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Abstract
The stochastic multi-armed bandit problem has been widely studied under the stationary
assumption. However in real world problems and industrial applications, this assumption is
often unrealistic because the distributions of rewards may change over time. In this paper,
we consider the piece-wise iid non-stationary stochastic multi-armed bandit problem with
unknown change-points and we focus on the change of mean setup. To solve the latter, we
propose a change-point based framework where we study a class of change-detection based
optimal bandit policies that actively detects change-point using the restarted Bayesian online
change-point detector and then restarts the bandit indices. Analytically, in the context of
regret minimization, our proposal achieves a O(

√
ATKT ) regret upper-bound where KT

is the overall number of change-points up to the horizon T and A is the number of arms.
The derived bound matches the existing lower bound for abruptly changing environments.
Finally, we demonstrate the cumulative regret reduction of the our proposal over synthetic
Bernoulli rewards as well as Yahoo! datasets of webpage click-through rates.
Keywords: Non-stationary multi armed bandits, Bayesian Online Change-point detection.

1. Introduction and related work

Multi-Armed Bandit (MAB) problems model sequential allocation in the face of uncertainty
and partial feedback on rewards. At each round, the learning agent (decision-maker) resolves
to pull one arm amongst a finite number of possible arms. This decision is based on the
past observations. At each time t, upon selecting arm At ∈ {1, ...A}, the agent receives a
reward XAt,t, and he aims at building a sequential sampling strategy that maximizes the
expected sum of these rewards. This is equivalent to minimizing the regret, defined as the
difference between the total reward of the oracle strategy always selecting the arm with
largest mean, and that of the agent strategy. The multi-armed bandit problem has been
extensively applied in several domains such as communication systems (Thompson (1933)),
online recommendation systems (Li et al. (2012)), online advertisement campaign (Schwartz
et al. (2017)) and clinical trials (Villar et al. (2015)).

The stationary stochastic multi-armed bandit problem has been well-studied since the
work of Lai and Robbins (1985). In the context of regret minimization, several algorithms
with O (log T ) problem-dependent regret upper bound have been proposed UCB 1 (Auer
et al. (2002)), UCB V (Audibert et al. (2007)), CP UCB (Garivier and Cappé (2011)), Bayes
UCB (Kaufmann et al. (2012a)), KL UCB (Cappé et al. (2013)), DMED (Honda and Takemura
(2010)), MOSS (Audibert and Bubeck (2009)), Thompson Sampling (Korda et al. (2013)) and
Maillard Sampling (Bian and Jun (2022)). However these algorithms perform poorly in
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non-stationary environments where the distributions of rewards change over time. To address
this issue, the non-stationary multi-armed bandit problem has been proposed in the literature.
Essentially, there are two kinds of strategies for the non-stationary multi-armed bandit:
passively adaptive policies (Besbes et al. (2014); Wei et al. (2016)) and actively adaptive
policies (Hartland et al. (2006); Mellor and Shapiro (2013a)).

Passively adaptive policy In order to forget the past rewards, the first passively adaptive
strategies propose to penalize the past rewards by multiplying them with a discount factor
γ ∈

(
0, 1
)

such that the penalization is of γs if the arm was not seen since s time steps.
The Discounted UCB (D-UCB) was first proposed by Kocsis and Szepesvári (2006) and then
it has been analyzed by Garivier and Moulines (2011) where they prove a regret upper
bound of O(

√
KTT log(T )) if the discount factor γ = 1−

√
KT /T/4 where KT is the overall

number of change-point up to the horizon T . Another popular mechanism to forget the past
rewards is to use a sliding window of fixed size τ , where only the τ last rewards are used
for the decision-maker. The sliding Window UCB (SW-UCB) has been analysed by Garivier
and Moulines (2011) who demonstrates a regret upper bound of O(

√
KTT log(T )) in the

case where τ = 2
√

T log(T )/KT . There are also other recent algorithms such as Discounted
Thompson Sampling (Raj and Kalyani (2017)), Thompson Sampling with sliding window
(Trovo et al. (2020)) and REXP3 (Besbes et al. (2014)) that use passively adaptive mechanisms.

