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Abstract

In the context of explainable AI, the concept of map-independence was recently introduced
as a means for conveying the (ir)relevance of intermediate nodes for map computations
in Bayesian networks. In this paper, we further study the concept of map-independence,
discuss methods for finding sets of relevant nodes, and suggest ways to use these in providing
users with an explanation concerning the robustness of the map result.
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1. Introduction

Among the methods for explaining Bayesian networks are those for explaining the evidence,
such as the map-explanation (Lacave and Dı́ez, 2002). A map-explanation is the outcome of
computing the maximum a-posteriori (map) hypothesis, i.e. the most probable hypothesis
given the observed evidence. In answering a map query, all nodes that are neither hypothesis
nodes nor evidence nodes are summed out. These intermediate nodes, however, can carry
important information about the stability of the map-explanation: will the map-explanation
be the same regardless of the values of the intermediate nodes? To capture the (ir)relevance
of the intermediate nodes to this end, the concept of map-independence was introduced
as a tool that can be used to improve a user’s understanding of the map-explanation by
revealing the information that did or did not contribute to it (Kwisthout, 2021). In Bayesian
network literature, the word relevance has been used for various purposes, to denote different
properties of different sets of nodes (see Kwisthout (2021) for a discussion of this related
work). Unlike most of this related literature, the notion of relevance tied to the concept
of map-independence pertains to intermediate nodes only and is motivated by its potential
application in explainable AI, for explaining a map-explanation’s stability.

In addition to motivating and introducing the concept of map-independence, Kwisthout
(2021) studies the computational complexity of determining whether a map-explanation is
map-independent of a given subset R of intermediate nodes; this decision problem turns out
to be co-NPPP-complete. Valero-Leal et al. (2022) provide properties that can be exploited
to improve the computational efficiency of determining map-independence and formulate a
similar concept for networks with continuous variables. Our main focus in this paper is on
determining which subsets R are of interest to investigate in terms of map-independence. In
doing so we study theoretical properties of map-independence and consider how to employ
the obtained results for explaining the robustness of a map-explanation to future observa-
tions for intermediate nodes. For the latter purpose, we consider to what extent we can meet
the criteria that are important for explainable AI: explanations are contrastive, selected, do
not refer to probabilities and are social (Miller, 2019).
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Bayesian network classifiers typically return a map-explanation as output; in case of a
single class node, the output can be considered a special case of a map query for a single
hypothesis node. Explanation methods for Bayesian network classifiers mostly focus on
directly relating input (evidence) and output (see e.g. Koopman and Renooij (2021) for a
brief overview). Recognizing the importance of including intermediate variables in the ex-
planation of Bayesian network classifiers, influence driven explanations were introduced that
include most likely values of intermediate nodes for Bayesian networks with a constrained
structure (Albini et al., 2021). map-independence provides an alternative for including
intermediate nodes in the explanation, without making any structural assumptions.

This paper is organised as follows. We present some relevant preliminaries, terminology
and notation in Section 2. Section 3 defines (ir)relevance and its properties. Finding relevant
sets is the topic of Section 4 and their use for explaining robustness of map-explanations is
discussed in Section 5. The paper is concluded in Section 6.

2. Preliminaries

We consider a Bayesian network (BN) B = (G,Pr) representing a joint probability distri-
bution Pr(V) over a set of discrete random variables V (Jensen and Nielsen, 2007). We use
capital letters to denote variables, bold-faced in case of sets. We use Ω(V ) to represent the
domain of variable V ∈ V, writing v as shorthand for a value assignment V = v, v ∈ Ω(V );
for binary-valued variables we use v and v. Bold-faced small letters v denote joint value
assignments, or configurations from Ω(V); the latter captures the domain of all configura-
tions of V. Each variable is represented by a node in the directed acyclic graph G, which
captures the independence relation among V through the notion of d-separation (Pearl,
1988). With each variable, or node, V is associated a set of local probability distributions
Pr(V | π(V )), one for each configuration of parents π(V ) of V in the graph, that together
define the joint distribution: Pr(V) =

∏
V ∈V Pr(V | π(V )). Figure 1a shows an example

Bayesian network with four binary-valued nodes and the required probability parameters.

