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Abstract

We present a decision support system using a Bayesian network to predict acute fish toxicity
from multiple lines of evidence. Fish embryo toxicity testing has been proposed as an
alternative to using juvenile or adult fish in acute toxicity testing for hazard assessments
of chemicals. The European Chemicals Agency has recommended the development of
a so-called weight-of-evidence approach for strengthening the evidence from fish embryo
toxicity testing. While weight-of-evidence approaches in the ecotoxicology and ecological
risk assessment community in the past have been largely qualitative, we have developed
a Bayesian network for using fish embryo toxicity data in a quantitative approach. The
system enables users to efficiently predict the potential toxicity of a chemical substance
based on multiple types of evidence including physical and chemical properties, quantitative
structure-activity relationships, toxicity to algae and daphnids, and fish gill cytotoxicity.
The system is demonstrated on three chemical substances of different levels of toxicity. It
is considered as a promising step towards a probabilistic weight-of-evidence approach to
predict acute fish toxicity from fish embryo toxicity.

Keywords: Bayesian networks; toxicology; weight-of-evidence; real-world application.

1. Introduction

European legislations require Reduction, Replacement or Refinement of animal testing wher-
ever possible (Lillicrap et al., 2016). The use of fish embryos for toxicity testing is considered
a promising alternative to the use of juvenile or adult fish. However, fish embryos are not yet
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accepted as an alternative for regulatory purposes. European Chemicals Agency (ECHA)
has therefore recommended the development of a weight-of-evidence (WOE) approach to
evaluate Fish Embryo Toxicity (FET) data in combination with other types of informa-
tion as a replacement for juvenile fish toxicity data. They have challenged industry and
academia to specify the methodology needed for implementation.

In response to this challenge, we have developed a Bayesian network to predict AFT from
FET data in combination with other lines of evidence within the project SWiFT (Strength-
ening weight of evidence for FET data to replace acute fish toxicity). A Bayesian network
is a probabilistic graphical model well-suited for integrating uncertain knowledge from mul-
tiple sources and reasoning under uncertainty, see e.g., (Kjærulff and Madsen, 2013). This
makes Bayesian networks the natural choice of framework for developing a quantitative ap-
proach to fish acute toxicity prediction from multiple types of evidence including physical
and chemical properties, quantitative structure-activity relationships, toxicity to algae and
daphnids, and fish gill cytotoxicity.

In the past, WOE has largely been qualitative in nature in ecotoxicology, and risk and
hazard management (Suter et al., 2017a,b) . As a result, WOE has been criticised as too
vague, non transparent and subjective (Linkov et al., 2016). All the same, to support the
development of animal alternatives in toxicity testing, methods are needed for integrating
alternative types of evidence and for assessing their uncertainty. In Bayesian methods,
WOE has a specific meaning. It is the logarithm of Bayes factor computed as the ratio
of the posterior odds to the prior odds (Good, 1960). In the context of environmental
assessments, the WOE term is used more generally as a subjective scoring of the evidence
impacted by, for instance, relevance, strength and reliability.

Prior to the SWiFT project, Moe et al. (2020) developed a hybrid Bayesian network as
a pilot version of a quantitative WOE approach for predicting AFT from FET data. The
model performance was evaluated for a selection of substances Lillicrap et al. (2020), and
discussed in the more general context of WOE tools for prediction of acute fish toxicity
(Belanger et al., 2022). The scientific community of animal alternatives to toxicity testing
have received this preliminary model version with high interest, e.g., Paparella et al. (2021),
and provided much feedback for improvement of the model.

This paper presents a further developed decision support system using a Bayesian net-
work to integrate and quantify evidence from multiple lines of evidence to predict acute fish
toxicity. The model naturally decomposes into a set of components reflecting different types
of information. The model is delivered to the user with a flexible web-based user interface.
The web-based user interface has been presented to and evaluated by different groups of
stakeholders. The main use-case of the system is that a producer of a new chemical sub-
stance uses the system to predict fish acute toxicity of the substance and use the results as
documentation toward the regulatory authorities such as, e.g., ECHA.

