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Abstract

We consider the problem of learning a graphical model when the observations come from
two groups sharing the same variables but, unlike the usual approach to the joint learn-
ing of graphical models, the two groups do not correspond to different populations and
therefore produce dependent samples. A Gaussian graphical model for paired data may be
implemented by applying the methodology developed for the family of graphical models
with edge and vertex symmetries, also known as coloured graphical models. We identify a
family of coloured graphical models suited for the paired data problem and investigate the
structure of the corresponding model space. More specifically, we provide a comprehen-
sive description of the lattice structure formed by this family of models under the model
inclusion order. Furthermore, we give rules for the computation of the join and meet oper-
ations between models, which are useful in the exploration of the model space. These are
then applied to implement a stepwise model search procedure and an application to the
identification of a brain network from fMRI data is given.

Keywords: Brain network, lattice, model search, poset, RCON model, search space.

1. Introduction

Statistical models associated with graphs, called graphical models, have become a popular
tool for representing network structures in many modern applications; see Maathuis et al.
(2019) for a recent collection of reviews. Let YV be a multivariate Gaussian random vector
whose entries are indexed by a finite set V = {1, . . . , p} and let G = (V,E) be an undirected
network. Every vertex of the graph G is associated with a variable in YV , and the distribu-
tion of YV is said to be Markov with respect to G if every missing edge between two vertices
implies that the corresponding variables are conditionally independent given the remaining
variables (Lauritzen, 1996). The Gaussian graphical model (GGM) for YV , represented by
a graph G = (V,E), is the family of Gaussian distributions which are Markov relative to G.

The seminal paper by Højsgaard and Lauritzen (2008) introduced GGMs with additional
symmetry restrictions in the form of equality constraints on the parameters. These are called
coloured GGMs because symmetries are usually depicted on the dependence graph of the
model by colouring of edges and vertices. The application of coloured GGMs was motivated
by the need of reducing the number of parameters in high dimensional settings. On the
other hand, there exist applied contexts where symmetry restrictions naturally follow from
substantive research hypotheses of interest. This is the case of paired data problems where
variables can be naturally arranged into two blocks such that for every variable in the first
block there is an homologous variable in the second block.
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Figure 1: Example of ROI locations on the brain, every ROI on the left hemisphere is
associated with a ROI on the right hemisphere, that in this case gives the pairs (Li;Ri) for
i = 1, . . . , 35. Different colours correspond to distinct brain regions.

Example 1 (Brain network) Ranciati et al. (2021) considered the problem of identifying
symmetries in brain networks from fMRI data. In this type of application, every variable is
measured on a spatial regions of interest (ROI) and for every ROI on the left hemisphere
of the brain there is a corresponding, or homologous, ROI on the right hemisphere; see
Figure 1. Interest is for symmetries concerning both the structure of the brain network and
the values of parameters associated with vertices and edges. This type of analysis involves
the comparison of the two subnetworks relative to the left and right hemispheres, but also
the comparison of pairs of edges across the two hemispheres in the case where the endpoins
of the first edge are homologous to the endpoints of the second. See Sections 3 and 5 for
details.

In the following we provide a smaller instance of paired data problem that will be used as
a running example throughout this paper.

Example 2 (Frets’ Heads) Whittaker (1990, Section 8.4) fitted a GGM to the Frets’
Heads data which consist of measurements of the head length, or height, and head breadth
of the first and second adult sons in a sample of 25 families. Variables are therefore naturally
split into two blocks associated with the first son, denoted by H and B, and second son,
denoted by H ′ and B′. Symmetries of interest concern, for instance, the between-block
comparison of (H, B) with (H ′, B′) as well as the across-block comparison (H,B′) with
(B,H ′); see also Figure 2.