In this paper we are interested in explaining the relevance of intermediate nodes with
respect to an outcome of interest. To this end we assume that V is partitioned into three
disjoint sets: hypothesis nodes (H), evidence nodes (E) and the remaining nodes S =
V \ (H ∪E). Although the nodes in S are often referred to as ‘intermediate nodes’ or
‘hidden nodes’, we will call them supplementary nodes. The reason for this is that the term
‘intermediate’ may suggest that these nodes are on a chain between H and E, which is
not necessarily the case; the term ‘hidden’ often entails that the nodes are not observable,
whereas we assume that S can include observable nodes that currently have no evidence.
The set E, therefore, contains only the currently observed nodes and not necessarily all
observable ones. Our outcome of interest is the map-explanation, i.e. the most likely
hypothesis h∗ ∈ Ω(H) to explain the evidence e ∈ Ω(E):

h∗ = arg max
h′∈Ω(H)

Pr(h′ | e) = arg max
h′∈Ω(H)

Pr(h′ e) = arg max
h′∈Ω(H)

∑
s∈Ω(S)

Pr(h′ s e)

Note that the supplementary nodes are the nodes summed out in the computation of the
map-explanation. We will refer to the tuple

〈
h∗, e

〉
as the explanation context. Since we
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(a) (b)

Figure 1: (a) a simple BN, (b) the graph of the Insurance BN (Binder et al., 1997).

do not assume the Bayesian network to be a causal model, the map-explanation is not
necessarily a causal explanation for the observed evidence (Halpern and Pearl, 2005).

3. Relevance: Definition and Properties

For the purpose of explaining the actual contribution of the supplementary nodes in comput-
ing the map-explanation, Kwisthout (2021) proposes to partition the set S of supplementary
nodes into a set S+ of relevant nodes and a set S− of irrelevant nodes. Where Pearl and
Paz (1987) define irrelevance in terms of d-separation, Kwisthout (2021) argues that “there
is a sense in which a variable has an explanatory role [. . . ] that goes beyond conditional
(in)dependence”. Kwisthout (2021) therefore captures the irrelevance of supplementary
nodes in terms of a newly defined concept of map-independence.

Definition 1 (Kwisthout (2021)) Let V = H ∪ E ∪ S be as before. Let R ⊆ S and
consider evidence context

〈
h∗, e

〉
. In the given context, h∗ is map-independent of R if for

all r ∈ Ω(R), arg max h′∈Ω(H) Pr(h′ r | e) = h∗.

If a map-explanation is map-independent of a set of unobserved nodes R, the most likely
hypothesis cannot change upon obtaining evidence for R, in which case R is considered
irrelevant to the explanation. To capture this, we explicitly define (ir)relevance as follows.

Definition 2 Let H,E,S,R, and
〈
h∗, e

〉
be as before. In the given context, R is relevant

to h∗ if h∗ is not map-independent of R; otherwise R is irrelevant to h∗.

Kwisthout (2021) focuses on the computational complexity of determining whether a given
set R ⊆ S is (ir)relevant, but does not discuss how to determine the partition of S into
relevant and irrelevant nodes. Looking to facilitate finding such a partition we set out to
study properties of (ir)relevant nodes. We first consider the relation to computationally-
irrelevant nodes (Druzdzel and Suermondt, 1994) such as d-separated and barren1 nodes
and conclude that these can in fact be relevant according to Definition 1. map-independence
therefore does not actually extend on conditional independence.

1. Node V is barren if V ∈ S, and V is a leaf node or a node with only barren descendants in the graph.
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Proposition 3 Let H,E,S,R, and
〈
h∗, e

〉
be as before. In the given context, let R be

relevant to h∗. Then R′ ⊆ R can be computationally-irrelevant in the given context.

