A HARDWARE PERSPECTIVE TO EVALUATING PROBABILISTIC CIRCUITS

A Hardware Perspective to Evaluating Probabilistic Circuits

Jelin Leslin JELIN.LESLINQAALTO.FI

Antti Hyttinen ANTTI.HYTTINENQHELSINKI.FI

Karthekeyan Periasamy KARTHEKEYAN.PERIASAMY @AALTO.FI

Lingyun Yao LINGYUN.YAOQAALTO.FI

Martin Trapp MARTIN.TRAPP@QAALTO.FI

Martin Andraud MARTIN.ANDRAUD@AALTO.FI
Abstract

The always-increasing development of Al-enhanced Internet-of-Things devices has recently
pushed the need for on-device computation of Al models. As these tasks require mak-
ing robust predictions under uncertainty, probabilistic (graphical) models have recently
gained interest also for these applications. However, embedded computation requires high
computational efficiency (i.e., high speed and low power) through hardware acceleration.
Although the acceleration of deep learning models has shown extensive benefits, this has
not translated to probabilistic models as of yet. Probabilistic circuits (PCs), a family of
tractable probabilistic models, allow a direct hardware view as they are represented in the
form of a computational graph. Over the years, various approaches for structure learning of
PCs have been proposed, however, without consideration of their potential hardware cost.
In this work, we propose to take a hardware perspective in the evaluation of PC structures.
We compare several structure learning strategies, associating each PC with hardware costs
(computation power, speed, efficiency), and evaluate which one leads to more hardware-
friendly implementations. Our results show that models imposing additional structural
constraints on the PC are competitive models in terms of performance while being gen-
erally more hardware-efficient, making them suitable candidates for energy-constrained
applications.

Keywords: Probabilistic circuits, Hardware accelerators, Structure learning

1. Introduction

In the last decade, we have entered an internet-of-things (IoT) era with Al-enhanced con-
nected devices flourishing all around us (Mohammadi et al. 2018). The next generation
of IoT devices will need to be smarter and more energy-efficient, for example enabling Al-
assisted 5G or 6G communication devices (Mahmood et al., 2020). Smarter, to increase
their level of awareness and decision-making. More energy-efficient, as they would embed
AT directly on the device, providing several benefits. Firstly, this will minimize network
latency and increase data privacy, as data does not need to be exchanged to the cloud.
Secondly, it will significantly increase energy-efficiency and sustainability, as all computa-
tions can be carried out on-device, and no more communication with the cloud would be
needed. However, generic processors are not always well suited to efficiently compute Al
workloads, which consist of simple and repetitive operations (see a detailed explanation in

LESLIN ET AL.

Section 3). For these reasons, dedicated compute platforms, known as hardware accelerators,
have recently flourished, in particular targeting neural networks (NNs) (Deng et al., [2020).

Yet, for reliable Al-enhanced IoT, it is crucial for devices to be able to reason under un-
certainty. For example, a health monitoring device that should detect anomalies and react
in case of emergency. This system would gather information about the neighbouring envi-
ronment through sensors, extract features, process this information, and reach conclusions
about the task at hand using, e.g., a pre-trained classifier. This system would operate under
different forms of uncertainty related, for instance, to patient-specific issues or the quality of
the information received while monitoring (Mohammadzadeh and Safdari, 2014). This can
be translated to requirements for the embedded AI model: 1.) reason under uncertainty, as
uncertainty is unavoidable in real-world applications, 2.) answer different questions/queries
with the same model, as online retraining is challenging, and 3.) enable efficient hardware
implementation to be used on resource-constrained devices. A modelling family satisfying
these requirements are probabilistic circuits (PCs), a recently introduced family of tractable
probabilistic models. PCs enable exact and efficient computation of many probabilistic
inference queries, such as the computation of marginals.

Although there is an extensive literature comparing probabilistic models and PCs in
terms of predictive performance, e.g., in (Butz et al., [2018; [Scutari et al. 2018, (both in
the PGM conference)), less focus has been put on defining, evaluating and comparing PCs
regarding their hardware-friendly nature, 7.e., their ability to be implemented on hardware.
In this work, we first propose a detailed analysis on the computation of PCs on hardware
to understand the challenges related to the acceleration of PCs. Then, we build on previ-
ous hardware-aware training methods proposed for specific PCs models (Shah et al., 2019
Olascoaga et all 2019 [Sommer et al., 2018) and extend the analysis toward a systematic
comparison of different structure learning algorithms. In addition, we extend the hard-
ware cost to also consider parallelism abilities and elaborate on hardware reuse, specifically
targeting new vectorized PC models such as Einsum networks (Peharz et al., [2020). The
associated research questions related to this work are: (A) How should we learn the struc-
ture of a PC if it will be implemented in hardware? (B) Which structure learning strategy
helps in achieving hardware-friendly models? (C) Should we constrain the structure of the
PC for better hardware implementation?