The problem of learning a coloured GGM from data has been approached from differ-
ent viewpoints. Li et al. (2021) and Ranciati et al. (2021) developed penalized likelihood
methods whereas Li et al. (2018), Massam et al. (2018) and Li et al. (2020) implemented
Bayesian methods. Finally, Gehrmann (2011) considered classical stepwise coherent proce-
dures. However, Gehrmann (2011) mostly focused on an analysis of the structure of search
spaces, that is of the spaces of candidate models. Indeed, many model search algorithms,
both in the Bayesian and in the frequentist approaches to inference, require the exploration
of the search space that is typically carried out by means of local moves between neigh-
bouring models. It is therefore crucial to be able to rely on procedures that allow us to
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explore efficiently the space of models. However, the exploration of the space of coloured
GGMs is much more challenging than for classical GGMs. One first difficulty concerns
the dimensionality of the search space, which highly increases (Gehrmann, 2011). As an
example, consider the complete graph on p vertices: there is only one GGM represented
by this graph but the number of coloured GGMs for paired data, as formally defined in
Section 3 below, is equal to 2(p/2)

2
. Furthermore, it is well-established that the space of

classical GGMs forms a complete distributive lattice with respect to model inclusion, where
neighbouring models can be efficiently obtained by adding or removing single edges from the
current graph. On the other hand, Gehrmann (2011) showed that, although also the family
of coloured GGMs forms a complete lattice, in this case the identification of neighbouring
structures is considerably more complex, and thus more computationally expensive, than
in GGMs.

In this paper we consider the family of coloured GGMs called RCON models (Højsgaard
and Lauritzen, 2008), where equality restrictions are imposed on the entries of the inverse
covariance matrix of YV . Within this framework, we focus on RCON models for paired data
(PD-RCON) and analyse the structure of the associated search space. More specifically, we
show that, unlike other relevant subfamilies of RCON models, PD-RCON models form a
sublattice of the lattice of RCON models. Furthermore, we deal with the implementation
of the meet and join operations over the sublattice, which are useful for the computation of
neighbouring structures, and provide explicit rules for the computation of the meet and the
join of two PD-RCON models. These are considerably more efficient than the corresponding
operations for arbitrary RCON models because they are based on simple set union and set
intersection operations. We then apply these rules to implement a stepwise model search
procedure and an application to the identification of a brain network from fMRI data is
provided.

2. Background

2.1 Coloured graphical models

Let Y ≡ YV be a continuous random vector indexed by a finite set V = {1, . . . , p}. We
denote by Σ = (σij)i,j∈V and Σ−1 = Θ = (θij)i,j∈V the covariance and the concentration
matrix of Y , respectively. An undirected graph with vertex set V is a pair G = (V,E) where
E is an edge set that is a set of unordered pairs of distinct vertices. Notice that, when not
clear from the context which graph is under consideration, we write VG to denote the vertex
set of G and, similarly, EG for edges.

We say that the concentration matrix Θ is adapted to a graph G = (V,E) if every
missing edge of G corresponds to a zero entry in Θ; formally, (i, j) /∈ E implies that θij = 0
for any i, j ∈ V with i 6= j. A Gaussian graphical model (GGM) with graph G is the family
of multivariate normal distributions whose concentration matrix is adapted to G. These
models are also known with the name of covariance selection models or concentration graph
models; see (Lauritzen, 1996) and references therein. We denote by M ≡M(V ) the family
of GGMs for YV and by M(G) ∈M the GGM represented by the graph G = (V,E).

A colouring of G = (V,E) is a pair (V, E) where V = {V1, . . . , Vv} is a partition of V
into vertex colour classes and, similarly, E = {E1, . . . , Ee} is a partition of E into edge
colour classes. Accordingly, G = (V, E) is a coloured graph. Similarly to the notation used
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for uncoloured graphs, we may write VG and EG to denote the vertex and edge colour classes
of G, respectively. Furthermore, we set VG = ∪vj=1Vj and EG = ∪ej=1Ej so that (VG , EG) is
the uncoloured version of G. In the graphical representation, all the vertices belonging to a
same colour class are depicted of the same colour, and similarly for edges. Furthermore, in
order to make coloured graphs readable also in black and white printing, we put a common
symbol next to every vertex or edge of the same colour. The only exception to this rule
is for vertices and edges belonging to colour classes with a single element, called atomic,
which are all depicted in black with no symbol next to them.