Proposition 3 poses a rather weak claim that can be substantiated through the example
below; in our examples we exploit that

arg max
h′∈Ω(H)

Pr(h′ r | e) = arg max
h′∈Ω(H)

Pr(h′ | r e) · Pr(r | e) = arg max
h′∈Ω(H)

Pr(h′ | r e)

Example 1 Consider the Bayesian network in Figure 1a, with the following probabilities
specified for nodes A, B and C:

Pr(a) = 0.55 Pr(c | a b) = 0.8 Pr(c | a b) = 0.55

Pr(b) = 0.6 Pr(c | a b) = 0.1 Pr(c | a b) = 0.5

Let E = ∅ and H = {A}. Then, node C is a barren node and node B is d-separated from
node A, so both B and C are computationally-irrelevant to H given E. However, both
{C} and {B,C} are relevant to h∗ = a: Pr(a | c) = 0.67 and whereas Pr(a | b c) = 0.52,
Pr(a | b c) = 0.79. {B} is irrelevant to h∗ but becomes relevant in combination with c !

In the above example both set {C} and its superset {B,C} are relevant. In general, any
superset of a relevant set is relevant.

Proposition 4 Let H,E,S, and
〈
h∗, e

〉
be as before, and let R′ ⊆ R ⊆ S. In the given

context, if R′ is relevant to h∗ then R is relevant to h∗.

An equivalent proposition states that h∗ is map-independent of R′ if h∗ is map-independent
of R and is proven by Valero-Leal et al. (2022). Whereas every subset of an irrelevant set
is irrelevant, not every union of irrelevant sets remains irrelevant.

Proposition 5 Let H,E,S, and
〈
h∗, e

〉
be as before. Let R, R′ ⊆ S both be irrelevant to

h∗. Then R ∪R′ can be relevant to h∗.

We again substantiate this claim through an example.

Example 2 Consider the Bayesian network in Figure 1a, with the following probabilities
specified for nodes A, B, C and D:

Pr(a) = 0.3 Pr(c | a b) = 0.5 Pr(c | a b) = 0.7 Pr(d | c) = 0.25

Pr(b) = 0.5 Pr(c | a b) = 0.4 Pr(c | a b) = 0.8 Pr(d | c) = 0.7

Let E = {B} with e = b, and let H = {C}. Then h∗ = c, and both {A} and {D} are
irrelevant to c: Pr(c | a) = 0.8, Pr(c | a) = 0.7, Pr(c | d) = 0.89, and Pr(c | d) = 0.54.
However, Pr(c | a d) = 0.45 and therefore {A,D} is relevant to c.

From Propositions 4 and 5 we have that a partition of S into a set S+ of relevant nodes
and a set S− of irrelevant nodes, as suggested by Kwisthout (2021), is perhaps not what
we should be looking for. It seems more appropriate to partition at the level of subsets,
i.e. partitioning the powerset P(S) into a set P+(S) of relevant subsets of S, which we call
relevance sets, and a set P−(S) of irrelevant subsets of S. Unfortunately, this observation
makes the problem of finding relevance sets only harder.
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4. Finding Relevant Nodes

To provide explanations that are as simple as possible, we aim for small sets of relevant
nodes. Moreover, the computational costs of establishing the relevance of a given set R
depends heavily on its size (Kwisthout, 2021). From the examples and propositions in the
previous section, we have that a set of relevant nodes can contain irrelevant subsets that
may or may not contribute to the relevance of the superset. To establish a minimal set of
relevant nodes, or equivalently a maximal set of irrelevant nodes, we therefore cannot simply
discard nodes that are individually irrelevant from a set of relevant nodes. In this section
we explore several approaches to finding sets of (ir)relevant nodes. First we will consider
finding nodes that are individually relevant, before discussing the more general case.