2. Probabilistic Circuits and Their Learning Methods

Probabilistic circuit (PC) is an umbrella term that has been introduced in |Choi et al.| (2020)
to unify existing models (e.g.,|[Poon and Domingos (2011); |[Kisa et al.| (2014]); Peharz et al.
(2020)) of the same tractable model family. In PCs, the directed acyclic graph (DAG) struc-
ture encodes dependencies between (latent) variables as well as the computational alignment.

The structure of a PC is commonly learned from data (e.g., Gens and Domingos) (2013]);
Peharz et al. (2020)), and the PC is parametrised with a set of weights (w) and parameters
() at the input distributions. A PC on a set of RVs (X = {X,4}1,) is a tuple (G,) con-
sisting of a computational graph G, given by a DAG, and a scope function ¢: N — P(X)
that assigns each node N in G a scope (i.e., a subset or the set X). At a minimum, a
PC compromises three types of nodes: sums, products and leaves. Sum nodes compute a
convex combination of their children (S(x) = > yeens) ws,NN(x)), product nodes encode

A HARDWARE PERSPECTIVE TO EVALUATING PROBABILISTIC CIRCUITS

independence assumptions (P(x) = [[yeens) N(x)), and leave nodes evaluate their associ-
ated input distribution (L(x) = p(x | 6)). For hardware-compatibility reasons, we will
assume that leave nodes are equipped with indicator functions, i.e., the PC represents a
discrete distribution.

Once the PC has been learned and deployed onto hardware, many queries can be an-
swered without having to re-train the model, i.e., a PC is a multi-purpose probabilistic
model. The set of queries that can be answered tractably is related to constraints on the
PC structure. We briefly review the most relevant constraints for this work.

Definition 1 (smoothness) A sum node is smooth if its children depend on the same
variables: ¥(S) = ¥(N),VN € ch(S). A PC is smooth if all of its sum nodes are smooth.

Definition 2 (decomposability) A product node is decomposable if the scopes of its chil-
dren do not share variables: ¥(N)N(N') = 0,VN,N" € ch(P),N # N'. A PC is decompos-
able if all of its product nodes are decomposable.

Definition 3 (structured-decomposability) Given a vtree, a binary tree encoding a hi-
erarchical decomposition of RVs, a PC is structured-decomposable if every product node
decomposes its scope as its corresponding node in the vtree.

In general, we assume that a PC is smooth and decomposable, guaranteeing that, e.g.,
marginals, can be computed tractably. Moreover, in our analysis, we also consider smooth
and structured-decomposable PCs, which render a broader set of probabilistic queries tractable
than smooth and decomposable circuits, to investigate possible benefits in terms of their hard-
ware costs. We refer to |(Choi et al.| (2020]) for a more detailed discussion of the structural
constraints in PC and their implications on tractability.

2.1 Specific PC Learning Methods Compared in This Work

This comparative study uses various PC models, which all have achieved competitive results
in the literature. We focus our evaluation on hardware characteristics of PCs (number and
type of nodes, depth, parallelism, etc.), which are closely linked to the method employed
for structure learning and thus heavily depend on the chosen PC model. Note that, even
though methodologies using ensembles of PCs achieve state-of-the-art performance (Trapp
et al., 2019; Dang et al.| |2020)), we focus on single PC models, as we wish to first evaluate
in detail the hardware characteristics of the different learning methodologies.

LearnSPN LearnSPN, initially proposed in (Gens and Domingos| 2013)), is a recursive
structure learning framework. At each step, the algorithm attempts to divide the current
scope into approximately independent subsets. If successful, it returns a product of recursive
calls on the subsets; otherwise, it clusters the data and returns the sum of recursive calls
on a cluster from the current training subset. LearnSPN is a popular structure learning
algorithm due to its simplicity of implementation (Paris et al., |2022]).

Einets Einsum networks (Einets) (Peharz et al., 2020) use a vectorized representation of
the PC. One Einet is composed of several layers, each performing an Einstein summation
(einsum). Essentially, in Einets a sum and product layer of a scalar PC are concatenated

LESLIN ET AL.

into a single vectorized computational unit. It consists of one vector sum node with a
single child, being the product of two other vector children. The Einet structure can be
determined in various ways, one being based on randomized trees (RAT-SPNs) (Peharz
et al) 2019). Here, we use the Einsum implementation of (Peharz et al., 2020|) based on
RAT-SPN structures governed by shared hyperparameters. The global Einet structure is
determined by the following hyperparameters: the number of elements in each vector K, the
number of replicas R and the split-depth D. These parallelization properties enable Einets
to have more computationally efficient training and inference, while being competitive in
terms of performance, thus making them suitable for hardware implementation.

