional open probability simplex.

2.2 Staged Trees

Differently to BNs, whose graphical representation is a DAG, staged trees visualize conditional
independence by means of a colored tree. Let (V,E) be a directed, finite, rooted tree with
vertex set V , root node v0 and edge set E. For each v ∈ V , let E(v) = {(v, w) ∈ E} be the
set of edges emanating from v and C be a set of labels.

An X-compatible staged tree is a triple T = (V,E, θ), where (V,E) is a rooted directed
tree and:

1. V = v0 ∪
⋃

i∈[p]X[i];

2. For all v, w ∈ V , (v, w) ∈ E if and only if w = x[i] ∈ X[i] and v = x[i−1], or v = v0 and
w = x1 for some x1 ∈ X1;

3. θ : E → L = C × ∪i∈[p]Xi is a labelling of the edges such that θ(v,x[i]) = (κ(v), xi) for
some function κ : V → C. The function k is called the colouring of the staged tree T .

If θ(E(v)) = θ(E(w)) then v and w are said to be in the same stage. Therefore, the
equivalence classes induced by θ(E(v)) form a partition of the internal vertices of the tree in
stages.

Points 1 and 2 above construct a rooted tree where each root-to-leaf path, or equivalently
each leaf, is associated to an element of the sample space X. Then a labeling of the edges of
such a tree is defined where labels are pairs with one element from a set C and the other
from the sample space Xi of the corresponding variable Xi in the tree. By construction,
X-compatible staged trees are such that two vertices can be in the same stage if and only if
they correspond to the same sample space.

Figure 1 reports an (X1, X2, X3, X4)-compatible staged tree over four binary variables.
The coloring given by the function κ is shown in the vertices and each edge (·, (x1, . . . , xi))
is labeled with Xi = xi. The edge labeling θ can be read from the graph combining the text
label and the color of the emanating vertex. The staging of the staged tree in Figure 1 is
given by the partition {v0}, {v1}, {v2}, {v3, v4}, {v5, v6}, {v7, v11}, {v8, v12}, {v9, v13} and
{v10, v14}.
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Figure 1: Example of an X-compatible staged tree over four binary random variables.

The parameter space associated to an X-compatible staged tree T = (V,E, θ) with
labeling θ : E → L is defined as

ΘT =
{
y ∈ R|θ(E)| | ∀ e ∈ E, yθ(e) ∈ (0, 1) and

∑
e∈E(v)

yθ(e) = 1
}
. (1)

Equation (1) defines a class of probability mass functions over the edges emanating from
any internal vertex coinciding with conditional distributions P (xi|x[i−1]), x ∈ X and i ∈ [p].
In the staged tree in Figure 1 the staging {v3, v4} implies that the conditional distribution
of X3 given X1 = 0 and X2 = 0, represented by the edges emanating from v3, is equal to
the conditional distribution of X3 given X1 = 0 and X2 = 1. A similar interpretation holds
for the staging {v5, v6}. This in turn implies that X3 ⊥⊥ X2|X1, thus illustrating that the
staging of a tree is associated to conditional independence statements.

Let lT denote the leaves of a staged tree T . Given a vertex v ∈ V , there is a unique path
in T from the root v0 to v, denoted as λ(v). The depth of a vertex v ∈ V equals the number
of edges in λ(v). For any path λ in T , let E(λ) = {e ∈ E : e ∈ λ} denote the set of edges in
the path λ.

The staged tree model MT associated to the X-compatible staged tree (V,E, θ) is the
image of the map

ϕT : ΘT → ∆◦
|lT |−1

y 7→
(∏

e∈E(λ(l)) yθ(e)

)
l∈lT

(2)

Therefore, staged trees models are such that atomic probabilities are equal to the product
of the edge labels in root-to-leaf paths and coincide with the usual factorization of mass
functions via recursive conditioning.
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Figure 2: The DAG G such that TG is the staged tree in Figure 1.

2.3 Staged Trees and Bayesian Networks

Although the relationship between BNs and staged trees was already formalized by Smith
and Anderson (2008), a formal procedure to represent a BN as a staged tree has been only
recently introduced in Duarte and Solus (2020) and Varando et al. (2021).

Assume X is topologically ordered with respect to a DAG G and consider an X-
compatible staged tree with vertex set V , edge set E and labeling θ defined via the coloring
κ(x[i]) = xΠi of the vertices. The staged tree TG, with vertex set V , edge set E and labeling
θ so constructed, is called the staged tree model of G. Importantly, MG = MTG

, i.e. the
two models are exactly the same, since they entail exactly the same factorization of the joint
probability (Smith and Anderson, 2008). Clearly, the staging of TG represents the Markov
conditions associated to the graph G.

Varando et al. (2021) approached the reverse problem of transforming a staged tree
into a BN. Of course, since staged trees represent more general asymmetric conditional
independences, given a staged tree T most often there is no BN with DAG GT such that
MT = MGT

. However, Varando et al. (2021) introduced an algorithm that, given an
X-compatible staged tree T , finds the minimal DAG GT such that MT ⊆ MGT

. Minimal
means that such a DAG GT embeds all symmetric conditional independences that are in
MT and that there are no DAGs with less edges than GT embedding the same conditional
independences.