4.1 Singleton Relevance sets

To decide upon the relevance of individual nodes to the map-explanation, we first revisit the
computationally-irrelevant nodes. We conclude that d-separated nodes cannot be relevant
in isolation; as a result, they can be pruned from the network (Baker and Boult, 1991):

Proposition 6 Let H,E,S, and
〈
h∗, e

〉
be as before. In the given context, if node R ∈ S

is d-separated from H given E then {R} is irrelevant to h∗.

Proof This result is trivial: there are no active chains between R and Hi ∈ H given E.

Individual barren nodes are also computationally-irrelevant, but can nonetheless be relevant
to the map-explanation, as demonstrated in Example 1. We argue that relevant barren
nodes can be useful for conveying information about the possible instability of a map-
explanation. Consider for example a naive-Bayesian network classifier: every unobserved
input node is a barren node. If such a node is relevant to the most-likely value of the class
node, then it can be used to describe a context in which the classifier outcome may be
different. We therefore suggest not to disregard barren nodes as possible relevant nodes.

A naive approach to establishing all relevant singletons would be to iterate over all
R ∈ R and r ∈ Ω(R) and compute the map-explanation for evidence r e. Instead, we
propose to iterate over h′ ∈ Ω(H) and compute posterior distributions Pr(R | h′ e) using
standard (join-tree) inference2 and exploit the following property:

Proposition 7 Let H,E,S, and
〈
h∗, e

〉
be as before. Then node R ∈ S is relevant to h∗

iff ∃h′ ∈ Ω(H), h′ 6= h∗ such that

∃r ∈ Ω(R) : Pr(r | h∗ e) = 0 or log
Pr(r | h′ e)

Pr(r | h∗ e)
+ log

Pr(h′ e)

Pr(h∗ e)
> 0

Proof R is relevant to h∗ if ∃r ∈ Ω(R) such that Pr(h′ r | e) > Pr(h∗ r | e) for some value
h′ ∈ Ω(H), h′ 6= h∗. That is, either Pr(h∗ r | e) = 0 or

Pr(h′ r | e)

Pr(h∗ r | e)
=

Pr(r | h′ e) · Pr(h′ | e)

Pr(r | h∗ e) · Pr(h∗ | e)
> 1

2. One full network propagation serves to compute Pr(V | h′ e) for all V ∈ V (Jensen and Nielsen, 2007).
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Algorithm 1: computing relevant singletons for context
〈
h∗, e

〉
.

Input : pruned BN B,
〈
h∗, e

〉
, ci = log[Pr(hi e)/Pr(h∗ e)] for all hi 6= h∗

Output: Set R with relevant singletons
1 R ← ∅; S ← S;
2 ComputePosteriors(B,h∗ e);
3 forall R ∈ S do
4 if ∃r ∈ Ω(R) : Pr(r | h∗ e) = 0 then R ← R∪ {R}; S ← S \ {R}
5 end
6 forall hi 6= h∗ do
7 if S 6= ∅ then ComputePosteriors(B,hi e);
8 forall R ∈ S do

9 if ∃r ∈ Ω(R) : log Pr(r|hi e)
Pr(r|h∗ e) + ci > 0 then R ← R∪ {R}; S ← S \ {R}

10 end

11 end
12 return R

If we assume that the fractions Pr(h′ e)/Pr(h∗ e) are available from the original map com-
putations, we can exploit the above by propagating h′ as additional evidence through the
network and then labelling any node R that has a value r for which the property holds as
relevant to h∗. Any node labelled as relevant is indeed relevant and after all h′ 6= h∗ have
been propagated, we are guaranteed to have identified all relevant singletons. Pseudocode
for this method is provided by Algorithm 1.

Example 3 (Experiment) We performed the described procedure on the Insurance net-
work shown in Figure 1b. We entered evidence for 5 nodes: Age = senior, SocioEcon =
uppermiddle, DrivHist = many, HomeBase = city, MakeModel = sportscar. We consider three
different sets of hypothesis nodes: Accident (H1), RiskAversion (H2) and their combination
{H1, H2}. Given the evidence, their most likely values are h∗1 = none, h∗2 = adventurous,
and this combination is also the most likely combination h∗1,2 for {H1, H2}.