Højsgaard and Lauritzen (2008) introduced coloured graphical models which are GGMs
with additional restrictions on the parameter space. The model are represented by coloured
graphs, where parameters that are associated with edges or vertices of the same colour are
restricted to being identical. In this paper we focus on the family of coloured graphical
Gaussian models known as RCON models (Højsgaard and Lauritzen, 2008) which place
equality restrictions on the entries of the concentration matrix. More specifically, in the
RCON model with coloured graph G = (V, E) every vertex colour class Vi, i = 1, . . . , v, iden-
tifies a set of diagonal concentrations whose value is constrained to be equal, and similarly
for edge colour classes which identify subsets of off-diagonal concentrations. We denote by
M ≡ M(V ) the family of RCON models for YV and by M(G) ∈ M the RCON model
represented by G.

2.2 Search spaces and lattices

Typically, a model search procedure requires the exploration of the search space, that is of
the space of candidate models. A statistical model is a family of probability distributions,
and if a model is contained in another model then the former is called a submodel of
the latter. We can also say that a model is “larger” than any of its submodels so that
model inclusion can be used to embed a model class with a partial order, and we write
〈M,�〉 to denote the partially ordered set, or poset, of GGMs. For the family of GGMs,
model inclusion coincides with the subset relationship between edge sets, so that for every
pair of graphs, G and H, with vertex set V , it holds that M(G) � M(H) if and only if
EG ⊆ EH . It is well-known that the poset 〈M,�〉 forms a complete lattice. We refer to
Davey and Priestley (2002) for the basic elements of lattice theory required for this paper,
such as upper and lower bounds, completeness, the unit and the zero elements, the Hasse
diagram. Here we recall that every pair or elements of a lattice, M(G) and M(H) say,
has a least upper bound, called a join, denoted by M(G) ∨M(H) and, dually, a greatest
lower bound, called a meet, denoted by M(G) ∧M(H). Accordingly, ∨ is called the join
operation whereas ∧ is the meet operation. The meet and the joint operations are used in
structure learning of graphical models for the identification of neighbouring models, and
it is important that they can be efficiently computed. This is the case, for instance, of
GGMs where the meet and the join take an especially simple form because M(G) ∨M(H)
and M(G) ∧M(H) are the models represented by the graphs with edge sets EG ∪EH and
EG ∩EH , respectively. Furthermore, the lattice 〈M,�〉 satisfies the distributivity property
(Davey and Priestley, 2002, Chapter 4), that is the operations of meet and join distribute
over each other. Distributivity is a useful property that facilitates the implementation of
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efficient procedures, and for its application in model selection we refer to Edwards and
Havránek (1987), Antoch and Hanousek (2000), Gehrmann (2011) and references therein.

Consider now the family M of RCON models for YV and let G and H be two coloured
graphs with vertex set V . It was shown by Gehrmann (2011) that M(G) is a submodel of
M(H), i.e. M(G) �M(H), if and only if all of the three following conditions hold true,

(S1) EG ⊆ EH

(S2) every colour class in VG is a union of colour classes in VH;

(S3) every colour class in EG is a union of colour classes in EH.

Furthermore, Gehrmann (2011) showed that 〈M,�〉 is a complete lattice, although non-
distributive, and provided the following rules for the computation of the meet and the join
in 〈M,�〉 of two graphs G and H,

M(G) ∧M(H) = (VG ∨p VH, E∗G ∨p E∗H) and M(G) ∨M(H) = (VG ∧p VH, E∗∗G ∧p E∗∗H ) (1)

where E∗G ⊆ EG and E∗H ⊆ EH are maximal with the property that they are partitions of the
same set of edges inside EG ∩EH, E∗∗G = EG ∪{{EH \EG}} and E∗∗H = EH∪{{EG \EH}}. We
remark that the operations ∧p and ∨p in (1) are the meet and the join, respectively, of the
so-called lattice of partitions, as described in Canfield (2001), and that the implementation
of the meet and the join in 〈M,�〉 is more involved, and thus computationally expensive,
than in 〈M,�〉. Gehrmann (2011) also considered some relevant subclasses of 〈M,�〉 and
described the properties of the corresponding lattices. Here we recall that all the subclasses
considered by Gehrmann (2011) form complete non-distributive lattices which are stable
under the meet operation in 〈M,�〉, in the sense that their meet operation is induced by
that in 〈M,�〉, but they are not stable under the join operation. Hence, they are not
sublattices of 〈M,�〉.