Actively adaptive policy There is a large literature exploring the idea of monitoring
the change in the reward distribution via online change-point detection and triggering the
reset of the bandit algorithm. This kind of algorithm aims at localizing the change-point
and hence demonstrate better performances than the passive policies. The Adapte-EvE
algorithm (Hartland et al. (2006)) uses the Page-Hinkley test to detect the change-point
and hence restart the UCB1 strategy once an alarm is raised. Then, in Mellor and Shapiro
(2013a), the authors design the switching Thompson sampling strategy (STS): a combination
between the Bayesian online change-point detector Adams and MacKay (2007) and Thompson
Sampling. This work has been revisited in Alami et al. (2016) by adding an extra expert
aggregation step. A recent and related work Liu et al. (2018) uses CUSUM algorithm
for change-point detection. Furthermore, the Monitored UCB algorithm (M-UCB Cao et al.
(2018)) also combines a CUSUM instance with UCB. However, the change-detection test
is much easier and a forced exploration phase is also performed. Moreover, in Besson and
Kaufmann (2019b) the authors propose a hybrid combination between KL-UCB algorithm
and a Bernoulli Generalized Likelihood Ratio Test for change-point detection. They reach
a O(KT

√
T log(T )) as regret upper-bound. There is also the work on combining a GLR

instance with the UCB algorithm. Indeed, the authors of Mukherjee and Maillard (2019) have
derived a O(log(T )) regret bounds. Furthermore, in Auer et al. (2019) the authors propose
ADSWITCH an adaptively tracking algorithm for the best arm with an unknown number of
change-point. It has been shown that ADSWITCH achieves (nearly) optimal mini-max regret
bounds of O(

√
ATKT ). Finally, in Gopalan et al. (2021) the authors propose a bandit

quickest change-point detection framework where they have designed an ε-greedy changepoint
detection

Other non-stationary bandits in the literature In the literature of the non-stationary
bandit, we essentially find the work of Chen et al. (2019) where the authors propose the
first contextual bandit algorithm that is parameter-free, efficient, and optimal in terms of
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dynamic regret. Specifically, our algorithm achieves O
(
min

{√
AST ,A

1
3∆

1
3T

2
3

})
dynamic

regret for a contextual bandit problem with T rounds, A actions, S switches and ∆ total
variation in data distributions. Moreover, in the context of linear bandits, the authors of
Zhao et al. (2020) have investigated the problem of non-stationary linear bandits, where the
unknown regression parameter is evolving over time. They designed an UCB-type algorithm
to balance exploitation and exploration, and restart it periodically to handle the drift of
unknown parameters. Finally, in the context of rested rotting bandits where the reward of
an action decreases every time it is pulled, the authors in Seznec et al. (2019) propose a
nearly optimal algorithm for this setting called the filtering on expanding window average
(FEWA) algorithm that constructs moving averages of increasing windows to identify arms
that are more likely to return high rewards when pulled once more. Also, in the authors
introduce a novel algorithm called Routing Adaptive Windows UCB (RAW-UCB) to address
both the rested and restless bandit for all types of non-stationary environments.

Contributions and outline In this paper, we propose a new framework for piece-wise
stationary bandit which consists on a combination between any multi-armed bandit algorithm
with the restarted Bayesian online change-point detector Alami et al. (2020). In the case
of Bernoulli rewards, we derive a regret upper bound for the framework applied on the
Thompson sampling strategy which is of the order O(

√
ATKT ) for a known number of

change-point KT . This upper bound matches the actual lower bound stated in Garivier
and Moulines (2011). Finally, we conduct experiments highlighting the performance of the
proposed and existing strategies are validated by both synthetic and real world datasets, and
we show that our proposed algorithm is superior to other existing policies in terms of pseudo
cumulative regret.

The remainder of the paper is organized as follows: we describe the piece-wise stationary
bandit model in Section 2. In Section 3, we describe the framework of Bayesian Change-point
Detection for bandit feedback in Bernoulli environment. Then, in section 4 we provide the
regret upper bound analysis of the framework applied to the Thompson sampling strategy.
Then, we demonstrate experiment results in Section 5. Finally, section 6 concludes the paper.
Due to space limitations, we provide the proofs of the analytical results in the appendices.