In Table 1 we list, for each explanation context, the number of nodes d-separated from
H given E, the number of nuisance nodes3, barren nodes and relevant nodes. For context〈
h∗1, e

〉
all of the relevant nodes are barren nodes; the relevant node in context

〈
h∗2, e

〉
is a

computationally relevant, non-nuisance node. The set of nodes that are individually relevant
to h∗1,2 happens to be the union of those relevant to h∗1 and to h∗2.

For H1 we find the same 6 relevant nodes for each of the values mild, moderate and
severe ∈ Ω(H1). In this case, we have therefore found all relevant nodes after only a single
iteration of the algorithm. For H2 we find the relevant node for 2 of the 3 values other
than h∗2. For {H1, H2} we evaluate 15 configurations. In 6 of these configurations, we find
the same 6 relevant nodes that we found for h∗1; in 2 cases we find a subset of 5 of these 6
nodes, and in 5 cases a subset of 4 nodes. Finally, for 1 configuration we find 5 relevant

3. V ∈ S is a nuisance node if it is computationally relevant, yet not on any active chain between H and
E; nuisance nodes should arguably not be included in explanations (Druzdzel and Suermondt, 1994).
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context # d-sep # nuisance # barren # relevant〈
h∗1, e

〉
2 1 12 6〈

h∗2, e
〉

3 0 16 1〈
h∗1,2, e

〉
2 1 12 7

Table 1: For each explanation context from Example 3: the number of nodes d-separated
from H given E, the number of nuisance nodes, barren nodes and relevant singletons. Nodes
that are both d-separated and barren are counted under # d-sep only.

nodes, 4 of which are a subset of those found for h∗1 and the 5th being the relevant node for
h∗2. Only for 1 configuration did we find no relevant nodes.

In our above experiment we observe that the nodes that are relevant to a most-likely combi-
nation of hypotheses is exactly the union of the nodes relevant to the individual most-likely
hypotheses. If this property holds in general, then the number of propagations necessary
to find all relevant singletons can be reduced from |Ω(H)| to

∑
H∈H |Ω(H)|. Unfortunately,

this is not a general property, as is shown in the next example.

Example 4 Consider the Bayesian network in Figure 1a, with the following probabilities
specified for nodes A, B and C:

Pr(a) = 0.15 Pr(c | a b) = 0.4 Pr(c | a b) = 0.7

Pr(b) = 0.65 Pr(c | a b) = 0.5 Pr(c | a b) = 0.05

Let E = ∅ and H = {A,B}. The most likely value of A is a, that of B is b; the most
likely combination is also a b. Node {C} is irrelevant to both a and b, but relevant to the
combination a b: Pr(a b | c) > Pr(a b | c).

4.2 Larger Relevance Sets

From Proposition 4 we have that any superset of the relevant singletons for h∗ is also a
relevance set for h∗. For the purpose of explaining the robustness of a map-explanation,
however, relevance sets should preferably not include nodes that do not actually contribute
to the relevance. In this section we explore a number of options to establish larger relevance
sets that are suitable for explanation purposes by discussing which nodes in S to consider
for investigating relevance.

First, we reconsider the role of nodes D ∈ S that are d-separated from H given E. If a
node V ∈ S is added to a relevance set that serves to unblock a chain between a d-separated
node D and a hypothesis node, then node D is no longer d-separated from the hypothesis
and in fact can become relevant; we have observed this in Example 1. This suggests that we
should no longer disregard initially d-separated nodes when searching for larger relevance
sets. However, we could still argue that nodes that are conditionally independent when
computing the map-explanation should be considered irrelevant and disregard them for
that reason: explaining (in)stability of the map in terms of independent nodes may be very
counter-intuitive to the user.

