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Abstract

This paper presents a method for online updating of conditional distributions in Bayesian
network models with both discrete and continuous variables. The method extends known
procedures for updating discrete conditional probability distributions with techniques to
cope with conditional Gaussian density functions. The method has a solid foundation for
known cases and may be generalised by a heuristic scheme for fractional updating when
discrete parents are not known. A fading mechanism is described to prevent the system
being too conservative as cases accumulate over long time periods. The effect of the online
updating is illustrated by an application to predict the number of waiting patients at the
emergency department at Aalborg University Hospital.

Keywords: Bayesian networks; conditional linear Gaussian models; incremental learning;
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1. Introduction

Modern Al-based systems are often dependent on substantial amounts of data for appropri-
ate training of the systems. Bayesian networks (Pearl, 1988 |Cowell et al.,|1999; Jensen and
Nielsen, [2007; Koller and Friedman, 2009; |Kjeerulff and Madsen, 2013) are quite flexible
and may be constructed based on both expert knowledge and historical data. There are
methods for learning the qualitative structure of models, e.g., (Spirtes et al., 2000) as well as
for estimating the parameters, e.g., (Lauritzen) [1995). This usually results in robust mod-
els, yet they may be improved by methods to dynamically adjust the models during their
actual use (Spiegelhalter and Lauritzen, [1990; |Olesen et al., 1992; Madsen et al., 2017).
Such systems are able to adapt parameters to local conditions, e.g., variation in disease
patterns at various locations, and to react to temporal changes, for example an increasing
inflation or a decreasing frequency of smokers in the population. Online learning can also
compensate for imprecise parameters, e.g., conditional probabilities estimated from sparse



MADSEN ET AL.

data, or educated guesses based on expert opinion. The parameters may then be adapted
to reflect reality when the system is put in use.

In this paper, we introduce a method for online parameter learning or updating in
Bayesian networks with both continuous and discrete variables. In the Conditional Linear
Gaussian (CLG) Bayesian network the mean of a continuous variable is a linear function
of the continuous parents conditional on the discrete parents and the variance does not
depend on the values of the continuous parent. The basic idea of the proposed algorithm is
to use the Normal Equation for linear regression to update the mean as new data arrives (as
opposed to an iterative Gradient Descent approach or an incremental batch approach that
would not update the model between each re-estimation step). The Normal Equation is an
analytic approach to finding the coefficients of a linear regression using a least square cost
function, see, e.g., Murphy| (2022). The trick is that parameter updates can be performed
incrementally and online without storing the entire dataset.

Previous work on online learning of Bayesian network parameters includes (Spiegelhalter
and Lauritzen) [1990; |Olesen et al., [1992; Ratnapinda and Druzdzel, 2015; Madsen et al.|
2017). Madsen et al. (2017) and Ratnapinda and Druzdzel (2015) consider different appli-
cations of the EM algorithm (Lauritzen, |1995) for parameter learning from a batch of data
(referred to as batch EM). Using batch EM, the idea is to collect data in batches and learn
parameters off-line, for instance, during maintenance hours as suggested by |[Ratnapinda
and Druzdzel| (2015). Adaptive causal probabilistic networks and fractional updating are
described in Olesen et al.| (1992) who cites Titterington| (1976) while adaptive probabilistic
networks are described in Russell et al.| (1995) and [Binder et al| (1997)). A similar gradient
descent approach is described in [Jensen (1999). Madsen et al. (2003|) describes how the
approach of |Olesen et al. (1992)) referred to as sequential learning has been implemented
in the HUGIN tool. The online EM algorithm of |Cappe and Moulines| (2009) is another
stochastic gradient method for online updating.

The motivation behind this work is the desire to predict patient flows and waiting times
for patients at the emergency department of Aalborg University Hospital (UH). Aalborg
UH is the largest hospital in the region of North Jutland (one of five regions in Denmark)
with 538 beds located in Aalborg (as of July 2020) and 244 beds at other local hospitals in
the region. In total the hospital had 6646 full time positions in 2018 (Madsen et al., [2020).
The emergency department covers more than half of the activities in the region.

The granularity of the patient flow prediction model by Madsen et al. (2020) is one-hour
intervals and it is designed to cope with variations during the day as well as over seasons.
Moreover recurring arrangements such as annual music and sport events are incorporated,
as well as short term influences as for example weather forecasts. The resulting param-
eter space is enormous and therefore we have experimented with various ways for online
adjustment to improve the precision of the predictions.