SDPCs Structured-decomposable PCs (SDPCs) (Pipatsrisawat and Darwiche, [2008) are
models imposing a stronger structural constraint in favour of additional tractability. SDPCs
are frequently used in the literature, taking, for instance, the form of Probabilistic Sentential
Decision Diagrams (PSDDs) (Kisa et al., [2014). In this work, we use Strudel (Dang et al.,
2020) as a reference method to construct them. In Strudel, SDPCs are constructed by
finding a "best" initial PC, in the form of a Chow-Liu tree (CLT), and distilling a vtree
from it to compile the CLT into a SDPC. Finally, an ensemble of SDPC structures is formed.
we focus here on a single SDPC structure, following the first steps of Strudel, to evaluate
how adding a structured-decomposability constraint impacts the hardware footprint.

Bayesian networks/ACs In contrary to the previous methods, ACs are not learned
from data but compiled from Bayesian networks (BNs). Thus, in this work, we consider two
basic BN structure-learning approaches: max-min hill climbing of the bnlearn R-package
(Scutari, 2010) and Bayesian search of the Genie software. However, such methods may
produce structures with high tree-widths and thus inference may not be tractable. Thus, we
also consider a recent method (Benjumeda et al., 2019) that can enforce different treewidth
bounds and hence guarantee the tractability of inference. For all methods, ACs are compiled
through ACE (UCLA| [2015). We evaluate how the tree-width bound relates to the efficiency
of the hardware implementation and how such ACs differ from other PC models.

3. Hardware Computations of PCs

Designing efficient processors dedicated to Al computation has recently gained significant
interest. One main reason explaining this is that generic central processing units (CPUs),
optimized for sequential and flexible computing of various operations, do not perform well
for AI workloads that typically consist of simple and repetitive operations. This is illus-
trated for a simplistic fully connected neural network (NN) layer in Fig. [I(a): each neuron
performs a weighted-sum of its inputs multiplied by their respective weights, or Multiply-
and-accumulate (MAC), followed by a non-linear activation function. In a simple CPU,
for each operation the data is fetched from and written back to the memory. These mem-
ory transfers heavily dominate the final computational cost, as transferring data can cost 10
times more energy than performing an addition, resulting in low efficiency (e.g., Table. On
the other hand, massively parallel computing devices such as Graphical Processing Units
(GPUs) can provide extremely fast computation, yet they are composed of thousands of
parallel cores which need to be synchronized and balanced in terms of workload, which is
challenging. This triggered the development of dedicated computing platforms, as a neces-

A HARDWARE PERSPECTIVE TO EVALUATING PROBABILISTIC CIRCUITS

(a) 0,=ACT.(W. X+ W, X+ W3.X5) (b) 0,=in,.W, Ny + in, W, V) (c)
B¥-=sum T \ MEMORY |
0, 1| " |PE

NIACT X, = PROD 6] N

3 wy W,

X, b w, L

! XZ Xl w, M ° i, in, ° Vs,
X X
Ry N oM oaOOR —
Wi\ MAC (AT [ACTT ACT] s W6 W7W10 i INTERCONNECT
X 2 2 : v, s Vs One layer = irregular instances
1 N
We X 0, computed a single time per query A possible accelerator
w One accelerator architecture only with linear functions (Shah et al, 2020)
(% PC example
(compute-in-memory)

Figure 1: (a) Illustrative example of NN computations and accelerator, (b) Illustrative ex-
ample of PC computations, (c) Example PC accelerator by [Shah et al.| (2020).

sary step to accelerate the computation of Al workloads with processors optimized for Al
computation. Hardware acceleration seeks primarily: 1.) efficient computation, with dedi-
cated hardware blocks, 2.) hardware reusability, i.e., use of Processing Elements (PEs) that
can be replicated and interfaced, and 3.) parallelism, to increase the throughput. Following
up on the NN example in Fig. [I[a), hardware acceleration is facilitated by 1.) building ded-
icated MAC operations in hardware, as it is the dominant computation, 2.) reusing MAC
units for every neuron, and 3.) computing each neuron in parallel. Accelerators can take
the form of vector-matrix multipliers with shared inputs and weights as a matrix.