Suggestion 1 Prior to establishing relevance sets of any size for context
〈
h∗, e

〉
, prune S

by removing all nodes d-separated from H by E.
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Even if all d-separated nodes are pruned as suggested, d-separation can still be a useful
tool for reducing the size of established relevance sets. Consider a relevance set R ⊆ S and
let R ∈ R be relevant to h∗. Then any node U ∈ R, U 6= R, that is d-separated from H
given {R} ∪ E can be removed from R regardless of whether or not U is relevant to h∗.
The relevance of the singleton {U} in this case was due to the relevance of R and in their
combination U no longer contributes to changing the distribution over the hypotheses; the
node is therefore superfluous in R.

Suggestion 2 Let R be a relevance set for context
〈
h∗, e

〉
. If D ⊂ R is d-separated from

H by E ∪R \D then R \D is more suitable for the purpose of explanation than R.

Recall from Proposition 5 that a combination of irrelevant nodes can become relevant. To
prevent having superfluous nodes in a relevance set, which easily happens when considering
supersets of relevant sets, we could restrict attention to combinations of irrelevant sets only.
An option is to start by evaluating every pair of irrelevant nodes and expanding the sets
as long as the combination remains irrelevant. If we have n irrelevant singletons, then
we already have n · (n − 1)/2 pairs to evaluate. In the contexts we experimented with
for the Insurance BN in Example 3, for example, we found at most 7 relevant singletons,
leaving 10 irrelevant non-d-separated supplementary nodes and therefore 45 pairs to explore.
Determining the irrelevance of these pairs is moreover more complex than the approach from
Algorithm 1 since we need to compute posteriors over two nodes. Ultimately, we end up
solving the map-independence problem a large number of times.

To reduce the number of irrelevant sets to evaluate, again d-separation may be employed.
The following proposition, but phrased in terms of map-independence and conditional in-
dependence, is proven by Valero-Leal et al. (2022).

Proposition 8 Let H,E,S, and
〈
h∗, e

〉
be as before, and let U,W ⊂ S. In the given

context, if U is irrelevant to h∗ and W is d-separated from H given U ∪ E then W is
irrelevant to h∗.

A set that d-separates a node from every other node in the graph is the Markov boundary
mb () of the node, consisting of the node’s parents, children, and co-parents4 (Pearl, 1988).
If the Markov boundary of a hypothesis node H were to be irrelevant to the most likely
value h∗ of the node, given the evidence, then the whole of S is irrelevant to h∗. Establishing
the (ir)relevance of the Markov boundary of H can be done by inspecting the conditional
probability distributions specified locally for H and its children.

Proposition 9 Let H = {H} and
〈
h∗, e

〉
be as before and let σ(H) denote the set of all

children of H. Then M = mb(H) is irrelevant to h∗ iff ∀m ∈ Ω(M) and ∀h′ 6= h∗ ∈ Ω(H):

Pr(h∗m | e) > 0 and
∑

C∈σ(H)

log
Pr(c | h′ πC\H)

Pr(c | h∗ πC\H)
+ log

Pr(h′ | πH)

Pr(h∗ | πH)
≤ 0

where configurations c ∈ Ω(C), πC\H ∈ Ω(π(C) \ {H}) and πH ∈ Ω(π(H)) are consistent
with m. If mb(H) ∩E 6= ∅, then we need to consider only those m consistent with e.

4. Note that these sets are not necessarily disjunct.
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Proof By definition, mb(H) is irrelevant to h∗ if ∀m ∈ Ω(M) and ∀h′ 6= h∗ ∈ Ω(H)

Pr(h′m | e) ≤ Pr(h∗m | e)

Assume each m is consistent with e and let m = p c s, where p is the configuration for the
parents of H, c that for the children and s that of the spouses (co-parents) of H. Then

Pr(h′m | e)

Pr(h∗m | e)
=

Pr(h′ |m e)

Pr(h∗ |m e)
=

Pr(h′ |m)

Pr(h∗ |m)
=

Pr(c | h′ p s) · Pr(h′ | p s)

Pr(c | h∗ p s) · Pr(h∗ | p s)
≤ 1

The result follows by using the fact that all children are mutually independent given H, its
parents and co-parents.