In Section [2] we give preliminaries and present the notation used in the paper and
in Section [3| we briefly describe the domain of application. Section {| describes the applied
methodology, Section [5]demonstrates the impact of the applied methodology on a motivating
example, and Section [0] presents some of the results produced by the developed solution.
Finally, Section [7| gives conclusions and pointers to future work.
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2. Preliminaries and Notation

A Bayesian network B = (G = (V, E),P) is a compact way of representing the joint prob-
ability distribution over a finite set of discrete variables X'. The variables are represented
as vertices in the oriented acyclic graph G = (V, E), where the edges F represent direct de-
pendencies between variables represented as nodes V. For each variable X € X', P specifies
a conditional probability distribution P(X |pa(X)) where pa(X) are the parents of X in G.
B is a factorization of the joint probability distribution P(X’) of X'. The joint distribution
P(X) decomposes into the product of conditional probability distributions (CPDs) as:

P(X) =[] P(X|pa(x))
Xex

where X = {X1,..., X, }. From the Bayesian network a junction tree (Jensen et al., 1990)
may be constructed. A junction tree exploits the (in)dependencies between variables and
stores the joint distribution of X as a tree where nodes are subsets of X with associated
potentials with an entry for each combination of states in the subset. The junction tree
enables efficient computation of the conditional probabilities P(X | €) of variables given
evidence € on any combination of other variables. This representation is particularly efficient
when G is sparse, but the space requirements remain an inherent problem even for models
of moderate size.

The complexity can be reduced by introducing continuous variables. A Conditional Lin-
ear Gaussian (CLG) Bayesian network (Lauritzen), 1992} Olesenl [1993; [Lauritzen and Jensen),
2001; Kjeerulft and Madsen, 2013) extends a Bayesian network with variables with a condi-
tional linear Gaussian distribution for each configuration of discrete parents. The structure
of the graph G is restricted to only allow continuous descendants of continuous nodes. We
use AT to denote the continuous variables and XA to denote the discrete variables such that
X = AT U Xa. For each configuration x; of discrete parents I C A, a continuous variable
Y is specified by a conditional linear Gaussian distribution N (a(z;) + 8(z1)T Z, 0(z1)?),
where « is a constant, 5 is a vector of weights for the continuous parent states represented
by the vector Z and 87 is the transpose of 5. The variance o depends only on the con-
figuration x of discrete parents. The joint distribution of all variables takes the form of a
CG-potential, where continuous variables AT are multivariate normally distributed for each
configuration xa of discrete variables Xa:

P(Xa =zp) x Nj(u(za),0%(za)) = [[ P(X|pa(X))* ] p(¥|pa(Y))
XeXA YeAr

where N denotes a j-dimensional Gaussian, j = |AT| and p is the density function for Y.

When a system is put in adaptive mode the conditional distributions may be updated
based on the actual observed values. In the discrete case conditional probabilities are
assumed to be Dirichlet distributed (Spiegelhalter and Lauritzen, [1990)). A variable with
n states is described by a n-dimensional Dirichlet distribution with parameters aj, ..., a,.
The o’s may be interpreted as a contingency table with counts of observed data. The sum
of all cases s = X,y is termed the equivalent sample size, and the distribution of X is
simply the observed frequencies of the states:

Py(X) = (a1/s,a2/8,...,an/s)
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After a new case is seen the corresponding « is increased by 1 and the frequencies are
updated accordingly. If the i’th state is observed the updated distribution is computed as

Pi1(X)=(a1/(s+1),..., (i +1)/(s+1),...,a,/(s + 1))

As can be seen it is sufficient to supplement the distribution with a recording of s in order
to do the update.

If the parents of a variable are not observed, we may still adjust the distribution of X.
This is done by fractional updating where a linear combination of Dirichlet distributions is
approximated by a single Dirichlet distribution with the correct mean and average variance.
We will not go in details with this, but refer the reader to (Spiegelhalter and Lauritzen),
1990)) for details.

As the system accumulates experience, the counts will increase, and the dynamics there-
fore be reduced. This may increase the certainty of static parameters, but in other situations
some flexibility is desirable. A more vivid system can be maintained by fading, where the
equivalent sample size is limited by an upper bound termed the mazimal sample size m. A
fading factor A = mﬁfl is then multiplied to the effective sample size.

Our aim is to extend the sketched methods to cope with density functions for continu-
ous variables. Discrete variables are updated as usual, and we seek procedures to update
conditional linear Gaussian distributions in the setting of CLG Bayesian networks.

To assess the performance of the prediction models, we use mean absolute error (MAE)

N PR .
and root mean square error (RMSE). MAE is defined as MAE = W and RMSE is

N )2
defined as RMSE = w where N is the sample size, and y; is the true value and
x; is the prediction for case 1.