The system was developed using HUGIN software (Andersen et al., 1989; Madsen et al.,
2005). and we focus on the technical implementation and functionality.

2. Preliminaries and Notation

A Bayesian network N = (X , G,P) over a set of discrete variable X is an efficient factoriza-
tion of the joint probability distribution P (X ) when the directed, acyclic graph G = (W,E)
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with vertices W and edges E is sparse. The joint distribution P (X ) decomposes into a
product of conditional probability distributions (CPDs) P (X | pa(X)) as specified by G
such that P (X ) =

∏
i P (Xi | pa(Xi)), where X = {X1, . . . , Xn}, pa(Xi) are the parents of

Xi in G = (W,E). The vertices W of G correspond one-to-one with X and E is the set of
directed edges in G.

The Conditional Linear Gaussian (CLG) Bayesian network, see, e.g., Lauritzen and
Jensen (2001), is a hybrid model with discrete and continuous variables where the latter
follows a CLG distribution, i.e., Y ∼ N(α(i) +

∑
j βj(i)zj , σ(i)2), where i is a configuration

of the discrete parents of Y and zj is the value of the jth continuous parent Zj of Y ,
respectively. The continuous variables are used to capture individual toxicity values, which
otherwise would be merged into an average.

A Bayesian network with functions nodes (Madsen et al., 2014) is an extension of
Bayesian networks to include function nodes. A function node represents a numerical value
computed from a mathematical expression. An expression may include probabilities com-
puted through inference in a Bayesian network and may be used to define constants in
mathematical expressions defining the content of a CPD. We use function nodes to param-
eterize the model and compute values based on the results of inference in the model.

Inference in a Bayesian network is the task for computing posterior marginals P (X | ε)
where ε is a set of observations (variable instantiations) for all non-observed variables.
Inference is performed by message passing in a junction tree structure followed by the
evaluation of the expressions associated with function nodes. Function nodes enable the
specification of all calculations related to the use of a Bayesian network in a single model,
e.g., a function node may take the value one, if a computed value is above a threshold and
zero otherwise.

3. Domain of Application

Bayesian networks are gaining popularity in ecotoxicology and ecological risk assessment,
because of their ability to integrate different types of data and other information, and to
predict the probability of specified states (Kaikkonen et al., 2021).

We have developed a Bayesian network to predict the acute toxicity of a chemical sub-
stance to juvenile fish (acute fish toxicity - AFT) based on FET data in combination with
different types of evidence, organized into three lines of evidence to represent a WOE
approach. Toxicity is measured as either LC50 (lethal concentration for 50% of the test
population) or EC50 (effect concentration for 50% of the test population), depending on the
assessment endpoint and test type. Note that higher LC50 values represent lower toxicity
and vice versa.

The model described in this paper is the only published model developed for this purpose
to our knowledge. Therefore, the performance of this model can only be compared with the
use of FET data directly as a predictor of AFT.

The long-term aim of the system described in this paper is to provide a conclusive frame-
work that supports the full adoption and acceptance of FET data in combination with other
relevant information as an alternative to AFT data, to routinely fulfil the regulatory require-
ments for AFT data. Relevant knowledge gaps have been identified by ECHA and other
stakeholders that currently prevent full acceptance of the FET as a replacement. These in-
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clude the domain of applicability for the various inputs (physical-chemical properties, mode
of action, all toxicity test lines of evidence, and metabolism considerations) as they relate
to FET and AFT outcomes. The intent of the work is to define the widest scope possible,
i.e., the group of chemical substances and their properties, for which AFT can safely be
replaced by FET data using existing alternative assays and supporting information.