2. The piece-wise stationary multi-armed bandit problem
A piece-wise stationary multi-armed bandit is a discrete time stochastic control process
defined by a 3-tuple

(
A,T, {F (µa,t)}a∈A,t∈T

)
where A = {1, ..., A} denotes the discrete set

of actions of size A, T = {1, 2, ..., T} a sequence of time-steps going up to the horizon T and
F (µa,t) the reward probability distribution of arm a at time t (probability density function)
whose mean is µa,t. We assume a local switching model that allows asynchronous changes to
happen, i.e. arm switches are independent. We denote the overall number of break-points
up to the horizon T by KT =

∑T
t=2 I

{
∃a ∈ A : µa,t ̸= µa,t−1

}
+ 1, where I

{
•
}

denotes the
indicator function. Then, we denote the sequence of break-points up to the horizon T by:
(τ1 = 1, τ2, ..., τKT+1 = T + 1).

Note that when a breakpoint occurs, we do not assume that all the arms means change,
but that there exists an arm which experiences a changepoint, i.e. whose mean satisfies
µa,t ̸= µa,t+1. Letting CT denote the total number of changepoints before horizon T , we have
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CT ∈ {KT , ..., AKT }. By this way, we shall denote by τa,k the kth change-point experienced
by arm a.

Note that an instant of break-point τk corresponds to one or several change-points.
Following this, the environment is now described by KT piece-wise stationary segment de-

noted by Tk = [τk, τk+1). Then, it is convenient to use the variable θa,[k] to denote the constant
behavior of µa,t for t ∈ [τk, τk+1). Moreover, we denote by Θ[k] =

(
F
(
θ1,[k]

)
, ...,F

(
θA,[k]

))
the stationary multi-armed bandit on epoch Tk. By the way, a piece-wise stationary bandit
is ultimately only a sequence of KT stationary bandit denoted by

(
Θ[1], ...,Θ[KT ]

)
.

A decision maker will sequentially interact with this piece-wise stationary bandit for T
times. At each round t ⩾ 1, he has to select an arm At ∈ A based on past observations and
receive the corresponding reward XAt,t ∼ F (µAt,t). At time t, we let a⋆t = argmaxa∈A µa,t

denotes the optimal arm. For convenience, we will be interested in the optimal arm during
the stationary epoch Tk which we shall denote by a⋆[k] = argmaxa∈A θa,[k]. Also, the optimal
mean reward on epoch Tk is denoted by θ⋆[k]. Thus, the bandit gap of arm a during epoch Tk
is ∆a,[k] = θ⋆[k] − θa,[k]. Finally, the change magnitude of arm a related to the change-point
τk is Λa,[k] =

∣∣θa,[k] − θa,[k−1]

∣∣.
In addition, we make the following three assumptions for tractability.

Assumption 1 (Bernoulli rewards). The distributions of all the arms are Bernoulli distribu-
tions denoted as B (µa,t)∀a ∈ A, ∀t ∈ T.

Assumption 1 has been widely used in the literature e.g. in Kaufmann et al. (2012b);
Mellor and Shapiro (2013b); Besbes et al. (2014). Moreover, working on the Bernoulli
distributions is not as restrictive as it may seem. On the first hand, from a concentration
point of view, Bernoulli distributions can be seen as a worst case of bounded distributions.
Furthermore, Bernoulli distributions are crucially used in many widespread applications of
machine learning, for instance in modelling the collisions in cognitive radio, in monitoring the
performances of statistical models, in monitoring events in probes for network supervision, in
the multi armed bandit problem and finally in experiments in clinical trials and recommender
systems.

Assumption 2 (Abrupt switching environments). There exists a sequence (γ1, γ2, ..., γA) ∈
(0, 1)A, such that the parameter µa,t follows an abrupt switching behavior driven by the hazard
rate γa:

µa,t =

{
µa,t−1 with probability 1− γa
µnew ∈ [0, 1] with probability γa

(1)

Assumption 2 is similar to the one used in Mellor and Shapiro (2013a) and Garivier and
Moulines (2011). Moreover, we assume that the hazard rate γa is small in the sense that
we have the possibility to collect enough samples between two consecutive change-points in
order to well estimate the mean of each arm.