Distinctively, PCs are computational graphs composed of sums and product operations,
without non-linear activations. Non-linearities can only be present at the inputs (leaves).
In terms of computation, sum layers are in fact weighted sums and can be represented as
a MAC. Product layers provide an extra product operation compared to NNs. Addition-
ally, most queries can be answered with a single pass through the PC, which makes PCs
generally compact for inference. A simple PC example (here an SPN), decomposed into
computational steps is depicted in Fig. (b) Regarding acceleration, PCs have additional
particularities: 1.) High computation resolution. As computations consist of successive ad-
ditions and multiplications of probabilities, computing PCs, even for inference only, require
high resolution (PCs are typically computed in the log-domain to avoid underflow). Com-
parative studies (Shah et al., 2019; Sommer et al.; 2020) highlighted that small benchmarks
could require 24 — 40 floating bits depending on the error tolerance. 2.) Irregular graph
structure. As the exact PC structure vary, PCs should be decomposed into sub-graphs of
variable sizes. As analyzed in|Shah et al.[(2020]), computing a PC on a GPU with one thread
per decomposed sub-graph introduces inter-thread synchronization overhead and irregular
shared memory access, leading to relatively poor performance. Specific graph decomposition
can be required to enhance parallelism (Shah et al., [2021). An example accelerator for PCs
is depicted in Fig. (c) (Shah et al., 2020)). The general principle is to build trees of PEs,
each performing either an addition or a product. Any graph decomposition can be flexibly
considered, yet parallelism cannot be systematically achieved as graphs are irregular.

LESLIN ET AL.

4. Hardware-cost Evaluation

To evaluate more exhaustively the hardware-friendly nature of each compared model, we
divided the general hardware cost into three sub-categories: 1.) the energy per inference,
that is directly linked to the number of computations needed for a given model, 2.) the par-
allelism possibilities, that is related primarily to the graph structure and 3.) the reusability,
that is linked to the fact that the same model structure can be used for various applications.

Energy per Inference After training, we can obtain the number of sums and product
nodes, the number of variables and the depth of each model. Each operation in the PC
can be linked to a computational cost, as detailed in |Olascoaga et al| (2019). Table
shows the cost for a 64-bit float, corresponding to "double" in software computation. The
overall computational cost can be given as follows. We make here the common assumption
that the hardware can locally store all intermediate results in registers, while having to
fetch all weights and input parameters from memory. These to parameters are represented
respectively by MEM FETCH local and MEM FETCH global. For every operation, the circuit
should 1.) fetch the parameters from local and /or global memories; 2.) perform the necessary
computation (ADD or MULT); and 3.) store the result locally. Thus, the energy per inference
cost is the sum of all individual costs for a complete bottom-up pass through the PC, which
we use as a reference. We also assume that inference is be computed in a linear fashion using
64 bits, as previous work suggest it is sufficient (Sommer et al., [2020; Shah et al., [2019).

H Operation ‘ Relative energy cost at (N, = 64) H
ADD (N, bit float) 1
MULT (N, bit float) 6
MEM FETCH local (N, bits) 2
MEM FETCH global (N, bits) 10

Table 1: Relative operation costs for 64 bit float operations

Parallelism Inference speed is a critical factor when developing efficient hardware. Note
that in the case of PC computation, the irregularity of the graph structure can prevent a
systematic parallelism for scalar models. This calculation is then only an approximation that
should be refined with a given hardware structure. For example, the accelerator in (Shah
et al., [2021) can compute a maximum of 64 parallel threads. As a first approximation, the
amount of parallelism achievable by a given PC structure (Shah et al., [2021]), denoted Par,
can be given by Par = Nyodes/D, where Nyodes i the number of nodes in the PC and D is
the depth of the PC.

Hardware Reusability Another key aspect regarding hardware acceleration is to use pre-
defined PEs. A single PE can be tailored to the exact operation performed by the model,
and interconnect of PEs can be optimized. In that regard, the irregular graph structure of
PCs make them generally less suitable for hardware reuse. However, recent works around
PC training have shown that by constraining the PC structure to contain only specific
computation units (e.g., the Einsum layer of Einets, region and partition nodes in RAT-
SPNs), competitive performance can be achieved. These units could be realized as PEs for
building efficient accelerators, as shown in Section [5

