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Abstract

We consider a causal order such as the cause and effect among variables. In the Linear
Non-Gaussian Acyclic Model (LiNGAM), we can only identify the order if at least one
of the variables is non-Gaussian. This paper extends the notion of variables to functions
(Functional Linear Non-Gaussian Acyclic Model, Func-LiNGAM). We first prove that we
can identify the order among random functions if and only if one of them is a non-Gaussian
process. In the actual procedure, we approximate the functions by random vectors. To
improve the correctness and efficiency, we propose to optimize the coordinates of the vectors
in such a way as functional principal component analysis. The experiments contain an order
identification simulation among multiple functions for given samples. In particular, we
apply the Func-LiNGAM to recognize the brain connectivity pattern with fMRI data. We
can see the improvements in accuracy and execution speed compared to existing methods.

Keywords: Functional data, Darmois-Skitovich theorem, LiNGAM

1. Introduction

The application areas for causal discovery are immense, from its use in climate research
(Ebert-Uphoff and Deng, 2012) to biomedical (Spirtes et al., 2000) and gene expression
(Friedman et al., 2000). Suppose we have two variables, X, and Y , and wish to identify
their cause and effect. Although there are many ways to detect the independence, there
is no statistical way to determine the causal direction, i.e., either X → Y or Y → X.
Shimizu et al. (2006) proposed the LiNGAM to identify the causal directions when the
relations are linear, i.e., Y = aX + ϵ and X = a′Y + ϵ′, for some a, a′ ∈ R and X ⊥⊥ ϵ and
Y ⊥⊥ ϵ′1. Moreover, they find the necessary and sufficient condition of identifiability: one
of X,Y should be non-Gaussian. Note that for the Gaussian variables, zero correlation is
equivalent to independence, which means that we cannot distinguish the two linear models
if X,Y are Gaussian. Consequently, the identifiability of earlier work (Spirtes et al., 2000)
in the setting of linear Gaussian fails even when satisfying the causal faithfulness (Pearl,
2000; Spirtes et al., 2000) without considering the latent confounders. For this reason, it is
a significant advance that the LiNGAM can uniquely identify all the causal ordering from
observational data, even without assuming faithfulness. Even if we have three variables
X,Y, Z, it is not often possible to identify the direction of the DAG that connects them via
any statistical procedure, such as X → Y → Z, Z → Y → X and Y → X, Y → Z. They
share the distribution P (XY )P (Y Z)/P (Y ), which means that they are Markov equivalent.
For the other direction of the proof, we use the Darmois-Skitovich theorem (D-S): if the

1. We write X ⊥⊥ Y when X,Y are independent.
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JĴ ������������

X Y

Z





� J

JJ]

������������

X Y

Z





�

J
JĴ
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Figure 1: The three DAGs share the same distribution P (XY )P (Y Z)/P (Y ). However, structure
learning such as the PC algorithm cannot distinguish them (Left) but the LiNGAM can
do based on the assumption that the noise being independent of the covariates (Right).

linear combinations
∑

i αiXi and
∑

i βiYi are independent, then Xi, Yi are Gaussian for i
such that αi, βi ̸= 0.

The original D-S theorem dealt with one-dimensional Gaussian random variables. Later,
Ghurye and Olkin (1962) extended it into the case of random vectors. Myronyuk (2008)
generalized the D-S into a Banach space. We call the Banach space valued random vari-
ables, conventionally as the random elements taking values in a Banach space, which we
call random functions. This paper is interested in estimating a causal order in a more
complicated setting.

We aim to identify the causal relationships among p random functions, from which we
can sample the functional data. The functional data is fast gaining traction in a variety
of fields, including genetics (Wei and Li, 2008), finance (Tsay and Pourahmadi, 2017), and
neuroimaging (Luo et al., 2019). Investigating the directional links among the random
functions is a significant challenge in multivariate functional data analysis. Our motiva-
tion is brain effective connection (Friston, 2001), which refers to the directional influence
of one neural system on another. The Effective connectivity analysis estimates directional
effects among brain regions through electrocorticographic imaging (ECoG) or task-based
functional magnetic resonance imaging (fMRI). The imaging data is usually summarized
in part by a time matrix for each individual. The columns represent time points, whereas
the rows represent brain areas or locations. Given the continuous structure of the data
and the short-time period between adjacent sample points, treating the data at each site as
a function is an obvious choice. Modeling such multivariate processes and estimating the
brain’s effective connection between various areas is a significant challenge. The previous
work, such as Qiao et al. (2019) considered the functional situation to calculate the inverse
covariance matrix for the Gaussian graphical model. Lee and Li (2022) proposed the func-
tional structure equation model with Gaussian noises, which can only determine the DAG
up to its equivalence class under the linear setting. This paper presents the model to esti-
mate the directional relationships among the functional data with non-Gaussian errors. We
name it Functional LiNGAM (Func-LiNGAM). The Func-LiNGAM inherits the advantages
of LiNGAM without the necessity of faithfulness.