Assumption 3 (Change-point detectability). There exists a threshold λ > 0 such that
∀a ∈ A and ∀t ∈ T, if µa,t ̸= µa,t+1 then |µa,t − µa,t+1| ⩾ λ.
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Assumption 3 excludes infinitesimal mean change, which is reasonable in real world
application when detecting abrupt changes bounded from below by a certain threshold.

Moreover, one should note that Assumption 2 and Assumption 3 characterise the hardness
of a non-stationary multi armed bandit problem. Indeed, the higher the switching rate γa,
the harder the detection of change related to arm a. Furthermore, the tighter the threshold
λ, the longer the detection of the change.

Regret minimization in a piece-wise stationary model The agent’s objective is to
build a policy π in order to maximize its expected cumulative reward during T consecutive
time steps, i.e. maxE

[∑T
t=1XAt,t

]
, which is equivalent to minimizing its T -step pseudo

cumulative regret RT defined as:

Rπ
T =

T∑
t=1

max
a∈A

E [Xa,t]− E

[
T∑
t=1

XAt,t

]
=

T∑
t=1

(µ⋆
t − µAt,t)

Following Assumption 1, the quantity Rπ
T is upper bounded as: Rπ

T ⩽
∑

a∈A E
[
Na,T

]
where Na,T =

∑T
t=1 I

{
At = a and a ̸= a⋆t

}
denotes the number of draws related to arm a

when it is considered as sub-optimal arm.

3. The framework of Bayesian Change-point Detection for Bandit
Feedback in Bernoulli environment

The Bayesian change-point for bandit feedback framework consists of two main components:
an optimal bandit algorithm and the restarted Bayesian online change-point detector (RBOCPD)
(Alami et al. (2020)). At each round t and based on the past observations, the bandit outputs
a decision At ∈ A. By playing action At, the environment reveals a reward XAt,t ∼ B (µAt,t)
which is observed by both the bandit algorithm and the RBOCPD instance. The sequential
change-point detector which monitors the distribution of each arm either sends a positive
signal to restart the estimated parameters related the played arm At when a change-point is
detected or sends a negative signal when no change is observed.

The RBOCPD algorithm is chosen among all the sequential change-point detector algorithms
in the state of the art for three main reasons.

• Well adaptability to unknown priors. Indeed, the RBOCPD algorithm has been designed
to solve the problem of sequential change-point detection in a setting where both the
change-points and the distributions before and after the change are assumed to be
unknown. This setting corresponds exactly to the situation of an agent facing a multi
armed bandit whose distributions are unknown and may change abruptly at some
unknown instants.

• Minimum detection delay. This corresponds to the first criteria assessing the perfor-
mance of a sequential change-point detector. The detection delay is defined as the
number of samples needed to detect a change. In Alami et al. (2020), the authors have
shown that the detection delay of the RBOCPD strategy is asymptotically optimal in the
sense that it reaches the existing lower bound stated in Theorem 3.1 in Lai and Xing
(2010).



Alami

• Well controlled false alarm rate. The false alarm rate corresponds to the probability of
detecting a change at some instant where there is no change. Again, in Alami et al.
(2020), the authors have demonstrated that ∀δ ∈ (0, 1) RBOCPD doesn’t make any false
alarm with a probability at least 1− δ.

In the following, we briefly describe the subroutine bandit used in the framework as well
as the restarted Bayesian change-point detector strategy.

3.1. Subroutine bandit for the stationary environment

A subroutine bandit denoted as Bandit is a policy that takes at each time step t, the
number of times Na,t arm a has been pulled since t = 0 and the actual success counter
Sa,t =

∑t
s=1 I

{
Xa,s = 1

}
in order to compute the index IBandita,t of arm a at time t. The

bandit chooses to pull the arm At = argmax
a∈A

IBandita,t whose index is the highest one. The

computation of the arm index is usually an exploration-exploitation dilemma implementation
that takes either the form of a posterior distribution sampling Kaufmann et al. (2012a,b)
or an upper confidence bound computation Auer et al. (2002); Garivier and Cappé (2011).
For instance, in the Thompson sampling (TS) strategy Kaufmann et al. (2012b), the index
of arm a at time t denoted as ITS

a,t ∼ Beta (Sa,t + s0, Na,t − Sa,t + f0) is a sample from the
posterior Beta distribution of the arm where s0 > 0, f0 > 0 are the prior hyperparameters for
arm a. For the Bayes UCB strategy Kaufmann et al. (2012a), the index of arm a at time t

denoted as IBayesUCB
a,t = Q

(
1− 1

(t log t)c ,Beta (Sa,t + s0, Na,t − Sa,t + f0)
)

is the quantile of
order (t log t)c of the posterior Beta distribution related to arm a, for some constant c ⩾ 1.