We can employ Proposition 9 also in case H contains more than one node.

Proposition 10 Let
〈
h∗, e

〉
be as before. Let H = {H1, . . . ,Hn}, n > 1, and consider

the additional explanation contexts
〈
h∗i , e

〉
, h∗i ∈ Ω(Hi), for each Hi ∈ H. If for each Hi,

mb(Hi) is irrelevant to h∗i then h∗ = h∗1 . . . h
∗
n and ∪ni=1mb(Hi) is irrelevant to h∗.

Proof Follows directly from independence properties given the Markov boundaries.

Investigating the (ir)relevance of Markov boundaries, although relatively efficient since all
computations can be done locally, has several drawbacks. First of all, larger Markov bound-
aries, are less likely to be irrelevant, as is clear from the next example.

Example 5 Reconsider the Insurance BN and the same evidence as in Example 3. We
examined the relevance of the Markov boundary for each of the 22 other nodes in the graph,
taking the evidence into account. One node, Good Student, is completely determined by the
evidence and can therefore not change value. For 19 nodes the Markov blanket is relevant
to their most likely value; for 13 of these the conditional probability distribution specified
for the node itself already suffices to draw that conclusion. Only for two nodes, IliCost and
OtherCar, is their Markov boundary irrelevant to their most likely value. Note that both these
nodes have only a single node in their Markov boundary.

If not the entire Markov boundary of H is irrelevant, we could determine the irrelevant
subset R′ and subsequently add the Markov boundaries of the nodes mb(H) \R′ to R′ and
evaluate their irrelevance. Again this may quickly result in very large sets to evaluate while
finding only few of them to be irrelevant. Moreover, another drawback of this approach is
that as soon as we go outside the Markov boundaries, Proposition 10 no longer applies and
we have already seen that we cannot in general aggregate the results for multiple hypothesis
nodes to draw conclusions about (ir)relevance to a most likely combination of hypotheses.
To somewhat alleviate the drawbacks of the two discussed approaches to establishing larger
relevance sets, we suggest to employ a combination of the two, starting from irrelevant
singletons in the Markov boundaries of the hypothesis nodes.

Suggestion 3 Let R be the set of relevant singletons for context
〈
h∗, e

〉
as returned by

Algorithm 1. Initialise I = V \ (H ∪ E ∪ R) to the set of irrelevant singletons. Check
each pair of nodes from I for their relevance, where we start with nodes from the Markov
boundaries of the hypothesis nodes. If the pair is relevant to h∗ then we add it to R and
stop investigating its supersets, otherwise we increase the subset of I by one and investigate
its relevance. We can stop this process any time we have found enough relevance sets of
sufficient size for explanation purposes (see the discussion in Section 5).
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Note that, for reasons of efficiency, the suggested procedure does not investigate supersets of
sets that are already established as relevant. As long as explanations only focus on the nodes
in the relevance sets this is fine, since smaller sets provide for more simple explanations.
If we want to include the specific observations for these nodes that render them relevant,
however, then we may want to consider supersets: it could be the case that node R1 is
irrelevant to h∗, node R2 is relevant because r2 ∈ Ω(R2) results in a map-explanation
h′ 6= h∗, and that the combination is relevant because r1 r2 ∈ Ω({R1, R2}) together result
in yet another map explanation.

Finally, since relevant nodes need to be observed in order to actually affect the map-
explanation, we could choose to evaluate only observable nodes for their relevance.

Suggestion 4 Let H,E,S, and
〈
h∗, e

〉
be as before. Let O ⊆ S be the set of observable

nodes outside E. Then only evaluate nodes in R ⊆ O for their (ir)relevance.