From regulators and society in general there is an ever-increasing demand that the use
of animal testing is reduced as much as possible. The aim of the system is to predict AFT
LC50 intervals for a chemical of concern from fish embryo toxicity taking multiple types of
evidence into consideration thereby reducing the use of animal testing. We have developed
a Bayesian network to predict the acute toxicity of a chemical substance to juvenile fish
based on multiple source and types of evidence, organized into three lines of evidence.

4. Bayesian Network

The earlier version of this Bayesian network was been developed as a response to the chal-
lenge to specify a methodology that is needed for implementing the use of FET data in a
WOE approach (Moe et al., 2020), and evaluated for a selection of substances (Lillicrap
et al., 2020). This process identified several technical challenges, some of which have been
addressed in this paper by further developments of the model. The main structure of the
developed Bayesian network is shown in Figure 1. The Bayesian network predicts acute
fish toxicity of a chemical substance based on information on the group of substance and
observational data from different tests performed on four different assessment endpoints:
fish embryo, algae and daphnids, and fish gill toxicity. These endpoints represent three
different lines of evidence that are combined in a quantitative WOE approach where the
weighting is encoded in the conditional probability distribution of the variable representing
acute fish toxicity. In total the Bayesian network has 97 nodes and it should be used to
predict acute fish toxicity for one substance at a time.

Figure 1: The main components of the Bayesian network.

For the three lines of evidence there is a similar structure supporting the specification
of up to ten different test values for each of fish embryo, algae, daphnids, and fish gill
cytotoxicity. Figure 2 shows the part of the model responsible for capturing evidence on
daphnids and for computing how sensitive the target is to daphnids. We use the (lowest)
geometric mean to find the most sensitive endpoint. The evidence is represented as con-
ditional Gaussian variables as the inputs are real values (concentration of the substance
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in mg/L). We use continuous variables to represent the toxicity values to better account
for certain characteristics of the input data such as the variation among individual toxicity
values. A function node and a selector node are responsible for computing the sensitivity
of the endpoint. These values are used to identify the most sensitive assessment endpoint,
i.e., to identify the species group to which the substance is most toxic. This information is
a main criterion for the hazard assessment which is important to communicate back to the
user and is computed inside the model. There is a similar structure for the other lines of
evidence.

Figure 2: The model component for daphnids with a selector and function node to compute
the average toxicity.

Below, we describe a set of model improvements reported in this paper compared to
the model reported by Moe et al. (2020): (1) Prior probability distribution of toxicity vari-
ables. A set of 27 possible substance groups were defined based on three physical/chemical
properties of substances, each discretized into three states: (i) mode of action, (ii) molec-
ular weight and (iii) hydrophobicity (i.e., the inverse of solubility). For each assessment
endpoint, a distribution of toxicity values was estimated for each substance group by a
hierarchical Bayesian model (ANOVA), using available toxicity data from the EnviroTox
database (https://envirotoxdatabase.org/). This estimated distribution formed the
prior probability distribution of each toxicity node, specific for each substance group.

(2) Determination of substance group for new chemicals. Figure 3 shows the component
of the model for determining the substance group when the model is run for a new substance.
The substance group is determined by the combination of the three physical/chemical prop-
erties of the substance mentioned above, provided by the user. The latter two are entered as
real values through function nodes to avoid the additional efforts of conversion to discrete
states by the user, in part to support trust in the system. Moreover, the exact molecular
weight is needed to transform the input values from concentration unit mg/L to mol/L
(explained below).

(3) Conversion of the scale for toxicity values. Although toxicity concentration values are
normally reported with the unit mg/L, the toxic potential of a solution is better represented
by the count of molecules per volume (i.e., in unit mol/L). Therefore, modelling of toxic
properties across substances with different molecular weight (g/mol) is more sensible after
conversion to the scale mol/L. Moreover, toxicity values typically follow a log-normal distri-
bution and are therefore log10-transformed before entering the value nodes, which assume a
normal distribution. The users typically have the toxicity values in the unit mg/L and the
system performs the required transformations, again to avoid the need for conversion by the
user. Also, we would like the user to enter their raw values to ensure the highest possible
trust in the system. For this reason, both the unit conversion and the log-transformation
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Figure 3: Substance group. Figure 4: Cumulative probabilities.

are built into the model. The toxicity values were discretised into seven intervals, both in
the original and the transformed scale.