Our contributions are as follows:

• We present a framework for identifying causal orders of random functions.

• We show the identifiability of causal relationships if and only if one of the random
functions is non-Gaussian.
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• Empirically, the results of Functional LiNGAM can identify the causal ordering among
the non-Gaussian random functions. The Func-LiNGAM is not only able to identify the
correct solution as DirectLiNGAM and it is much faster than the original approach Direct-
LiNGAM (Shimizu et al., 2011) because of using the FPCA (Ramsay and Silverman, 2005).
The FPCA is a dimension reduction approach to approximate each infinite-dimensional
function by a finite representation. We also consider an application to the fMRI dataset.

We organize this paper as follows. Section 2 introduces the background required for
understanding the current paper, such as the LiNGAM, Hilbert spaces, and random func-
tions. Section 3 proves the main theorem (extension of the LiNGAM) and describes the
procedure. Section 4 gives experiments of the proposed procedure. Section 5 summarizes
the paper and states future works.

2. Preliminaries

2.1 LiNGAM

We introduce the LiNGAM (Linear non-Gaussian acyclic model) that infers the causal order
among variables.

Suppose that we have random variables X,Y that take values on R, and that we wish
to identify the causal order such as X → Y or Y → X. More precisely, we assume that
X,Y are linearly related and have zero averages, and that we have two models

Y = aX + ϵ , (1)

X = a′Y + ϵ′ (2)

to choose from, where a, a′ ∈ R and ϵ, ϵ′ are zero-mean random variables. For simplicity,
we assume

a ̸= 0 , or a′ ̸= 0 , (3)

to exclude the trivial cases, which means that X and Y are not independent. In particular,
LiNGAM assumes that the noise such as ϵ and ϵ′ should be independent of the covariate
such as X and Y in (1) and (2), respectively. Thus, we identify the true model as (1) or
(2) depending on2 X ⊥⊥ ϵ or Y ⊥⊥ ϵ′.

One might think that we cannot distinguish (1) and (2), i.e. X,Y may satisfy both of
(1) and (2) for some a, a′ and ϵ, ϵ′ such that X ⊥⊥ ϵ and Y ⊥⊥ ϵ′. LiNGAM claims that such
an inconvenience occurs if and only if X,Y are Gaussian.

Suppose X,Y are Gaussian, and that (1) with X ⊥⊥ ϵ for some a and ϵ is true. Let
e1 := X, e2 := ϵ, e′1 := Y , e′2 := ϵ′, and σ2

1, σ
2
2 be the variances of e1 and e2. Then, from

E[e1e2] = 0, we have
e′1 = ae1 + e2 (4)

e′2 = e1 − a′e′1 = e1 − a′(ae1 + e2) = (1− aa′)e1 − a′e2 , (5)

and E[e′1e′2] = a(1− aa′)σ2
1 − a′σ2

2 , which means that choosing

a′ =
aσ2

1

a2σ2
1 + σ2

2

(6)

2. We write X ⊥⊥ Y when X,Y are independent.
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makes E[e′1e′2] zero as well. We say that variables Z,W are jointly Gaussian if they can be
expressed by [

Z
W

]
= A

[
U
V

]
for some A ∈ R2×2 and independent Gaussian U, V . It is known that zero-correlation is
equivalent to independence for jointly Gaussian variables3. We can check that e′1, e

′
2 are

jointly Gaussian. Therefore, We have e′1 ⊥⊥ e′2 as well. Thus, we have (2) with Y ⊥⊥ ϵ′ for
the a′ and ϵ′.