3. Domain of Application

A CLG Bayesian network model for predicting patient flow has been constructed from a
combination of domain expert knowledge and historical data using the learning capabilities
of HUGIN software (Madsen et al., 2003} 2017)) as described by [Madsen et al.| (2020]). The
prediction model was estimated off-line and a number of indicator variables are included
in the model to adjust for specific (and returning) events such as, e.g., national holidays,
vacation, social events and sport events (Madsen et al.,[2020). Figure [1]shows a (simplified)
excerpt of the model for predicting the number of patients waiting in the emergency depart-
ment at Aalborg University Hospital. Nodes depicted by double ovals are continuous and
the variables hour, weekday, and month are discrete with their intuitive state spaces. The
model is temporal and variables with prefix LAG carries over the values from the previous
hour. In order to cope with the complexity of the domain, the number of waiting patients
is modelled as a continuous variable even though that it is, of course, discrete by nature.
The domain of application and a software system for predicting patient flow at the
emergency department of Aalborg University Hospital has been described in (Madsen et al.|
2020)). The model in Figure |1]is a simplified version of the model deployed in the software
system. It has a total of seven variables where three are discrete and four are conditional
linear Gaussian. The model implemented in the software system is a dynamic Bayesian
network in order to predict future patient flow beyond one hour. In the simplified model,
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Figure 1: An excerpt of the model for predicting patient flow.

the dynamics of the domain of application is captured by the lag variables that are always
observed (we know the number of patients that arrived in the past hour).

Using the linear Gaussian distribution reduces the number of parameters to be esti-
mated. This is important as the dataset available covers a short period of time and there is
some dynamics in the underlying population due to, for instance, changes in the geograph-
ical area covered by the emergency department at Aalborg University Hospital. The aim
of this paper is not to describe the model in detail but rather to present the approach for
updating the parameters of the model as data is collected.

4. Methodology

In this section we will describe the procedures to update the conditional Gaussian density
functions as new cases are run through the system. A continuous variable is updated for the
observed configuration of its discrete parents. In a general setting, no learning takes place
for unobserved configurations of discrete variables (in the patient flow model all discrete
variables are observed).

Consider a continuous variable Y with discrete parents I in configuration x;. The
distribution of Y conditional on I is assumed to be a CLG distribution where the mean is
a linear regression function of the continuous parents pa(Y) N AXr = {Z1,...,Z,} on the
form a(zr) + >, Bj(2r)z; and the variance is o(xr)?.

To fit a linear regression to a set of cases using a least square cost function, we can, e.g.,
use an iterative Gradient Descent approach or an analytical approach such as the Normal
Equations. We will use the latter as it is a one-step algorithm that gives a closed-form
solution to minimize the loss function (least square cost function) and we expect to have a
(very) low number of continuous parents of each variable. We describe for the three cases
|pa(Y) N Ar| = 0,1,2, which are used in Figure [l how to update the parameters of the
model incrementally without storing the entire dataset. To simplify the notation, we do not
index the equations by the configuration x; of the discrete parents I.

4.1 Basic case

For a continuous variable with no parents the potential is a simple one-dimensional Gaussian
N (p,0?). If the distribution of the variable Y is described by a sample of N observations

Y1, ---,YN, We estimate the mean pn and variance 012\, of Y from the standard formulas
1 < 1 &
- d 2 - L 2
N Z_ MmeINTN T Zi_l(yz )
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Rewriting the squared expression

2 a 2 1 a i
(yi — uv)* = Z}yz -5 | 2w
i= =1

we can calculate the updated mean and variance when a new instance yx 1 becomes known:

N

N 2
1 1
AN+1L= Ny (; Yi + yN+1> and 034 = (Z y; + yN+1> N1 (; Yi + yN-i—l)

N N
It follows that the triple (N, Y v, > y?) is a sufficient statistic to update the model.

)

4.2 Variables with one parent
For a continuous node Y with one continuous parent X, we have y = By + f1x. We find

estimates for puy, ux and S

SSay

uy = N Zyz and pux = N sz and 51 550
where ,
SSmx:ZIEQ—%(Z%) and ssxy:ny—%(Zm’Zy)

are proportional to the variance of X, respectively, the covariance between X and Y, ¢y x

N
wx =y Z(yi — py ) (@i — px)

N -1

Finally, the updated values for By is computed as ﬁo = uy — ﬁl ux and the variance for Y
is adjusted to o2 — % as it is conditioned on X being known.