We close this section by noticing that every RCON model M(G) ∈ M is uniquely
represented by a coloured graph G, and in the rest of this paper, with a slight abuse of
notation, we will not make an explicit distinction between sets of models and sets of graphs,
thereby equivalently writing, for example, M(G) ∈M and G ∈ M.

3. RCON models for paired data

In this section, we formally introduce coloured graphs for paired data, which are then used
to represent the subfamily of RCON models for paired data.

We consider the case where there exists a natural matching between pairs of variables
so that the vector YV can be naturally split into two subvectors YV = (YL, YR)> with
|L| = |R| = p/2 = q and, without loss of generality, we assume L = {1, . . . , q} and R =
{q + 1, . . . , p}. Furthermore we set i′ = i + q, for i ∈ L, so that R = {1′, . . . , q′}. Every
variable Yi with i ∈ L is associated with an homologous, or twin, variable Yi′ , and we say
that a vertex colour class is twin-pairing if it is formed by one pair of twin vertices, so that
it can be formally written as {i, i′} with i ∈ L. Similarly, a twin-pairing edge colour class
is formed by one pair of twin edges which can either link vertices within the “L”eft and
“R”ight part of the network, such as {(i, j), (i′, j′)}, or link vertices across L and R, such
as {(i, j′), (j, i′)}, with i, j ∈ L and, consequently, i′, j′ ∈ R.
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(a) (b) (c)

Figure 2: Frets’ Heads example: (a) Partition of the vertex set into two blocks, (b) a PD-CG
and (c) a coloured graph containing two non-twin-pairing colour classes.

Example 3 (Frets’ Heads continued) In the Frets’ Head example the vertex set can
be split into the variables associated with the first son, YH and YB, and the second son,
YH′ and YB′, so that L = {H,B} and R = {H ′, B′} as depicted in Figure 2a. Further-
more, Figure 2b shows a graph with two twin-pairing colour classes, specifically {H,H ′}
and {(H,B), (H ′, B′)} whereas all the remaining colour classes are atomic. On the other
hand, the graph in Figure 2c has two colour classes which are neither atomic nor twin-
pairing, specifically {H,B′} and {(H,H ′), (H,B)}.

Definition 1 Assume that YV = (YL, YR)> so that every variable in YL is uniquely paired
with a variable in YR, and let G be a coloured graph with vertex set V . We say that G is a
coloured graph for paired data (PD-CG) if all its colour classes are either atomic or twin-
pairing. Accordingly, we say that M(G) is a RCON model for paired data (PD-RCON),
and we denote by P ≡ P(L,R) the subfamily of PD-RCON models for (YL, YR).

If G = (V, E) is a PD-CG then we can write V = V(a) ∪V(t), with V(a) ∩V(t) = ∅, where
V(a) is the set of atomic vertex colour classes and V(t) is the set of twin-pairing vertex
colour classes and, similarly, E = E(a) ∪E(t), with E(a) ∩E(t) = ∅. It follows that, for a given
partition V = L ∪ R of the vertex set, every PD-CG G is uniquely identified by the triplet

(EG ,V(a)G , E(a)G ).

Example 4 (Frets’ Heads continued) The graph in Figure 2b is a PD-CG with V(a) =
{{B}, {B′}} so that V(t) = {{H,H ′}} whereas E(a) = {{(H,H ′)}, {(B,H ′)}}, and thus,
E(t) = {{(H,B), (H ′, B′)}}. On the other hand, the graph in Figure 2c is not a PD-CG.