On the other hand, suppose that (1) with X ⊥⊥ ϵ and (2) with Y ⊥⊥ ϵ′ occur simulta-
neously for some a, a′ and ϵ, ϵ′, which requires (6). Thus, the assumption implies that none
of a, a′ are zero due to (6). We notice the following statement:

Proposition 1 (Darmois (1953); Skitivic (1953)) Let n ≥ 2 and ξ1, . . . , ξn indepen-
dent random variables that take values on R. Suppose that

∑m
i=1 αiξi and

∑m
i=1 βiξi are

independent for some α1, . . . , αm, β1, . . . , βm ∈ R. Then, ξj such that αjβj ̸= 0 is Gaussian
for j = 1, . . . ,m.

Authors have extended the DS theorem into several cases, such as when the random variables
are replaced by random functions in a Banach space (Myronyuk, 2008) and random vectors
(Ghurye and Olkin, 1962).

Comparing (4)(5) and Proposition 1, we see that each term in

(e1, e2, a, 1, 1− aa′,−a′) = (X, ϵ, a, 1,
σ2
2

a2σ2
1 + σ2

2

,− aσ2
1

a2σ2
1 + σ2

2

) = (ξ1, ξ2, α1, α2, β1, β2) (7)

corresponds, where we have applied (6). Combining with (3), we find thatX, ϵ are Gaussian,
which means that Y is Gaussian as well.

Proposition 2 (Shimizu et al. (2011)) Suppose we assume either a ̸= 0 in (1) or a′ ̸= 0
in (2). We can identify the order between random variables via the LiNGAM if and only if
one of them is non-Gaussian.

We may apply the above inference for the multivariate causal order identification. Sup-
pose we have linearly related variables X,Y, Z and have zero mean. Then, there are six
orders, such as Y → X → Z, and Z → Y → X. We first find the top variable among
the three. Suppose that X and {Y − aX,Z − a′X} are independent for some a, a′ ∈ R.
Then, we regard X as the top. Suppose also that Y − aX and Z − a′X − a′′(Y − aX)
are independent for some a′′ ∈ R. Then, we regard Y and Z as the middle and bottom
variables, respectively, which means X → Y → Z. In such a way, we can determine the
order among X,Y, Z. Extending the notion, we can determine the order among any number
of variables such as

Xi =

i−1∑
j=1

bi,jXj + ei

with non-Gaussian noise ei and bi,j ∈ R for p variables X1, . . . , Xp.

3. Let Z and W be zero-mean Gaussian and binary taking ±1 equiprobably. Then, Z and ZW are Gaussian
but not jointly Gaussian. The correlation E[Z · ZW ] = E[Z2] · E[W ] = 0 but they are not independent.
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2.2 Hilbert Spaces

In the following, we regard the set of functions that we deal with makes a Hilbert space4.
We say that T21 : H1 → H2 is a linear operator over R when T (αf+βg) = αTf+βTg for

f, g ∈ H1 and α, β ∈ R, and bounded when there exists C > 0 such that ∥T21f∥2 ≤ C∥f∥1
for f ∈ H1, where ∥·∥1 and ∥·∥2 are the norms inH1 andH2, respectively. For each bounded
operator T21 : H1 → H2, there exists a unique bounded and linear operator T ∗

21 : H2 → H1

such that ⟨T21f1, f2⟩2 = ⟨f1, T ∗
21f2⟩1 for f1 ∈ H1 and f2 ∈ H2. We call such an operator

T ∗
21 the adjoint operator of T21, and if T21 = T ∗

21, we say that T21 is self-adjoint, and it is
symmetric in particular if the dimension of H is finite.

2.3 Random functions

Formally speaking, we say that X : Ω → R is a random variable if it is measurable from a
probability space (Ω,F , µ) to (R,B(R)):

{ω ∈ Ω|X(ω) ∈ B(R)} ∈ F ,

where B(R) is the whole Borel sets. Similarly, we say that χ : Ω → H is a random function
in a Hilbert space H if it is measurable from (Ω,F , µ) to (H,B(H)):

{ω ∈ Ω|χ(ω) ∈ B(H)} ∈ F ,

where B(H) is the whole Borel sets w.r.t. the norm of H. Letting E be a set, we assume
that each element f of H is a function f : E ∋ x 7→ f(x) ∈ R.

We define the mean function and covariance operator of a random function χ : Ω → H. If
the expectation of ∥χ∥ is bounded, we define the mean of χ by the Bochner integral5

∫
Ω χdµ.