It follows that (IV, Z 2,3y, > 22,3 9%, > 2y) is a sufficient statistic for Y and we must
add ) zy in addition to what is already stored. The elements of the sufficient statistic can
be increased incrementally when a new case arrives similarly to how this is done for the
basic case. In the case of missing values, the computed mean is used as the true value in
the updating equations.
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4.3 Variables with two parents

For a continuous node Y with two continuous parents X; and Xy we have y = By + S1x1 +
Boxo. Without going into details, we simply state the formulas for 5;

Bo = §— bi71 — o

5 = 2yl 9)% = Y oy 3 w17
doaiyoas — (o wiaa)?

s Yy )t = Y my > wias

B2
Sty xs — (3 wiws)?
X1 9X,Y  9YXodXoY

and the variance for Y is now adjusted by an additional term to 012, - >
X2

X

It follows that (N,> z1,> @9, Y v, > 22,3 23,342 > 2129, > 219, Zl xoy) is a suffi-
cient statistic for Y. This generalises nicely, such that an extra term ) x;y is needed for
each parent X; to Y and similarly an additional factor ) x;z; has to be added for each
combination of parents X; and Xj.

Again, in this case, the elements of the sufficient statistic can be increased incrementally
when a new case arrives similarly to how this is done for the basic case. In the case of missing
values, the computed mean is used as the true value in the updating equations.

4.4 Simple fading Mechanism

The proposed fading mechanism is implemented by multiplying each element of the sufficient
statistic by the fading factor A\ for each variable prior to updating. For instance, in the case
of two parents, the element ) zy is updated as xy11yn+1+A* Y zy where xn41 and yn 41
are the values of X and Y in the new case N + 1.

5. Motivating Example

Figure [2] illustrates the performance of the proposed methodology on a motivating example
with the objective to predict the variable Waiting that represents the number of waiting
patients at a specific point in time. The figure shows the training data (brown), the test
data (blue), and predictions made with the model without updating (orange) and different
values of A (green, red, and purple). The x-axis covers a series of five time points that are
repeated four times producing a dataset of twenty values. This data is repeated twice. The
datasets can be interpreted as reflecting values over four days where each day only has five
hours. This means that the training data (when conditioning on HOUR) has five hours with
four values each distributed over four days. The test period is similar to the train period
where the value five has been added to each value shifting the curve up by five. The aim of
the example is to demonstrate that updating as expected over time improves performance
by reducing the error in the predictions. We use a simple model M similar to Figure [1| to
predict the number of waiting patients (for the example we ignore the fact that predictions
cannot be negative).

It is clear from a comparison of the orange plots in the figure that updating improves
the performance of the predictions. The MAE for each of the cases where M is not updated
and updated, respectively, is MAE(M) = 6.4 and MAE(M*(A = 1)) = 5.08 where M* is M



MADSEN ET AL.

15

104

—-10

—— Waiting (test data) —#&— Predicted, update, A =1 —#— Predicted, update, A=0.9
Predicted, no update ~ —%— Predicted, update, A=0.95 —#— Waiting (train data)
-5+ 7T 7 T 7T T T T T T T T T T T T T T T T T T T T T T T T T

Figure 2: Train, test, and prediction without and with updating (different A values).

updated. This corresponds to a 21% improvement. The fading has in this case been set to
A = 1 reflecting that cases are accumulated. With fading factor A = 0.95, the performance
is MAE(M*(A =0.95)) = 4.77 while the performance is MAE(M*(A =0.9)) = 4.53 for
A =0.9. In this example, the fading mechanism improves performance.

6. Experimental Results

In this section, we describe the results of an experimental analysis performed on anonymised
historical data from the emergency department at Aalborg University Hospital.

6.1 Setup

The experimental analysis uses the simplified prediction model shown in Figure The
patient flow at the emergency department correlates with the weather. The model uses
observational data on mean temperature the past 1 hour. This data is accessed through
Danish Meteorological Institute’s (DMI) Open Data Application Programming Interface
(API). DMI Open API provides free and open access to DMI’s dataEEl through a REST
APL

The dataset used in the experiments covers the period from March 2019 until end of
2020. There was a change in the annotation of data in March, 2019, which means that data
prior to March, 2019 is not available for the experimental analysis.

1. https://confluence.govcloud.dk/display/FDAPI/Danish+Meteorological+Institute+-+0pen+Data
2. https://www.dmi.dk/frie-data
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The analysis uses different subsets of the data from 2019 to estimate the initial values
of the parameters of the model. Four different subsets are considered (March to December,
July to December, October to December, and December). The initial estimation of the
parameters of the model also produces the set of sufficient statistics necessary for the online
updating method. The aim is to assess the potential impact of the amount of data on the
performance of the updating algorithm.