We finally introduce two specific colour classes which are required for the derivation of
the results in the next section: if G = (V, E) is a PD-CG and E′ ⊆ EG is a set of edges,

then we set EG(E′) = {C ∈ EG | C ⊆ E′} and also write EG(E′) = E(a)G (E′) ∪ E(t)G (E′).
Furthermore, E(E′) is defined as the collection of atomic and twin-pairing colour classes
obtained from the edges in E′ in such a way that all possible twin-pairing classes are
formed, that is if the edge atomic colour class {e} is such that {e} ∈ E(E′) then the twin e′

of e is such that e′ 6∈ E′, and also in this case may use the partition of E(E′) into E(a)(E′)
and E(t)(E′).

4. Lattice of RCON models for paired data

In this section we show that the subset P ⊆ M forms a sublattice of 〈M,�〉 and provide
simple rules to deal efficiently with this model space. Such rules rely on the representation
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* *

**

Figure 3: A part of Hasse diagram of the lattice 〈P,�〉 for the Frets’ Heads example. The
highlighted graphs form the so-called diamond structure.

of a graph G ∈ P through the triplet (EG ,V(a)G , E(a)G ) because all the relevant operations can
be carried out by considering an element of this triplet at the time.

Example 5 (Frets’ Heads continued) Figure 3 gives a part of the Hasse diagram for
the Frets’ Heads lattice 〈P,�〉. On the top there is the largest graph, also called the unit,
forming the first layer. The second layer gives the ten neighbours of the unit. Only two
graphs of the third layer are depicted, and the four highlighted graphs form the structure
known as diamond, which shows that this lattice is non-distributive, see Theorem 5 below.

The following proposition shows that the model inclusion relationship between models
belonging to P ⊆M can be straightforwardly checked by comparing the respective elements
of the triplets identifying the two models.

Proposition 2 If G,H ∈ P then it holds that G � H, as specified by conditions (S1) to
(S3), if and only if

(P1) EG ⊆ EH, (P2) V(a)G ⊆ V
(a)
H , (P3) E(a)G ⊆ E

(a)
H ,

and, furthermore, (P3) is equivalent to (P3 ′) Ẽ(a)G ⊆ E
(a)
H , where Ẽ(a)G = E(a)G ∪E(a)(EH\EG).

Proof We first show that if conditions (S1), (S2) and (S3) are satisfied and G,H ∈ P then
also conditions (P1), (P2) and (P3) hold true. Clearly, (P1) is trivially implied by (S1)
because they coincide. Condition (P2) follows immediately from (S2) because the latter
implies that every atomic vertex colour class in VG is an atomic vertex colour class in VH.
Likewise, condition (P3) follows from the fact that, by (S1) and (S3), every atomic edge

class in E(a)G is an atomic edge class also in H. We now turn to the reverse implication, i.e.
that if conditions (P1), (P2) and (P3) are satisfied and G,H ∈ P then also conditions (S1),
(S2) and (S3) hold true. As remarked above, (S1) is trivially implied by (P1). Condition
(S2) is satisfied because (P2) implies that every atomic vertex class in G also belongs to H.
Furthermore, the fact that G ∈ P implies that the remaining vertex colour classes of G are
all twin-pairing and, because also H ∈ P, it follows that every vertex twin-pairing class in
G either belongs to H or is the union of a pair of atomic classes in H. In a similar way,
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(S3) is satisfied because (P3) implies that every edge atomic colour class in G is an atomic
colour class in H. The fact that G ∈ P implies that the remaining edge colour classes of G
are all twin-pairing and, because also H ∈ P and by (P1) every edge in G is also present
in H, it follows that every edge twin-pairing class in G either belongs to H or is the union
of a pair of atomic classes in H. We now show the equivalence of (P3) and (P3′). Clearly

(P3′) implies (P3) because, by construction, E(a)G ⊆ Ẽ(a)G . We now show that (P3) implies

that E(a)(EH \ EG) ⊆ E(a)H and therefore (P3′). Assume that E(a)(EH \ EG) 6⊆ E(a)H , this is
possible only if there exists an edge e ∈ EH \EG which forms a twin-pairing class in H, say

{e, e′} ∈ E(t)H , and such that e′ 6∈ EH\EG . In turn, this implies that e′ ∈ EH with {e′} 6∈ E(a)H
and that both e 6∈ EG and e′ ∈ EG , but in this case {e′} ∈ E(a)G thereby contradicting the
assumption that (P3) is satisfied.