(4) Discretization of toxicity values. A resolution of seven states was chosen for the
discrete toxicity variables, since this was found to be suitable in a previous version (Moe et
al. 2022). Different rules for discretization were used for the two scales of toxicity. In the
original scale (mg/L), two concentration values are used as threshold in regulatory processes,
1 and 10 mg/L, and were a natural choice of breakpoints to facilitate interpretation for
end-users. Considering that toxicity is often analysed in log-scale, we chose a discretisation
with equidistant intervals in log10 scale, extending in both directions from 1 and 10 mg/L.
For the transformed scale (mol/L, log10), the discretisation aimed to obtain a more even
distribution of observation across the states. An equidistant scale was chosen for the three
middle intervals the range −6 to −3, to capture the majority of the distribution, while wider
intervals were used for the tails of the distribution (−9 to −6 and 0 to 3) in this scale.

(5) Back-transformation of the predicted toxicity to the original unit (mg/L). The node
molecular weight (g/mol) is a parent of four nodes representing the toxicity of the substance
to each line of evidence (Fish embryo, Algae, Daphnids, and Fish gill) measured in mg/L.
The purpose is to enable back-transformation of the predicted toxicity (uni mol/L, log10) to
the scale of the input values (EC50, mg/L). The distribution of these variables is specified
as a mathematical expression involving the molecular weight. This means that these CPTs
are generated for each separate substance when a hazard assessment analysis is performed.
This model parameterization is a powerful feature of Bayesian networks with function nodes.

Figure 4 shows the computation of cumulative probabilities for the predicted effect on
juvenile fish back-transformed from mol/L (log10) to mg/L. The function nodes calculate
the probability toxicity level (LC50) being below the commonly used regulatory thresholds,
1 and 10 mg/L, which is relevant information to include in the hazard assessment results.

5. Web-Interface

The system was developed using the HUGIN Web Service (WS) Application Programming
Interface (API) (Madsen et al., 2013). It is an architecture for web deployment of prob-
abilistic graphical models including Bayesian networks. Figure 5 illustrates the structure
of the system and the flow of data and information through the system. On the left-hand
side of the figure the input data in the form of a Microsoft Excel xlsx-file is shown and on
the right-hand side of the figure the output data in the form of a PDF report is shown. In
between the input and the output, the core structure of the system is shown.
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Figure 5: Underlying architecture of the system.

The system is implemented as a client-server architecture enabling multiple users to
access the system through a web-browser. On the server side (bottom part of Figure 5),
the HUGIN WS API is hosting the Bayesian network model to be accessed from the client
side using a REST API in combination with a set of web widgets. On the client side (top
part of Figure 5), the browser is running JavaScript code implementing three main steps
Transformation, Calculation, and Presentation and interacting with the server.

Figure 6: (left) data input example and (right) extract of the conclusions part of the website
for Carbamazepine.

Data is uploaded as a Microsoft Excel xlsx-file containing the information on the sub-
stance including information on the source of each finding. Part of the content of the input
file for the chemical substance Carbamazepine is shown in Figure 6 (left). The first lines
specify information to determine the substance group and information used in the domain
of applicability assessment (not described further here). After this follows the information
related to each line of evidence. In the example, there are ten observations of fish embryo,
two algae values, and two daphnids values. There are no fish gills values in the data for
Carbamazepine. An important feature of the system and underlying model is the ability to
manage different number of observations for each line of evidence and missing values.