The experimental analysis is performed with and without updating the parameter values
of the model as part of processing the test data. For the experiment with updating the
parameter values, we consider ten different values of the fading factor A. The values are
0.9,0.91,...,0.98,0.99 and 1 reflecting equivalent sample sizes of 10,11.1,...,50,100, and
accumulation of data, respectively. Furthermore, in the experiments, we set all predicted
negative values to zero as it does not make any sense to predict a negative number of waiting
patients.

The model is predicting the number of waiting patients classified as orthopaedic patients
where the input values are point in time of the prediction (month, weekday and hour), mean
temperature past one hour, and the number of waiting patients the previous hour. Please
notice that we are introducing a general updating scheme that does not require all discrete
variables to be observed.

The methodology is implemented in Python using the HUGIN Python APIEI (Andersen
et al., |1989; Madsen et al., 2005). Experiments are performed on an Apple MacBook Pro
(M1, 2020, 8 GB RAM) running Monterey.

6.2 Results

The results of the empirical analysis on MAE are shown in Figure 3| (the results for RMSE
shows a similar plot that is left out to meet the page restrictions). The figure shows eight
curves with four curves in black and four curves in different colors where the black curves
represent the MAE values with no updating for the four datasets. Here, the largest training
dataset (March to December) produces the smallest MAE and the smallest training dataset
(December) produces the largest MAE. The black curves are included for easy reference
and they are constant across the x-axis as the MAE in the case of no updating does not
depend on the value of A\. The color curves show the MAE for the four different datasets
as a function of A values in the range from 0.9 to 1.

It is clear from the results presented in Figure[3|that accuracy of the predictions improves
with the amount of data used to estimate the initial values of the model parameters. The
four black curves in the figure shows this. The bottommost black line represents the training
dataset March - December with MAE = 0.821, the second bottommost black line represents
the training dataset July - December with MAE = 0.853, the second topmost black line
represents the training dataset October - December with MAE = 0.941, and the topmost
black line represents the training dataset December with MAE = 1.56. Hence, with no
updating the performance decreases from MAE = 0.821 to MAE = 1.56 as the number of
cases is reduced from covering March - December to only December.

Similarly, considering the case of data accumulation, i.e., A = 1, the performance in
terms of MAE improves from MAE = 1.08 to MAE = 0.801 as the size of the training dataset

3. https://www.hugin.com
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Figure 3: Mean absolute error against A\ values for the four different training datasets.

increases. The performance is in all cases except one better than the results obtained using
no updating. In fact, all experiments with updating using different values of A and different
training datasets are better than the corresponding experiment with no updating (except a
few cases). Reducing the size of the dataset used for the initial parameter estimation has a
larger impact when there is no updating than when parameters are updated.

Notice that discrete variables in the model (see Figure [1)) are always observed in the
experimental analysis as they represent the point in time for which the prediction is made.
Hence, the learning is only relevant for the continuous variables in the model. In some
situations, data may be missing on the continuous variables for different reasons. In such
cases, we use the estimated values as true values.

For the datasets considered in the experiments, the impact of using a fading factor
appears to be marginal. In a few cases, the performance is improved over the case of no
fading. This is the case for the training set October - December where the performance
appears to degrade as A approaches 1 (this is the green curve in Figure . Additional
experiments with several more datasets are required to make qualified recommendations on
the most appropriate value of A.

7. Conclusion and Future Work

We have presented a method for online updating of conditional distributions in Bayesian
network models with both discrete and continuous variables. The proposed method extends
known procedures for online updating of parameters in Bayesian networks with discrete vari-
ables to cope with continuous variables that have a conditional linear Gaussian distribution.

10
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The method includes an option to use a fading mechanism to reduce the impact of past
data and to avoid the system becoming too insensitive to future cases.

The method is motivated by work on predicting the number of waiting patients at the
emergency department of Aalborg University Hospital. The paper includes the results of
an experimental analysis where different subsets of 2019 data is used to predict the number
of waiting patients in 2020 under different values of the fading factor. The option of online
updating is important as the dataset available to estimate the parameters of the prediction
model is rather limited. In addition, there has been changes in the geographical area covered
by the emergency department of Aalborg University Hospital, which change the patient flow.

The results of the experimental analysis demonstrate that the online updating of con-
ditional linear Gaussian Bayesian networks can improve performance of the predictions.
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