5. Using Relevance in Explanations

The sets of relevant nodes found can be used to explain the potential (in)stability of a
map-explanation. We can explain the user that the map-explanation is expected to remain
the same as long as relevant nodes are not observed. Based upon user preferences we can
restrict the explanation to relevant singletons or also return larger sets. In addition, if
we define a measure of degree of relevance, the relevance sets can be ordered from most
relevant to least relevant to the stability of the map-explanation. A degree of relevance can
be defined in various ways. We can define an expected relevance to capture how likely it is
that the map-explanation will change due to future observations for R:

ExpRel(R,h∗, e) =
∑

r∈rel(R,〈h∗,e〉)

Pr(r | e),

where rel(R, 〈h∗, e〉) = {r ∈ Ω(R) | arg max H Pr(H r | e) = h′ for any h′ 6= h∗}. ExpRel
is similar in concept to map-independence strength (Valero-Leal et al., 2022) and the same-
decision probability (Choi et al., 2012). Another option is to consider the average probability
mass assigned to an alternative map explanation in case of future observations for R:

AvgRel(R,h∗, e) =
1

|rel(R, 〈h∗, e〉)|
∑

r∈rel(R,〈h∗,e〉)

Pr(h′ | r e)

In addition to indicating which nodes are relevant, and possibly their degree of rel-
evance, we can keep track of the specific values r of the nodes that are relevant to the
map-explanation h∗ and the value h′ into which the most-likely hypothesis changes upon
their observation. This allows us to provide contrastive and counterfactual robustness ex-
planations, where

� any r found provides for a counterfactual explanation for the instability of h∗;

� any r found that results in h′ as most likely value provides for a robustness explanation
that contrasts outputs h∗ and h′.

10
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We would like to note that contrastive and counterfactual explanations usually focus on
changes in the observed value of the evidence nodes, rather than on effects of possible future
observations (see e.g. Koopman and Renooij (2021)). Moreover, the term ‘counterfactual’
here does not have a causal connotation as it often does have (Halpern and Pearl, 2005).

The above discussion shows there are ample possibilities to use relevance sets and asso-
ciated configurations to explain the (in)stability of a map-explanation to a user. Moreover,
it shows that we can to some extent meet the explanation criteria listed by Miller (2019).
Relevance computations provide information for generating contrastive explanations, indi-
cating the additional evidence that is required to obtain an expected map-explanation h′

rather than the current map h∗. Rather than returning all relevance sets, the explanation
can focus on small relevance sets, or even just the singletons. Using a measure of degree of
relevance we can moreover use only the most relevant ones in the robustness explanation,
or at least prioritize the explanations based upon degree of relevance. By interacting with
the user, taking into account their preference with respect to size and number of relevance
sets to include in the robustness explanation, the explanation becomes social. Finally, al-
though it is difficult to refrain from referring to probabilities or statistical relationships in
the context of Bayesian networks, explaining the (in)stability of map-explanations can be
done in terms of changes in the map rather than changes in probabilities.

6. Conclusions and Further Research

In this paper we have studied properties of map-independence and discussed approaches to
finding relevance sets and using these in explaining the robustness of map-explanations. We
have seen that combinations of irrelevant sets can become relevant and that any superset of
a relevant set is relevant, yet may contain superfluous nodes that do not really contribute to
the relevance. These properties make it difficult to simply partition the set of supplementary
nodes S into a relevant set and an irrelevant set. Rather, we have different relevant subsets
and various irrelevant subsets, suggesting that a partition of the powerset of S is required.
This shows the complexity of the problem of finding relevance sets.

We have proposed an algorithm for finding relevant singletons and have suggested some
simple approaches to finding non-singleton relevance sets that have several drawbacks. In
future we would like to investigate and detail more efficient approaches to this end. More-
over, we will study and experiment with the proposed measures of degree of relevance in
more detail. Finally, we would like to evaluate the suggested explanations with actual users.
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