Figure 6 (right) shows the Conclusions part of the website. This part presents the results
of the analysis. There are four main results computed using the posterior distribution of
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Predicted effect on juvenile fish (LC50, mg/L), see Figure 4, and the nodes reflecting the
toxicity to juvenile fish of each endpoint. The rightmost part of Figure 5 shows the first
of the automatically generated PDF report that can be produced by the user once the
hazard assessment of the chemical substance is completed. The PDF report includes general
information on the substance, the original values and the transformed values used by the
support, as well as any references and other information included in the input data file).1

The system has been developed through a virtuous cycle of interaction between model
developers, system developers, users, knowledge providers, domain experts and legislators.
The system has been presented for different stakeholder groups such as, for instance, the
Animals Alternatives Interest Group of SETAC (Society of Environmental Toxicology and
Chemistry), People for the Ethical Treatment of Animals (PETA), ECHA, The European
Chemical Industry Council (CEFIC), Environment Canada, the OECD validation manage-
ment group (OECD vmgECO), the Norwegian Environment Agency and the Norwegian
Food Safety Authority. Valuable feedback and constructive critique have been collected
through both in-person and online presentations and demonstrations of the systems.

The web front-end of the system and the three chemical substances considered in the
next section are available from https://swift.hugin.com/models/FET/.

6. Results for Three Substances

Model performance was assessed by running the Bayesian network with input data from
several substances and comparing the outcome, i.e., the predicted acute toxicity of selected
chemical substances to juvenile fish, to the experimentally measured toxicity of the same
substances to this endpoint. The evaluation compared the most probable toxicity interval
of the predicted versus the observed AFT nodes under various combinations of criteria for
data selection and precision.

A more in-depth analysis and fine-tuning of the performance of the Bayesian network
is ongoing and will be reported elsewhere. The current results on more than 150 different
chemicals show that the Bayesian network can accurately identify the most probable toxicity
interval of each substance in 75-80% of the cases. Moreover, in most of the wrongly identified
cases the model predicts a higher toxicity of the substance than the observed, which means
that the hazard assessment is over-protective rather than under-protective. While we aim
for the model to be unbiased, an-overprotective outcome is preferable to under-protection
from a risk management perspective.

In this section, we analyse three substances of different levels of toxicity. The substances
are in order of decreasing toxicity to fish embryo Endrin, Triclosan, and Carbamazepine.

6.1 Endrin

Endrin is an organochloride primarily used as an insecticide, as well as a rodenticide and
piscicide.2 Figure 7 shows the input data for the chemical substance Endrin and the con-
clusion including the posterior distribution. The measured acute fish toxicity of Endrin

1. A complete sample report is available here https://swift.hugin.com/huginprog/models/FET/data/

swift_PGM22_sample_report.pdf

2. https://en.wikipedia.org/wiki/Endrin accessed 31 May 2022.
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is 0.0012 mg/L (average of 57 values), which corresponds to the toxicity level labelled ex-
tremely high toxicity (LC50 interval 0-0.01 mg/L).

Figure 7: For chemical Endrin (left) data input and (right) conclusions.

The system correctly identifies the most probable toxicity interval of the substance with
a high probability (43%) compared to the other intervals (all below 29%). For this substance
only one fish embryo toxicity value was available (0.0007 mg/L). The supporting toxicity
evidence was 10 daphnid toxicity values in the range 0.0042-0.37 mg/L, corresponding to
extremely high to high toxicity. The one FET data point alone would also have given a
correct prediction of extremely high toxicity. Nevertheless, the supporting information on
toxicity to daphnids resulted in a more precise prediction (lower SD). The high consistency
of toxicity to fish embryo and daphnids is in accordance with the purpose of this chemical,
which is to kill both fish and insects (to which daphnids are closely related).

The endpoint most sensitive to Endrin is fish embryo, which suggests that fish in general
will be more sensitive to this chemical than other species groups (represented by algae and
daphnids). Consequently, the predicted toxicity to fish will overrule the toxicity to other
endpoints, according to principles for chemical hazard assessment. Therefore, an accurate
prediction of toxicity is crucial for cases like this, where fish is the most sensitive endpoint.