As an illustration, the staged tree in Figure 1 can be constructed as the TG from the
BN with DAG in Figure 2, embedding the conditional independences X3 ⊥⊥ X2 | X1 and
X4 ⊥⊥ X1 | X2, X3. Conversely, consider the staged tree T in Figure 3, which differs from
the one in Figure 1 only on a different coloring of the vertices v6 and v14. Such a staged
tree does not embed any symmetric conditional independence, only non-symmetric ones,
and therefore there is no DAG GT such that MGT

= MT . Furthermore, the minimal DAG
GT such that MT ⊆ MGT

is the complete one since the staging of the tree implies direct
dependence between every pair of variables.

2.4 Structural Learning Algorithms Inducing Sparsity

Since the model search space of staged trees is huge, we consider here structural learning for
a subclass of staged trees that we define next.

Definition 1 A staged tree T is in the class of k-parents staged trees if the maximum
in-degree in GT is less or equal to k.
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Figure 3: Example of an X-compatible staged tree over four binary random variables.

For instance, the staged tree in Figure 1 is in the class of 2-parents staged trees, whilst the
one in Figure 3 is not, since its associated minimal DAG is such that X4 has three parents.

Of course, the class of k-parents staged trees is much smaller than the one ofX-compatible
ones, for small values of k, and therefore structural learning is expected to be quicker. Here
we define a structural learning algorithm to learn a staged tree in the class of k-parents
staged trees which consists of the following steps: (i) learn a BN with DAG G having at
most k parents (for instance using bnlearn); (ii) construct the equivalent staged tree TG;
(iii) run the backward hill-climbing algorithm of Carli et al. (2022) which only joins stages
together (no splitting of stages) based on the minimization of the model BIC (Görgen et al.,
2022). Call the resulting staged tree T . It can be easily proven that GT has at most k
parents and MGT

⊆ MG.

Although the idea of using the staged tree equivalent to a BN as starting point of a
structural learning algorithm (or at least using a partial ordering associated to such a BN)
is not new (see e.g. Barclay et al., 2013), here we specifically use such a strategy to limit the
complexity of the learned staged tree. This has two major advantages: (i) the speed of the
algorithms increases greatly; (ii) the non-symmetric conditional independences can be easily
visualized even when a large number of variables are present, as illustrated in Section 4.

3. Experiments

We perform simulation experiments to evaluate the proposed learning strategy for k-parents
staged trees. Moreover we it compare to standard learning of staged trees and DAGs.

In all the simulated experiments we generated data from random k-parents staged trees,
which are obtained as follow: (1) A random DAG G with fixed topological order X1, . . . , Xp
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Figure 4: Average computation times for learning the stagedtrees (solid lines) with the
standard BHC approach (blue) and the proposed k-parents BHC method (black).
Additionally the time spent creating the initial model are shown (dashed lines).
Results for simulated data from p = 3, . . . , 20 binary variables, BHC results are
obtained only up to 10 variables. In different columns results for the maximum
number of parents 2, 3, 4.

is obtained by randomly selecting up to k parents uniformly from {X1, . . . , Xj−1} for each
Xj ; (2) The equivalent staged tree TG is obtained; (3) Stages in TG are randomly merged
with probability 0.5. The obtained staged tree T is such that GT is a sub-graph of G and thus
it is a k-parents staged tree; (4) Lastly, we assign random probabilities (uniformly from the
simplex) to each stage of the staged tree T . Once we generate the random k-parents staged
tree T , we can easily sample observations of X1, . . . , Xp from it via sequential sampling (as
implemented in the stagedtrees package). For each fixed parameters (k, p and number of
observation sampled) we repeat the experiments 20 times and report averages and standard
errors.

3.1 Oracle DAG

We first consider an ideal scenario where we evaluate the performance of the proposed
method when the starting DAG is the graph G used to generate the true staged tree T .
We thus run a standard backward hill-climbing (BHC) procedure, as implemented in the
stagedtrees package, starting from both the full saturated tree model and starting from
the model TG. All heuristic searches optimize the BIC score.

We plot in Figure 4 the average computation time as a function of the system size
p = 3, . . . , 20 and varying the number of maximum parents k = 2, 3, 4. For each one of the
two approaches we split the computation time in: build time, the time spent building
the starting tree; and search time, the time spent running the search algorithm. We
can observe that starting the search from the DAG-equivalent tree allows us to scale the
algorithm easily up to 20 variables, while the standard approach starting from the full tree
become quickly infeasible after 10 variables.

As a sanity check we also compute the normalized hamming distance (the sum across
the depth of the tree of the average number of nodes for which coloring needs to change to
obtain the same staged tree) and the context intervention distance (Leonelli and Varando,
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Figure 5: Average normalized hamming distance between true and estimated staged trees
as a function of sample size, for different methods, system size (p, rows) and
maximum parents (k, columns).