We now need to state the following preliminary result.

Lemma 3 Let G1, . . . ,Gk, with k ≥ 1, and F be coloured graphs belonging to M. If, for
every i = 1, . . . , k, the graphs Gi are such that both Gi ∈ P and Gi � F and, furthermore,
EF ⊆ ∪ki=1EGi then it holds that F ∈ P.

Proof We show that assuming F 6∈ P contradicts the assumption that Gi ∈ P for every
i = 1, . . . , k. If F 6∈ P then F has a colour class that is neither atomic nor twin-pairing.
Here, we deal with the case where the latter is an edge colour class, but we remark that
the same argument applies also if it is a vertex colour class. Hence, we denote by E∗F a
non-atomic non-twin-pairing edge colour class of F and let e ∈ E∗F . Because EF ⊆ ∪ki=1EGi
then there exists at least a graph Gi such that e ∈ EGi and we assume, without loss of
generality, that e ∈ EG1 . Hence, there exists a colour class E∗G1 of G1 such that e ∈ E∗G1
and furthermore, by (S3) and the fact that G1 � F , it holds that E∗F ⊆ E∗G1 . However, the
latter inclusion implies that E∗G1 is neither atomic nor twin-pairing thereby contradicting
the assumption that G1 ∈ P.

The following theorem provides the rules for the implementation of the operations of
meet and the join between models belonging to P. It should be noticed that these involve
simple set union and intersection operations and are therefore considerably easier and more
efficient to implement than the rules given in (1) for arbitrary models in M.

Theorem 4 If G,H ∈ P then the join of G and H from (1) belongs to P, that is G∨H ∈ P,
and it is identified by

(J1) EG∨H = EG ∪ EH, (J2) V(a)G∨H = V(a)G ∪ V
(a)
H , (J3) E(a)G∨H = Ẽ(a)G ∪ Ẽ

(a)
H .

Furthermore, the twin-pairing colour classes of G∨H can be computed as V(t)G∨H = V(t)G ∩V
(t)
H

and E(t)G∨H = Ẽ(t)G ∩ Ẽ
(t)
H , where, as above, Ẽ(·)G = E(·)G ∪ E(·)(EH \ EG) and, accordingly,

Ẽ(·)H = E(·)H ∪ E(·)(EG \ EH).
Likewise, the meet of G and H from (1) belongs to P, that is G ∧ H ∈ P, and it is

identified by

(M1) EG∧H = (EG ∩ EH) \ E∗, (M2) V(a)G∧H = V(a)G ∩ V
(a)
H , (M3) E(a)G∧H = E(a)G ∩ E

(a)
H ,
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where E∗ is the set of the edges belonging to the colour classes of E(a)(EG∩EH)\(E(a)G ∩E
(a)
H ).

Furthermore, the twin-pairing colour classes of G∧H can be computed as V(t)G∧H = V(t)G ∪V
(t)
H

and E(t)G∧H = E(t)G (EH ∩ EG) ∪ E(t)H (EH ∩ EG).

Proof We first consider the join operation and set U∨ = G∨H from (1). Furthermore, we let
U = (VU , EU ) be the graph obtained from (J1), (J2) and (J3), and we show that U∨ ∈ P and
that U∨ = U . Firstly, we prove that G � U by showing that the conditions of Proposition 2
are satisfied. Indeed, in this case (P1), (P2) and (P3′) are true by construction because

(J1) immediately implies that EG ⊆ EU , (J2) that V(a)G ⊆ V
(a)
U and (J3) that Ẽ(a)G ⊆ E

(a)
U . In

the same way, one can show that H � U and from the definition of the join operation and
the fact the both G,H � U it follows that U∨ � U . Hence, the required result that U∨ ∈ P
follows from Lemma 3 because G,H � U∨ � U so that by (S1) one has EU∨ ⊆ EU = EG∪EH.
We can now apply Proposition 2 to show that U � U∨. By definition, the join U∨ of G and
H is such that both G � U∨ and H � U∨ and therefore from (P1), (P2) and (P3′) it holds

that (i) EU∨ ⊇ EG ∪ EH, (ii) V(a)U∨ ⊇ V
(a)
G ∪ V

(a)
H , (iii) E(a)U∨ ⊇ Ẽ

(a)
G ∪ Ẽ

(a)
H , and therefore that

U � U∨. We have thus shown that both U∨ � U and U � U∨ and therefore that U∨ = U .