6.2 Triclosan

Triclosan is an antibacterial and antifungal agent present in some consumer products, in-
cluding toothpaste, soaps, detergents, toys, and surgical cleaning treatments.3 Figure 8
shows the input data for the chemical substance Triclosan and the conclusion including the
posterior distribution. The measured acute fish toxicity of Triclosan is 0.50 mg/L (average
of 21 values), which corresponds to high toxicity (0.1-1.0 mg/L).

The system again correctly identifies the most probable toxicity interval of the substance
with a 43% probability. In this case, there are also toxicity data available for algae, to which
triclosan has only medium toxicity. However, the line of evidence that combines evidence
from algae and daphnids gives higher weight to daphnids (as closer relatives to fish than
algae), therefore the lower toxicity to algae does not prevent an accurate prediction for this
substance. The measured endpoint most sensitive to Triclosan is algae, which means that

3. https://en.wikipedia.org/wiki/Triclosan accessed 31 May 2022.
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Figure 8: For chemical Triclosan (left) data input and (right) conclusions.

an accurate prediction of fish toxicity interval is crucial for the hazard assessment also in
this case.

6.3 Carbamazepine

Carbamazepine is an anticonvulsant medication used primarily in the treatment of epilepsy
and neuropathic pain.4 Figure 6 (left) shows the input data for the chemical substance
Carbamazepine while Figure 6 (right) shows the conclusion and the posterior distribution.
The measured acute fish toxicity of carbamazepine is 40 mg/L (average of 4 values), which
corresponds to low toxicity (10-100 mg/L). The measured toxicity values for fish embryo are
all in the range very low toxicity (100-1000 mg/L). However, since the posterior probability
distribution is also influenced by the prior distribution, which is less extreme than the
observed values, the predicted toxicity for this node is still low toxicity.

Therefore, the system correctly identifies the most probable toxicity interval of the
substance to fish with a high probability (55%). The measured endpoint most sensitive
to Carbamazepine is algae, which will therefore determine the conclusion of the hazard
assessment instead of the fish. For algae there are only two measured values representing
low toxicity (49 mg/L) and very low toxicity (167 mg/L), respectively. Again, the posterior
probability distribution is influenced by the prior distribution which is less extreme than
the observations, therefore the predicted most probable interval is low toxicity (55%). This
example illustrates the importance of the prior probability distributions in this system,
which can have a high influence on the posterior probabilities for example in cases where
there are few measured values. The modelling of prior probability distributions will be
further elaborated in other papers.

7. Conclusion and Future Work

The developed system is considered as a promising step towards a probabilistic and quan-
titative WOE approach to predict acute fish toxicity from fish embryo in combination with

4. https://en.wikipedia.org/wiki/Carbamazepine accessed 31 May 2022.
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other types of evidence. Although traditional WOE assessments frameworks require a more
comprehensive evaluation of the information available, this model supports the process by
efficiently providing a prediction of toxicity, as well as an objective assessment of the con-
sistency of the evidence. While the purpose of the system is to predict acute fish toxicity,
the approach can be relevant in a more general setting for evaluating animal alternatives in
regulatory toxicity testing, or even for other types of environmental assessments.

The paper describes how a Bayesian network is turned into a decision support system
by combining different modelling approaches and linking the model to an interactive web
interface. The Bayesian network was developed combining several different modelling ap-
proaches into a single parameterized model. The model is parameterized by the information
on the substance group supplied by the user using function nodes and makes use of function
nodes as well as discrete and continuous variables on different scales to achieve its purpose
of predicting acute fish toxicity.

Future work will aim to improve the model performance by (1) refining the definition of
substance group in order to provide more informative prior probability distributions of tox-
icity, (2) exploring the use of additional information sources such as predicted toxicity from
chemical models (quantitative structure-activity relationships), (3) increasing the precision
of the model predictions by assuming lower uncertainty for continuous value variables, (4)
exploring the use of machine learning methods for optimising the weights of the lines of
evidence, and (5) better characterising the applicability domain of the model.
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