A HARDWARE PERSPECTIVE TO EVALUATING PROBABILISTIC CIRCUITS

nltcs(16 variables) msnbc(17 variables) kdd(65 variables)
~6.0 a— -215
-6.1
-6.5
-22
- < 62 0
= -10 =, =
o =63 1-2.25
7 % =
) g)
=75 S e 2
o o 6 @ 230
o o &
© g0 —e— einet C o5 —o— einet 2 —o— cinet
g ~*— learnspn 4 —+— learnspn g -235 —=— learnspn
® g5 —=- bayesian network ® 66 —m— bayesian network @ ~m— bayesian network
bayesian network_tw bayesian network_tw ~2.40 bayesian network_tw
0 —— SDPC -6.7 —— SDPC —— SDPC
® model reused ® model reused a5 @ model reused
-6.8 g
10° 10% 10° 10° 107 10° 10* 10° 104 10°
Relative Energy Relative Energy Relative Energy
plants(69 variables) jester(100 variables) baudio(100 variables)
-12.5 -40.0
- -54 .
15.0 -425 W
- =
i = -56 £ -450
| o |
% -200 a @
i |- & -1
g -225 g g
@ —e— cinet S e —&— einet g 500 —— cinet
g -250 —— leamnspn 4 —#— learnspn g —— learnspn
o 275 —m— bayesian network © —m- bayesian network o —m— bayesian network
bayesian network_tw -62 bayesian network_tw 50 bayesian network_tw
300 —— SDPC —— SDPC —— SDPC
@ model reused e @ model reused 575 ® _model reused
104 108 108 100 108 10° 107 104 108 108
Relative Energy Relative Energy Relative Energy
bnetflix(100 variables) accidents(111 variables) tretail(135 variables)
-57 -215 -10.8
-
_s8 -
. 30.0 110
= -59 / f‘“"_* é‘ -325 é‘
o o % -111
8 60 & -350 2
g o o
> -61 o - o -
e —e— ecinet g7 —o— einet g2
g -6 —+— leamnspn S _a00 —+— learnspn g o cinet
© 63 —m- bayesian network o —m— bayesian network © -113 —+— learnspn
bayesian network_tw —a25 bayesian network_tw - bayesian network
_ea —— SDPC —— SDPC 114 —— SDPC
® model reused -45.0 ® model reused ® model reused
100 108 108 107 104 108 108 104 108 108
Relative Energy Relative Energy Relative Energy

Figure 2: Energy consumption vs test-set likelihood for the small benchmarks.

5. Experiments

We used 20 commonly used benchmark data sets that consist of 16 to 1556 variables and
1600 to 291326 training samples (see (Gens and Domingos| (2013)) for specifics). Only the
training set (excluding validation set) is used for the learning of each circuit.

Einets were trained for 50 epochs and the hyperparameter range included all the com-
binations of depth [1,2, 3], replica [1,...,10], number vector elements [1,...,10], number
of sum nodes per inner region [1,...,10], which means a total 3000 combinations. For
learnSPN, we used grid search of 2 hyperparameters: g-test factor [1,...,10] and number
of clustering instances [50,...,400], resulting in 80 different configurations. For SDPC, we
obtained circuits produced after every iteration till 500. For ACs, we trained BNs using de-
fault scores and priors of the packages (bnlearn and tw: BIC, Genie: BDeu, ESS 50, graph
sparsity priors) (both included as bayesian network). For bounded tree-width BNs (bayesian
network tw) we used tree widths of 1, 3, 5, 7 and 9 similarly as Benjumeda et al| (2019).
ACs (BNs), learnSPN, and SDPC took approximately 10-15 minutes to learn a model, train-
ing times for Einets varied from minutes to hours, depending on the data set and structure
complexity. After obtaining the models, the hardware cost was calculated as detailed in
Section 4. The Energy is calculated with the reference value of 1 for an adder. Every node
is decomposed in blocks with two inputs to have uniformity in the cost calculation.

Differences in PC Structures First we observed the differences in terms of PC struc-
tures. LearnSPN does not put constraints in the PC structure, other than keeping a smooth

LESLIN ET AL.

pumsb_star(163 variables)

dna(180 variables) kosarek(190 variables)
-80.0 - o~
-30 _825 -11.0
< -85.0 <
=i-40 £ = 115
@ |
I ' -875 o
2 g g
@ -50 t -90.0 s -12.0
& *- cinet @ -925 —e— einet o —o— einet
2 6o —#— learnspn g —— learnspn g -125 —— learnspn
© —m- bayesian network & 950 —B- bayesian network @ —m- bayesian network
bayesian network_tw a7 bayesian network_tw 130 bayesian network_tw
-0 —+ SDPC . —+— SDPC —+— SDPC
@ model reused ~100.0 ® model reused ® model reused
10° 10° 100 107 10* 10° 100 107 10* 10° 100
Relative Energy Relative Energy Relative Energy
msweb(294 variables) book(500 variables) tmovie(500 variables)
e o
-10.0 -35 ,,l’" -55
(] .
< -102 £ -36 £ -60
£ il o
ol o o
o -106 v g
o -
g g7 —o— einet g -7 —— cinet
© -108 —o— einet e e
9 —— learnspn Q 39 —+— learnspn (4 —#— learnspn
© -11.0 —m~ bayesian network © —m— bayesian network © =75 —m— bayesian network
bayesian network_tw -40 bayesian network_tw bayesian network_tw
-2 —— SDPC —— SDPC -80 —+— SDPC
114 ® model reused -41 @ model reused @ model reused
-85
104 108 108 107 10° 108 104 108 10° 107 100
Relative Energy Relative Energy Relative Energy

Figure 3: Energy consumption vs test-set likelihood for the medium size benchmarks.