If the means of χ1, χ2 in H are m, then we define the covariance operator K : H → H of
random functions χ1, χ2 when H := H1 = H2 by

⟨K g1, g2⟩ = ⟨
∫
Ω
⟨χ1 −m, g1⟩(χ2 −m)⟩dµ, g2⟩ =

∫
Ω
⟨χ1 −m, g1⟩⟨χ2 −m, g2⟩dµ ,

for g1, g2 ∈ H. Let {ei} be an orthonormal basis of H. Then, we can obtain the covariance
values ⟨K ei, ej⟩ for each i, j. In general, if the random functions χ1 and χ2 are independent,
then ⟨K g1, g2⟩ = 0 for g1, g2 ∈ H.

Note that random function χ : Ω → H takes values χ(ω, x) ∈ R with ω ∈ Ω and x ∈ E if
each element inH is E → R. If we fix ω ∈ Ω, then χ(ω, ·) is a function E → R. Hereafter, we
abbreviate the random function χ(ω, ·) by χ(·), which is similar to write a random variable
X(ω) as X. We say that a random function χ with mean m is a Gaussian process if the
random vector [χ(x1), . . . , χ(xn)] of length n is Gaussian with mean [m(x1), . . . ,m(xn)] for
any n ≥ 1 and x1, . . . , xn ∈ E.

If H is of (finite) dimension d, then the covariance operator becomes the covariance
matrix expressed by a positive definite matrix Σ ∈ Rd×d. Then, we can define the eigen-
values {λi} and eigen-vectors {ϕi} of Σ. In particular, we can express each vector by

4. The Banach space is a linear space with a norm that gives completeness (any Cauchy sequence converges).
The Hilbert space is a Banach space with an inner-product that induces the norm that gives completeness.

5. For the exact definition of the Bochner integral, see the reference HSING and EUBANK (2015).
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∑d
i=1⟨X,ϕi⟩ϕi, and see that the variance of ⟨X,ϕi⟩ is λi. Similarly, we have the following

statement: if H is a function space (of an infinite dimension),

Proposition 3 (HSING and EUBANK (2015)) Suppose that {λi} and {ϕi} are the
eigen-values and eigen-functions obtained via K ϕi = λiϕi for i = 1, 2, . . .. Then, the
random function χ is expressed by

χ = m+

∞∑
i=1

⟨χ, ϕi⟩Hϕi

with probability one, where the mean and variance of ⟨χ, ϕi⟩H are zero and λi.

Note that the notion of stochastic processes is close to that of random functions:
{X(t)}t∈E is a stochastic process if X : Ω×E → R is measurable from (Ω,F , µ) to (R,B(R))
for each t ∈ E. Some stochastic processes are random functions as well (HSING and EU-
BANK, 2015).

3. Functional LiNGAM

This section extends the LiNGAM of random variables to that of the random functions.

3.1 Identifiability

In this subsection, we show that the order identification is possible via the LiNGAM if and
only if one of the random functions is not a Gaussian process.

To this end, We shall establish the problem of the LiNGAM in functional spaces (Hilbert
spaces). Let H1, H2 be Hilbert spaces. Suppose that we have two models f1 ∈ H1 and
f2 ∈ H2,

f1 = h1, f2 = T21f1 + h2,

f2 = h′1, f1 = T12f2 + h′2.
(8)

where h1, h
′
2 and h′1, h2 are random functions ofH1 andH2, respectively, and T12 : H2 → H1,

T21 : H1 → H2 are linear bounded operators bewteen H1, H2, and that we wish to identify
the order by examining whether h2 ⊥⊥ f1 or h1 ⊥⊥ f2.

Before proceeding with our discussion, we confirm two statements for deriving the claim.

• the equivalence between non-correlation and independence for jointly Gaussian ran-
dom functions in a Hilbert space (Proposition 4), and

• the DS theorem for random functions in Hilbert spaces (Proposition 5).

The following (Proposition 4) claims the equivalence for the Banach spaces that contain
the Hilbert spaces. Let χ1, χ2 be random functions that randomly take functions E → R
in Banach spaces B1, B2. Note that the dimension of the linear space is infinity when E is
an infinite set while the dimension is finite for vectors of finite dimension.

