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Appendix A. Proofs
A.1. Proof of theorem 1

Let a; denotes the arm with the highest index at time ¢, i.e. a; = argmax, JBAtYES“" -CPD-TS

First note that at each time ¢, if the arm a is played, then the BAYES1AN-CPD-TS algorithm is
either sampling a random arm or playing the arm with the highest index. So the probability
that arm a is chosen at time ¢ when «a is not the optimal arm is written as:

P(Ai=a#a;) < —+(1—a)P(ag =a # af)
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Using the definition of N, 7, we have:

(a)

Now, we need to upper bound the term (a). For this purpose, let us consider an experiment
of the BAYESTAN-CPD-TS over T plays. Let F, denote the number of false alarms up to time
T and D, denote the detection delay of k-th change-point on arm a, where a < NC, 7. By
the way, the total number of detection points, when the change detection algorithm RBOCPD
signals an alarm on arm a is upper bounded by NC, 1 + F;,. Recall that 7,(t) is the latest
detection time (which include also false alarms). For each arm a, we define 7T, as the set of
times slots that no change-point occurs i.e.

To={t € [1,T): pas = pras and 14(t) + 1 < s < t,t > 74(t) + 1}

Following this, we have:
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Note that during a stationary period, we can easily use the regret upper control of
Thompson Sampling to control the quantity H{at =a # af}. Thus, following analysis in
Kaufmann et al. (2012b), we have (in the case where 7, is a deterministic set related to
change-point k):
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where |7,| denotes the length of the period 7.
Following this, since |7,| < T we have naturally :

log T + loglog T
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Finally, by applying the expectation operator, we get:
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where E [Fr| denotes the expected number of false alarm raised up to horizon 7" and C a
problem dependant constant depending on all Cl .
A.2. Proof of Theorem 2
Regarding the false alarm control, it comes directly from Theorem 1 in the analysis of the
restarted Bayesian online changepoint detector in Alami et al. (2020).

Indeed, we have:

Kr
o' € (0,1) :E[Fr] <Y P (3 t € [7i + 1,741 — 1) : RBOCPD_Restart(Va, 1, -, Ya, ns, ) = 1)
k=1
< Krpd'.

Thus, by choosing ¢’ = KLT, we upper bound E [Fr] < 4.

Then, the control of the detection delay comes also from theorem 2 in the analysis of the
restarted Bayesian online change-point detector in Alami et al. (2020).



ALAMI

Indeed we upper bound the detection delay of change point 7, , related to arm a (with
some 0" € (0,1))

<1 _ CTu,k,d+Ta’k71,5 ) —2
E[Dyy] = min{d e N*:d > Ao OB Mt mus L St :
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where:
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with fs; =logni.s +log ngiy1 — %log Nyt + % and the decreasing function n;.; = j —i+1
and n € (0,1).

Indeed assuming that we collect enough samples between two consecutive change-points,
we upper bound the detection delay of change point 7, related to arm a by its behavior in
the asymptotic regime such that:
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Finally, by choosing ¢ = KLT we get the result of Theorem 2.

A.3. Proof of Corollary 1

The result of corollary 1 comes directly by injecting the result of Theorem 2 into Theorem 1
after summing over all the arms.
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