cwebkb(839 variables) €r52(889 variables) €20ng(910 variables)
-155
_8s -1525 7
-155.0
-160
£ £ ~% S £ 1575
o o £
@ 165 @ 1 -160.0
g 8 s 8
2 g - -162.5
® -170 —o— cinet ® —o— cinet g 1650 4 o einet
g —— learnspn g -100 e g e leamson
® s —=- bayesian network ® —m bayesian network 8 _1675 - bayesian network
bayesian network_tw o bayesian network_tw bayesian network_tw
—— SDPC -105 —— SDPC -170.0 —— SDPC
_180 ® model reused ® model reused 12s @ model reused
10° 10° 107 108 10° 100 107 10° 10° 100 107 10°
Relative Energy Relative Energy Relative Energy
bbc(1058 variables) ad(1556 variables)
-20
-255
< =
T1-260 ; =i-30
7
3 g r‘l/o—*’”
o -40
2 -265 2
® —e— einet 4 ~&— einet
] o —#— learnspn
g 0 —— learnspn 3 50 P
® —=~ bayesian network —m— bayesian network
. bayesian network_tw bayesian network_tw
—275 —— SDPC —60 —— SDPC
@ model reused @ model reused
108 108 107 10° 108
Relative Energy Relative Energy

Figure 4: Energy consumption vs. test-set likelihood for the large benchmarks.

and decomposable PC. As such, the tailored graph structure can be more irregular, which
can impact the parallelism. The depth of the converted AC is directly proportional to the
number of random variables in the network leading to deeper and more shallow networks.
Einets are learned over a predefined structure and are overall very regular. SDPCs usually
lead to a compact structure even with the additional structural-decomposability constraint.

Model Accuracy versus Energy Consumption Figs. 2] [3] [4] show the obtained test-
set likelihoods and energy values for all benchmarks. For each method we only include
hyperparameter combinations for which there no higher likelihood with less energy. Overall
we can make the following observations: 1.) LearnSPN produces PCs with highest test-set
likelihood for 10 out of 20 benchmarks. This can be explained because learnSPN can learn
very tailored structures with less structural constraints giving more freedom to fit the input

A HARDWARE PERSPECTIVE TO EVALUATING PROBABILISTIC CIRCUITS

cr52(889 variables) cr52(889 variables) cr52(889 variables)

einet e o o 107] ® einet o " ® einet -
learnspn ewmeoee o * learnspn [d 7 * learnspn

bayesian network emon © 105{ ® bayesian network J" = bayesian network

circuits-SDPC + circuits-SDPC « + circui ts-SDPC 0y
bayesian network_tw. bayesian network_tw 108 bayesian network_tw o

-
L)

rE*e

L4

. 10

parameters
sum nodes
product nodes

.
10° u 10° © o oo 10°] eum
10% 108 107 10° 108 108 107 10° 10% 108 107 10°
Relative Energy Relative Energy Relative Energy

Figure 5: Energy consumption vs. the number of parameters, sums, and products for cr52.

data. 2.) Einets are performing well for most benchmarks, although they also have the most
generic and replicated structure. We interpret it as the fact that there is always possible a
configuration of hyperparameters that can approximate reasonably well the distribution of
the data. 3.) Einets offer a good energy /accuracy trade off. By restricting the energy budget,
e.g., to be maximum 10 for small benchmarks, 10° for bigger ones, Einets perform well even
with a simple structure. Also, the representation of Einets allows to obtain an excellent
trade off between accuracy and energy for all benchmarks (sweeping hyperparameters). We
focused here on smaller Einets for energy constraints, but their structure could be extended
for better accuracy. 4.) The additional constraints of SDPCs produces does not significantly
impact their accuracy or energy. The fact that this comes with a better tractability makes
them also a very good candidate for real time inference applications. 5.) For BNs without
a tree-width bound, the energy efficiency varies greatly with the learning method. Some
BNs failed to compile to ACs (e.g. jester, baudio, bnetflix and msweb), likely due to larger
tree-widths. Different tree-width bounds offer a similar trade-off of fit and efficiency as the
previous methods. Likelihoods are excellent for some data sets but not for all.

Energy Consuming Operations Fig. |5 shows the effect of the number of parameters,
sum and products on the energy consumption for PCs on the "cr52" benchmark. Although
the number of parameters is strongly correlated to the energy consumption, we can observe
that, for an equivalent number of parameters, the energy can vary greatly, suggesting that
some structures lead to more energy-efficient implementations, even with a constant number
of parameters. Fig. [6]shows the energy breakdown of every model on the "book" benchmark.
It shows that the main bottleneck is memory fetches, as although storing the intermediate
values can be performed using local registers, the weights have to be fetched from the global
memory, costing more energy.