We consider now the meet operation and set L∧ = G ∧ H from (1). Furthermore, we
let L = (VL, EL) be the graph obtained from (M1), (M2) and (M3), and we show that
L∧ ∈ P and that L∧ = L. Firstly, we prove that L � G by showing that the conditions of
Proposition 2 are satisfied. Indeed, in this case (P1), (P2) and (P3) are true by construction

because (M1) implies that EL ⊆ EG , (M2) that V(a)L ⊆ V(a)G and (M3) that E(a)L ⊆ E(a)G . In
the same way, one can show that L � H and from the definition of the meet operation
and the fact the both L � G,H it follows that L � L∧. We now show that EL = EL∧ .
Because L � L∧ � G,H then (S1) implies that EL ⊆ EL∧ ⊆ EG ∩ EH and we can use
(M1) to write (EG ∩ EH) \ E∗ ⊆ EL∧ ⊆ EG ∩ EH. We note, however, that there cannot
exist any edge e ∈ EL∧ such that e ∈ E∗. Indeed, by construction of E∗, in that case

one would have that {e} ∈ E(a)L∧ and e would belong to a twin-pairing colour class in either
G or in H, thereby contradicting the assumption that L∧ � G,H. Hence we can write
(EG ∩ EH) \ E∗ ⊆ EL∧ ⊆ (EG ∩ EH) \ E∗ so that EL∧ = EL. This allows us to prove
the required result that L∧ ∈ P, because it holds that L � L∧ with EL∧ = EL an thus
Lemma 3 applies. We can now apply Proposition 2 to show that L∧ � L. We have shown
above that (i) EL∧ = (EG ∩ EH) \ E∗. Furthermore, by definition, the meet L∧ of G and
H is such that both L∧ � G and L∧ � H and therefore from (P2) and (P3) it holds that

(ii) V(a)L∧ ⊆ V
(a)
G ∩ V

(a)
H , (iii) E(a)L∧ ⊆ E

(a)
G ∩ E

(a)
H , and therefore that L∧ � L. We have thus

shown that both L � L∧ and L∧ � L and therefore that L∧ = L.

We omit for brevity the derivation of the twin-pairing colour classes.

The statements of Theorem 4 can be readily applied to show the following.

Theorem 5 The subset P ⊆M is stable under the meet and the join operations in 〈M,�〉
and therefore 〈P,�〉 forms a complete sublattice of 〈M,�〉. The unit is the uncoloured
complete graph and the zero is the empty graph with all twin vertices being symmetric.
Furthermore, 〈P,�〉 is non-distributive.
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Proof The stability of the meet and the join operation follows from Theorem 4 where it is
shown that both the meet and the join of G,H ∈ P belong to P. In turn, this implies that
〈P,�〉 forms a sublattice of 〈M,�〉. The unit U is the PD-CG that is larger than any ele-

ment in P, hence, the edge set EU is the edge set of the complete graph and V(t)U = E(t)U = ∅.
Therefore, U is the uncoloured complete graph. Moreover, the zero L is the PD-CG that is

smaller than any element in P, so that EL = V(a)L = ∅ and therefore also E(a)L = ∅. Finally,
as shown for instance in Theorem 4.10 of Davey and Priestley (2002), in order to show
that 〈P,�〉 is non-distributive it is sufficient to show that its Hasse diagram may contain a
so-called diamond structure, as highlighted in Figure 3.

5. Application to the selection of brain networks from fMRI data

In this section, we apply a stepwise backward elimination procedure to the selection of a
PD-RCON model from functional MRI data, in order to investigate the dynamic activity
of brain regions between hemispheres.