2021) between the true and learned models. As expected the k-parents trees obtain better
results, which we do not report here for lack of space.

3.2 Learned DAG

We perform now a simulation study similar to the oracle setting but, as in a more realistic
scenario, we do not assume knowledge of the DAG G. We thus, first estimate a DAG Ĝ from
data using the hill-climbing approach in the bnlearn package (Scutari, 2010), and then we
apply the BHC learning algorithm starting from the staged tree TĜ (bhcdag). We compare
the obtained tree to TĜ (the tree equivalent to the learned DAG, dag) and the output of
the BHC algorithm starting from the full saturated model (bhc). We run 20 replications of
the experiment for different system sizes (p = 6, 10, 20), for different number of maximum
parents in the true DAG (k = 2, 3, 4) and with sample sizes ranging from 100 to 10000.

In Figure 5 we plot the average (across repetitions) normalized hamming distance between
the estimated tree and the true one. We can observe that the k-parents staged trees, obtained
by the BHC algorithm starting from TĜ (bhcdag), are closer to the true data-generating
models, with respect to both the output of BHC starting from the saturated model and the
tree TĜ obtained from the estimated DAG.

4. COVID-19 Drivers and Country Risks

We next extend the analysis of Qazi and Simsekler (2022) who developed a BN to investigate
how various country risks and risks associated to the COVID-19 epidemics relate to each
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Figure 6: BN learned for the COVID-19 drivers and country risks.

other. In particular here we focus on how various types of risks affect the overall country
risk associated to COVID-19.

For this purpose, as in Qazi and Simsekler (2022), the dataset used in the analysis
comes from the combination of two sources1. Country-level exposure to COVID-19 risks
are retrieved from INFORM (INFORM, 2022). The data comprises of a score between zero
and ten for 191 countries for three drivers of COVID-19 risks, namely hazard and exposure,
vulnerability, and lack of coping capacity. An overall COVID-19 risk index, again between
zero and ten, is constructed from these three drivers. Country-level exposure to various
socioeconomic risk factors are collected from Euler Hermes (Euler Hermes, 2022). The
ratings for five drivers of country risk, namely economic, political, financing, commercial
and business environment are collected for 188 countries (the indexes are integer-valued
between one and four or six). The combined dataset comprises 181 countries. Each variable
is discretized into two levels using the clustering method from the arules package (Hahsler
et al., 2005).

A BN is learned using the hc function of the bnlearn package with the constraint that
the overall COVID-19 risk must be a leaf of the network and is reported in Figure 6. Without
specifying it, the learned BN is such that each vertex has at most two parents. The DAG
suggests that COVID-19 risk is conditionally independent of all other drivers given the lack
of coping capacity and hazard & exposure.

Starting from this BN, a staged tree in the class of 2-parents staged trees is learned using
the algorithm of Section 2.4. This staged tree provides a better representation of the data
since it has a BIC of 1521.965, compared to the BIC of 1547.634 of the BN. The learned
staged tree embeds the same set of symmetric conditional independences as in the BN of
Figure 2, but also non-symmetric ones. Of course, the full tree cannot be easily visualized
since, for instance, there are 29 = 512 vertices with depth nine. However, since it is known
that COVID-19 risk only depends on the lack of coping capacity and hazard & exposure

1. Compared to Qazi and Simsekler (2022), we use more recent versions of the datasets.
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Figure 7: 2-parents staged tree for the COVID-19 risk constructed over hazard & exposure
(H), lack of coping capacity (C) and COVID-19 risk (R).

we can construct the staged tree over these three variables only and easily visualize further
non-symmetric dependences. This is reported in Figure 7, which shows the presence of the
context-specific independence between COVID-19 risk and hazard & exposure for lack of
coping capacity equal to low. Similar interpretations could be drawn by constructing the
“partial” staged trees associated to other variables.

Of course a generic staged tree would provide a better representation of the data. For
instance, one learned with the backward hill-climbing of Carli et al. (2022) starting from
the saturated model has a BIC of 1453.587. However, its complete visualization is again
unfeasible and plots as the one of Figure 7 are in general not viable since there are no
constraints on the number of parents of GT . Indeed, whilst the DAG GT for the tree in
Figure 7 has 13 edges (as the DAG in Figure 6), the DAG GT from the generic staged tree
is complete and consisting of 36 edges, meaning that all variables are directly related to one
another.

5. Discussion

We defined a novel sub-class of staged tree models borrowing the idea of limiting the number
of parents in BNs. A structural learning algorithm for such a class has been introduced and
its properties illustrated both in simulation experiments and in a real-world application.

The number of parents of a variable in the staged tree is limited by those of the learned
BN. For instance, in our application, although no limit on the number of parents was set,
there were at most two parents. However, non-symmetric dependences may have been missed
by the BN learning algorithm which is specifically designed to account for symmetric ones.
One possibility could be to add edges to the learned BN, for instance between variables such
that their conditional mutual information is large, and then run a backward hill-climbing
algorithm of Carli et al. (2022) over that BN. The feasibility of such an algorithm is the
focus of current research.
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