Model Accuracy versus Inference Speed/Parallelism Parallelism is primarily in-
tended to improve the inference speed, which is also related to the overall efficiency of the
computing platform. In terms of hardware, a more tailored structure may lead to more ir-
regular graphs, hence less parallelism possibilities. Parallelism is correlated to the number of
layers in the PC. Einets have 3-5 layers (defined by user) where each layer performs a block
of computation that can as well be executed in parallel, learnSPN produced models with
20-50 layers, ACs from Bayesian networks are very deep as new layer is formed for each RV.
For instance, by analyzing LearnSPN structure, the maximum parallelism Par is limited

LESLIN ET AL.

Percentage of energy consumed

100 4
80 l I

60 -

internal_memory_fetch
external_memory_fetch
addition_cost
multiplication_cost

401

20

einet SDPC learm_spn bayesian network bayesian network_tw

Figure 6: Split share of average energy consumption for the book benchmark.

to be around 100. Einets have the advantage here because the operations are vectorized
and the depth is limited, in theory parallelization possibilities up to two or three orders of
magnitude higher with a dedicated hardware (for instance, one PE can compute a full Einet
layer). A detailed analysis is out of the scope as it is bound to a hardware configuration.

Hardware Reusability Another key feature for hardware implementation is to reuse the
same hardware structure for different applications. This can be done by building config-
urable hardware, or by using the same PC structure for several applications. Among the
model tested, Einets have the potential for reusability as per their flexible structure. In our
experiment, we picked one Einsum configuration only (depth 2, number of vector elements
9, replica 4, number of sums per inner region 8), and evaluated how this single structure
could perform learning for all benchmarks. This performance is marked by black square in
Figs. 2| Bl and [As seen, this single structure performs variably for all benchmarks, yet
showing the potential of Einets to be versatile. A hardware configuration supporting multiple
PC (Einet) structures would lead to more consistent accuracy across multiple benchmarks,
but more research is still needed to find PC structures usable for a variety of applications.

6. Related Work

Evaluations of PCs have appeared before, e.g., in (Butz et al [2018) whch compared several
SPNs. Here we take here a more hardware-focused perspective, and extend to more recent
PC implementations. Efficient hardware implementations targeting specific types of PCs
have been recently presented. For instance, the framework in [Sommer et al| (2021) enables
to compile a SPN either on a CPU or a GPU, using a tool flow based on MLIR and LLVM
compilation frameworks. Execution on FPGAs has been studied both for ACs (or Bayesian
networks) (Zermani et al., 2015} [Dormiani et al., 2005} (Geist et al., [2014) and SPNs |Molina
et al] (2018)); [Sommer et al] (2018). Custom processors have also been implemented (Shah
et all 2020] 2021)). Hardware-aware training methodologies have been previously presented,
but they typically target one type of PC (ACs in (Shah et all [2019), PSDDs in (Olascoaga.
and SPNs from learnSPN/SPFlow in (Sommer et al., 2018)).

10

A HARDWARE PERSPECTIVE TO EVALUATING PROBABILISTIC CIRCUITS

7. Conclusion

This paper presents a comparative study evaluating the hardware costs of various PC models.
Our results show that different structure learning methods can find good and energy efficient
models, but constraining to pre-defined structures, e.g., with Einsum networks, allows for
achieving better parallelism and reusability properties. Possible extensions of this work
include: 1.) generalize towards hardware implementations of ensemble models, 2.) provide
efficient hardware implementations for generic and dedicated processors, and 3.) extend
towards novel hardware-aware structure learning methods for PCs.

8. Acknowledgements

This work was supported by Academy of Finland through the WHISTLE project (grant
332218); and by grants 315771 (A. Hyttinen), 347279 (M. Trapp).

References

M. Benjumeda, C. Bielza, and P. Larranaga. Learning tractable bayesian networks in the
space of elimination orders. Artificial Intelligence, 274:66-90, 2019.

C. J. Butz, J. de S. Oliveira, A. E. dos Santos, A. L. Teixeira, P. Poupart, and A. Kalra.
An empirical study of methods for SPN learning and inference. In Proc. PGM, 2018.

Y. Choi, A. Vergari, and G. Van den Broeck. Probabilistic circuits: A unifying framework
for tractable probabilistic models. Technical report, UCLA, 2020.

M. Dang, A. Vergari, and G. Van den Broeck. Strudel: Learning structured-decomposable
probabilistic circuits. In Proc. PGM, pages 137-148, 2020.

L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compression and hardware acceleration
for neural networks: A comprehensive survey. Proc. IEEFE, 108(4):485-532, 2020.

P. Dormiani, D. Omoto, P. Adharapurapu, and M. D. Ercegovac. A design of online scheme
for evaluation of multinomials. In Advanced Signal Processing Algorithms, Architectures,
and Implementations XV, volume 5910, pages 235 — 246, 2005.

J. Geist, K. Y. Rozier, and J. Schumann. Runtime observer pairs and Bayesian network
reasoners on-board FPGAs: Flight-certifiable system health management for embedded
systems. In Runtime Verification, pages 215-230, 2014.