Proposition 4 (van Neerven (2020)) Let χ, χ′ be jointly Gaussian random functions in
Banach spaces. Then, χ, χ′ are independent if and only if they are uncorrelated.

6
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We say that a bounded linear oprator T : H1 → H2 is continuous if the set {T (f)|f ∈
U} ⊆ H2 is open for a subset U ⊆ H1, so is the inverse image U , and that T : H1 → H2 is
invertible if it is one-to-one.

Proposition 5 (Darmois-Skitovich in Banach spaces (Myronyuk, 2008)) Let n ≥
2 and ξ1, . . . , ξn are random functions in a Banach space. Suppose that

∑n
i=1Aiξi and∑n

i=1Biξi are independent for some continuous linear bounded operators A1, . . . , An, and
B1, . . . , Bn. Then, ξj such that Aj , Bj are invertible is a Gaussian process for j = 1, . . . , n.

Based on Propositions 4 and 5 above, we derive the main theorem as below.

Theorem 6 Suppose that either T12 or T21 is invertible. We can identify the order between
random functions via the LiNGAM if and only if one of them is not a Gaussian process.

Proof. From (8), we have

h′1 = f2 = T21h1 + h2

h′2 = f1 − T12f2 = h1 − T12(T21h1 + h2) = (I − T12T21)h1 − T12h2 .
(9)

then h′1, h
′
2 are jointly Gaussian due to the linear combinations of independent Gaussian

random functions van Neerven (2020). Then the zero-correlation means independence from
Proposition 4. Since h1 ⊥⊥ h2 and h1 ∈ H1, h2 ∈ H2, the cross-covariance operator K12

between them is zero: ⟨K12g1, g2⟩H2 =
∫
Ω⟨h1, g1⟩H1⟨h2, g2⟩H2 = 0 for any g1 ∈ H1,g2 ∈ H2.

Then, the cross-covariance operator K ′
12 between h′1 and h′2 is

⟨K ′
12g1, g2⟩H2 =

∫
Ω
⟨(I − T12T21)h1 − T12h2, g1⟩H1⟨T21h1 + h2, g2⟩H2dµ

=

∫
Ω
⟨(I − T12T21)h1, g1⟩H1⟨T21h1, g2⟩H2dµ+

∫
Ω
⟨−T12h2, g1⟩H1⟨h2, g2⟩H2dµ

=

∫
Ω
⟨h1, (I − T12T21)

∗g1⟩H1⟨h1, T ∗
21g2⟩H1dµ−

∫
Ω
⟨h2, T ∗

12g1⟩H2⟨h2, g2⟩H2dµ

= ⟨K11(I − T12T21)
∗g1, T

∗
21g2⟩H1 − ⟨K22T

∗
12g1, g2⟩H2

= ⟨T21K11(I − T ∗
21T

∗
12)g1, g2⟩H2 − ⟨K22T

∗
12g1, g2⟩H2

(10)

for any g1 ∈ H1,g2 ∈ H2, where K11,K22 are the covariance operators of h1, h2, respectively.
We assume that K11,K22 are not zero. If K ′

12 = 0, then we require

K11T
∗
21 = T12{T21K11T

∗
21 + K22} . (11)

In fact, we have

(10) = 0 ⇔ T21K11(I − T ∗
21T

∗
12) = K22T

∗
12 ⇔ T21K11 = (T21K11T

∗
21 + K22)T

∗
12 ⇔ (11)

Then, we claim that there exists T12 that satisfies (11). It is sufficient to show (T21K11T
∗
21+

K22}f = 0 =⇒ K11T
∗
21f = 0 for f ∈ H2. In order to show it, we note that there exists a

unique nonnegative linear bounded operator S : H1 → H1 such that S2 = K11 (Theorem
3.4.3 in HSING and EUBANK (2015)) since K11 is nonnegative. Thus, we have

(T21K11T
∗
21 + K22)f = 0 =⇒ ⟨(T21K11T

∗
21 + K22)f, f⟩H2 = 0

=⇒ ⟨T21K11T
∗
21f, f⟩H2 = 0 =⇒ ST ∗

21f = 0 =⇒ K11T
∗
21f = S · ST ∗

21f = 0 .