The stepwise procedure we use is implemented as follows: at every step one model is
selected as starting point, which we denote by M(G(i)) for step i. Then, a set of candidate
models is constructed by considering all the neighbouring submodels of M(G(i)) and then
removing from this set the weakly-rejected models, that is, the models which are submodels
of previously rejected models. Each of the candidate models is then classified as either
“accepted” or “rejected” on the basis of the likelihood ratio test at the 0.05 level, and
the accepted model with the highest p-value is selected as starting point, M(G(i+1)), for
the next step. The starting point M(G(1)) of the first step is the largest model in 〈P,�〉,
i.e. the unit, as given in Theorem 5, and the procedure terminates when all the candidate
models are rejected. Although for space reason we omit the technical details, it is worth
remarking that the implementation of this procedure relies on the results of Proposition 2
and Theorem 4. More specifically, a reduction in the computational cost is obtained by
computing the candidate models as the meet in Proposition 2 between the selected model
in the current step and the accepted models in the previous step.

The data come from a pilot study of the Enhanced Nathan Kline Institute-Rockland
Sample project. A detailed description of the project, scopes, and technical aspects can be
found at http://fcon_1000.projects.nitrc.org/indi/enhanced/. The fMRI time se-
ries are recorded on 70 spatial Region of Interests (ROIs) based on the Desikan atlas at 404
equally spaced time, and are available at http://fcon_1000.projects.nitrc.org/indi/
CoRR/html/nki_1.html. The data we used are residuals estimated from the vector auto-
gression models, carried out to remove the temporal dependence (see Ranciati et al., 2021).
According to the available information on subjects, we focus on two participants, indexed
as subjects 14 and 15, who have the same psychological traits with no neuropsychiatric
diseases and right-handedness. However, subject 14 is 19 years old whereas subject 15 is
57. For each subject, we studied 22 cortical regions in the frontal lobe, and 14 brain regions
in the anterior temporal lobe. The graphs of the models resulting from the model selection
procedure are given in Table 1, whereas some summary statistics concerning the identified
symmetries are given in Table 2. In particular, we see that subject 15 seems to present

10

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html


Model inclusion lattice of coloured GGMs for paired data

Table 1: PD-CGs resulting form the application of the search procedure.

Subject Anterior temporal lobe Frontal lobe

14

L1

L2

L3

L4

L5

L6

L7

R1

R2

R3

R4

R5

R6

R7

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

15

L1

L2

L3

L4

L5

L6

L7

R1

R2

R3

R4

R5

R6

R7

L1

L2

L3

L4

L5

L6

L7

L8

L9

L10

L11

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

Table 2: Summary statistics for the graphs of Table 1. From the left: number of edges,
graph density, number of twin-pairing vertex colour classes, number of pairs of symmetric
edges, number of twin-pairing edge colour classes.

Subject Lobe # edges den.(%)
# pairs of

sym. vertices edges sym. edges

14
Anterior temp. 40 43.96 0 9 5
Frontal 127 54.98 5 36 23

15
Anterior temp. 58 63.74 3 20 13
Frontal 136 58.87 3 44 26

denser graphs and, furthermore, for both subjects the graphs relative to the temporal lobe
seem to present a higher level of symmetry.

6. Conclusions and future research directions

We have defined the family of RCON models for paired data as a subfamily of the RCON
models from Højsgaard and Lauritzen (2008), and the main results of this paper concern the
lattice structure of this class of models. We have shown that, unlike other relevant subclasses
of coloured graphical models, PD-RCON models form a sublattice of RCON models and
we have provided explicit rules for dealing with this lattice. These have been applied to
implement a stepwise model search procedure. An important challenge in this framework
concerns the dimension of the model space that is very large even when the number of
variables is relatively small. Indeed, the space of PD-RCON models is much larger than the
space of classical GGMs and, consequently, model search in the high-dimensional setting
much more challenging. Future research directions involve the identification of strategies
to obtain a more efficient exploration of the models space. A related problem concerns
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the non-distributivity of the lattice of PD-RCON models and the possible identification of
distributive sublattices which may facilitate the computation of neighbouring models and
therefore improve efficiency.
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