R. Gens and P. Domingos. Learning the structure of sum-product networks. In Proc. ICML,
pages 873-880, 2013.

D. Kisa, G. V. den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision
diagrams. In Proc. KR, 2014.

N. H. Mahmood, O. Lopez, O.-S. Park, I. Moerman, K. Mikhaylov, E. Mercier, A. Munari,
F. Clazzer, S. Bocker, and H. Bartz (Eds.). White paper on critical and massive machine
type communication towards 6G. 6G Research Visions, No. 11, University of Oulu, 2020.

M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani. Deep learning for IoT big data
and streaming analytics: A survey. IEEE Communication Surveys and tutorial, 2018.

N. Mohammadzadeh and R. Safdari. Patient monitoring in mobile health: Opportunities
and challenges. Med Arh, 68:57-60, 2014.

11

LESLIN ET AL.

A. Molina, A. Vergari, N. D. Mauro, S. Natarajan, F. Esposito, and K. Kersting. Mixed
sum-product networks: A deep architecture for hybrid domains. In Proc. AAAI 2018.
L. I. G. Olascoaga, W. Meert, N. Shah, M. Verhelst, and G. Van den Broeck. Towards
hardware-aware tractable learning of probabilistic models. In Proc. NeurIPS, 2019.

I. Paris, R. Sanchez-Cauce, and F. J. Diez. Sum-product networks: A survey. IEEE TPAMI,
44(7):3821-3839, 2022.

R. Peharz, A. Vergari, K. Stelzner, A. Molina, M. Trapp, X. Shao, K. Kersting, and
Z. Ghahramani. Random sum-product networks: A simple and effective approach to
probabilistic deep learning. In Proc. UAI, pages 334-344, 2019.

R. Peharz, S. Lang, A. Vergari, K. Stelzner, A. Molina, M. Trapp, G. V. den Broeck,
K. Kersting, and Z. Ghahramani. Einsum networks: Fast and scalable learning of tractable
probabilistic circuits. In Proc. ICML, pages 7563-7574, 2020.

T. Pipatsrisawat and A. Darwiche. New compilation languages based on structured decom-
posability. In Proc. CNIA, volume 1, pages 517-522, 01 2008.

H. Poon and P. M. Domingos. Sum-product networks: A new deep architecture. In Proc.
UAI pages 337-346, 2011.

M. Scutari. Learning Bayesian networks with the bnlearn r package. Journal of Statistical
Software, 35:1-22, 2010.

M. Scutari, C. E. Graafland, and J. M. Gutiérrez. Who learns better Bayesian network
structures: Constraint-based, score-based or hybrid algorithms? In Proc. PGM, 2018.

N. Shah, L. I. G. Olascoaga, W. Meert, and M. Verhelst. Problp: A framework for low-
precision probabilistic inference. In Proc. DAC, pages 1-6, 2019.

N. Shah, L. I. Galindez Olascoaga, W. Meert, and M. Verhelst. Acceleration of probabilistic
reasoning through custom processor architecture. In Proc. DATE, 2020.

N. Shah, W. Meert, and M. Verhelst. Graphopt: constrained optimization-based paralleliza-
tion of irregular graphs, 2021.

N. Shah, L. I. G. Olascoaga, S. Zhao, W. Meert, and M. Verhelst. 9.4 piu: A 248gops/w
stream-based processor for irregular probabilistic inference networks using precision-
scalable posit arithmetic in 28nm. In Proc. ISSCC, 2021.

L. Sommer, J. Oppermann, A. Molina, C. Binnig, K. Kersting, and A. Koch. Automatic
mapping of the sum-product network inference problem to FPGA-based accelerators. In
Proc. ICCD, 2018.

L. Sommer, L. Weber, M. Kumm, and A. Koch. Comparison of arithmetic number formats
for inference in sum-product networks on FPGAs. In Proc. FCCM, pages 75-83, 2020.

L. Sommer, M. Halkenh&user, C. Axenie, and A. Koch. SPNC: Accelerating sum-product
network inference on CPUs and GPUs. In Proc. ASAP, pages 53-56, 2021.

M. Trapp, R. Peharz, H. Ge, F. Pernkopf, and Z. Ghahramani. Bayesian learning of sum-
product networks. In Proc. NeurIPS, pages 6344-6355, 2019.

UCLA. Ace compiler, 2015.

S. Zermani, C. Dezan, H. Chenini, J. Diguet, and R. Euler. Fpga implementation of Bayesian
network inference for an embedded diagnosis. In Proc. PHM, pages 1-10, 2015.

12

	Introduction
	Probabilistic Circuits and Their Learning Methods
	Specific PC Learning Methods Compared in This Work

	Hardware Computations of PCs
	Hardware-cost Evaluation
	Experiments
	Related Work
	Conclusion
	Acknowledgements