7
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For the converse, suppose that h1 ⊥⊥ h2 and h′1 ⊥⊥ h′2 in (8) with occur simultaneously for
some T12,T21, and that we wish to derive under (11) that h1, h2, h

′
1, h

′
2 are Gaussian. Because

a Hilbert space is a Banach space, we apply Proposition 5. Without loss of generality, we
assume that T12 is invertible. We show that the eigenvalue of T12T21 is less than 1, which
means that I − T12T21 is invertible (Theorem 3.5.5 in HSING and EUBANK (2015)). To
this end, if we multiply (11) by T21 from the left, we have

T21K11T
∗
21 = T21T12{T21K11T

∗
21 + K22} ,

which means that the eigenvalue of T21T12 is less than 1. Noting that T21T12 and T12T21

share the eigenvalues:

T21T12u = λu =⇒ T12T21T12u = λT12u =⇒ T12T21v = λv

for λ ̸= 0, u ∈ H2, and v := T12u ∈ H1, we have proved that the eigenvalue of T12T21 is less
than 1. Then, as we did in (7), we correspond

(h1.h2, T21, I, I − T21T12,−T12) = (ξ1, ξ2, A1, A2, B1, B2)) ,

where A1, A2, B1, B2 are invertible. □

3.2 The Procedure

We consider the first model in (8):

f2 = T21f1 + h2 , (12)

and notice the following statement:

Proposition 7 (HSING and EUBANK (2015)) Let the T : H1 → H2 be a compact6

bounded linear operator. Let {e1,j} and {e2,j} be the orthonormal eigenvector sequences of
T ∗T and TT ∗, respectively, and {λj} the eigenvalues of them. Then, we can express the T
by

Tf =

∞∑
j=1

λj⟨f, e1,j⟩H1e2,j

for f ∈ H1.

Using the same notation as Proposition 7, suppose we express f1 =
∑∞

j=1 f1,je1,j , f2 =∑∞
j=1 f2,je2,j , h2 =

∑∞
j=1 h2,je2,j . Then, (12) becomes the following relation:

Theorem 8 Suppose that T21 : H1 → H2 is compact. If we choose the bases of H1 and H2

as {e1,j} and {e2,j}, respectively, then we have

f2,j = λjf1,j + h2,j (13)

for j = 1, 2, . . ., where λ1 ≥ λ2 ≥ · · · .

6. We say a bounded linear operator T : H1 → H2 is compact if {Tfn} has a convergent subsequence in
H2 for any bounded infinite sequence {fn} in H1.

8
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We assumed that the T21 is compact, otherwise the eigenvalue sequence {λj} would not
converge. In reality, we approximate the random functions f1 ∈ H1, f2, h2 ∈ H2 by random
vectors of finite length M . We choose the {e1,j}Mj=1 and {e2,j}Mj=1 for the bases, so that we
minimize the approximation loss.

The other merit of using the FPCA (functional principal component analysis) approach
is its efficiency. We assume the following procedure: first, we approximate the functions
by the L coefficients of the basis functions (B-spline). Then, we transform it by the M
coefficients of the basis functions defined above. As observed in the next section, M ≪ L
and the time complexity C(M) of the proposed procedure is much less than C(L) for the
B-spline. For example, Shimizu et al. (2011) evaluated the complexity of their method as
C(L) = O(n(Lp)3q2 + (Lp)4q3), where q (≪ n) is the maximal rank found by the low-
rank decomposition used in the kernel-based independence measure, although the proposed
procedure requires additional O(nL2+L3) complexity for computing the covariance matrix
O(nL2) and eigenvalue decomposition O(L3). Extending the notion, we can determine the
order among any number of random functions such as

fi =
i−1∑
j=1

Ti,jfj + hi

with non-Gaussian hi and bounded linear operators Ti,j ;Hj → Hi for p random functions
f1 ∈ H1, . . . , fp ∈ Hp.

4. Simulation

For the synthetic data, we follow the setting in Qiao et al. (2019) by generating n× p func-
tional variables viaXij(t) = ϕ(t)T δij , where ϕ(t) is a five-dimensional Fourier basis function,
and δij ∈ R5 is a mean zero non-Gaussian random vector. The δij can belong to any non-

Gaussian distribution, we let them be the N (0, I5)
2 here. Hence, δi =

(
δTi1, . . . , δ

T
ip

)T
∈ R5p

followed from a multivariate non-Gaussian distribution. We generate n = 1000 obser-
vations of δi, and the observed values, gijk, were sampled using gijk = Xij (tk) + eijk,
where i = 1, . . . , n, j = 1, . . . , p and eijk belongs to non-Gaussian distribution with mean
0 and variance 0.25. Each function was observed at T = 100 equally spaced time points,
0 = t1, . . . , t100 = 1. We denote the five random functions as {a, b, c, d, e}, and the true
causal ordering of them is in Figure 2(a). To mimic real data, we fit each function using
a L-dimensional B-spline basis (rather than the Fourier basis used to generate the data).
Then, we compute the first M estimated principal component scores of Xij from the L
basis coefficients (M ≤ L). We choose L = 50 for the B-spline and M = 5 (explained
variance ratio greater than 99%). Actually, we can choose the optimal L and M by using
cross-validation. Here, we choose the parameters which can contain the information as most
as possible. The causal result of the principal component scores is in Figure 2(b), where
M = 5. By comparing Figure 2(a) and Figure 2(b), we find the Func-LiNGAM successfully
recovers the causal order of the five random functions. Moreover, we compare the running
time of Func-LiNGAM and DirectLiNGAM for the functional data in Table 1. Due to the
FPCA, the Func-LiNGAM is much faster than the DirectLiNGAM (M ≪ T ). Whereas the
Direct-LiNGAM faces all the number T of time points. We also compare the Func-LiNGAM
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a

e

b

c

d

(a) True order.

a

e
0.44

b

0.46

0.45

c

0.40

0.15 0.12

0.37

0.11

0.19

d

0.25

0.38

0.05

0.25

0.35
0.05

0.05

(b) Simulated order. (c) SHD (T=50)

Figure 2: The left is the true causal order of five functions, the middle is the simulated
order from Func-LiNGAM, and the right is the Structural Hamming Distances
(SHD) of two models.

and DirectLiNGAM by computing the Structural Hamming Distance (SHD) (Tsamardinos
et al., 2006) of the estimated DAG to the true one in 10 times. In simple terms, this is the
number of edge insertions, deletions, or flips to transform one graph into another. Thus
the smaller the SHD, the more precise it is. From Figure 2(c), we find the Func-LiNGAM
performs better than the DirectLiNGAM.

T=10 T=30 T=50 T=70

Func-LiNGAM 2.81 3.29 3.19 3.23
DirectLiNGAM 16.09 417.61 1940.87 5689.06

Table 1: CPU (i7-12700KF) running time (in seconds) for p = 5.

5. Real Data

This section illustrates the application of our method to a brain connectome analysis using
fMRI. The data (Richardson et al., 2018) is downsampled to 4mm resolution for convenience
with a repetition time (TR) of 2 secs. The dataset contains 155 subjects (n = 155), 17
parcels (p = 17), and 168 time points (T = 168), where 122 children and a reference group
of 33 adults, watched a short, animated movie that included events evoking the mental
states and physical sensations of the characters, while undergoing fMRI. To make sure the
data has non-Gaussian elements, we use Henze-Zirkler Multivariate Normality Test (Henze
and Zirkler, 1990) for the estimated principal component scores. The p-values of the test
of 17 parcels (we denote them as 1, . . . , 17) are almost less than 0.05 except two parcels
(13, 17), which means most of them reject the null hypothesis and they are non-Gaussian.
Then We estimate the adjacent matrix between the parcels with M = 5. The adjacent
matrix has values at 5 → 6, 16 → 3, 16 → 11, 7 → 8. We also give the 2D graph of brain
connectivity of the causal relationships by Python package Nilearn in Figure 3(a), and the
3D graph in 3(b) with the BrainNet Viewer (Xia et al., 2013).
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(a) 2D. (b) 3D.

Figure 3: 2D and 3D Brain connectivity graphs.

6. Conclusion

We proposed a new framework (Func-LiNGAM) for identifying causal relationships of ran-
dom functions. Theoretically, We proved the identifiability of non-Gaussian processes in
Theorem 6 and proposed the approximation of random functions by random vectors in
a FPCA manner. The simulation results show that the proposed procedure can identify
the causal order among the non-Gaussian random functions precisely and quickly. More-
over, we successfully identified the brain connectivity architecture from fMRI data with
Func-LiNGAM. In future work, we need to consider the optimum estimation given a finite
number of functions. Furthermore, exploring more applications of Func-LiNGAM will make
us excited.
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