3.2. The restarted Bayesian online change-point detector

The authors in Alami et al. (2020) have designed a variant of the original Bayesian online
change-point detector introduced by Adams and MacKay (2007). The resulting strategy is
named restarted Bayesian online change-point detector RBOCPD. It is a pruning version of the
original algorithm reinterpreted from the standpoint of forecasters aggregation and expressed
as a restart procedure pruning the useless forecasters.

More formally, for a binary sequence
(
xr, ..., xn

)
∈ {0, 1}, the final formulation of the

RBOCPD strategy takes the following form:

RBOCPD_Restart(xr, ..., xt) = I
{
∃s ∈ (r, t] : ϑr,s,t > ϑr,r,t

}
(2)

where the weight of the forecasters ϑr,s,t are computed in a recursive way as follows
(assuming an initial weight ϑr,1,1 = 1):

ϑr,s,t =

{
ηr,s,t

ηr,s,t−1
exp (−ls,t)ϑr,s,t−1 ∀s < t,

ηr,t,t × Vr:t s = t .
(3)

such that the initial weight of the forecaster takes the form of Vr:t := exp
(
−
∑t−1

s′=r ls′,t−1

)
and the instantaneous loss ls,t := − log Lp (xt|xs...xt−1) is computed based on the Laplace

predictor Lp (xt|xs...xt−1) :=


∑t−1

i=s xi+1
t−s+2 if xt = 1∑t−1
i=s (1−xi)+1
t−s+2 if xt = 0

. The hyper-parameter ηr,s,t is tuned

as a decreasing function in t and depends also on the probability of false alarm δ.
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3.3. Application of the framework

In order to resolve a piece-wise stationary multi-armed bandit, we propose the Bayesian
Change-Point Detection for bandit framework Bayesian-CPD-Bandit, that combines any
multi-armed bandit algorithm (Bandit) with the restarted Bayesian online change-point
detector (RBOCPD) running on each arm a ∈ A. At some time t, Bayesian-CPD-Bandit
re-initializes the parameters related to arm At when the BOCPD associated to arm At has
raised an alarm.

Forced exploration In the majority of cases where the environment is described by
several change-points, these change-point can affect sub-sampled arms. Thus, for local
changes, it is not enough to combine (even) an optimal bandit algorithm with an optimal
online change point detector strategy like RBOCPD. A third ingredient is requested. It is a
question of adding some forced exploration parameterized by α ∈ (0, 1) to ensure each arm
is sampled enough and changes can also be detected on arms currently under-sampled by the
bandit algorithm. By this way, the bandit will play the arm whose current index is maximal
with high probability or sample uniformly the arms set with low probability.

We formally state the Bayesian-CPD-Bandit framework for the Bernoulli case in Algo-
rithm 1 and for the simplicity of notations we adopt the following useful notations.

Notations 1. Let τa(t) denotes the last restart related to arm a that happened before time t.
Then, let Na,t =

∑t
i=τa(t)

I
{
As = a

}
denotes the number of time arm a has been drawn from

the last restart until the current time t. For convenience, we shall use Ya,Na,t: a re-shifted
version of the observation Xa,t.
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Algorithm 1 Bayesian Change-Point Detection for Bandit feedback (Bayesian-CPD-Bandit)

Require: A: Arm set, Bandit: Multi-Armed Bandit strategy as subroutine, α ∈ (0, 1):
forced exploration rate, s0 > 0, n0 > 0: parameters for initialization, T : Horizon.

1: Initialization:
∀a ∈ A Na,0 = n0 and Sa,0 = s0

2: Define:

∀a ∈ A,∀t ∈ T : IBandit
a,t is defined following the MAB strategy Bandit.

(it can be a Thompson Sampling or Bayes UCB strategy) (4)

3: For t = 1, . . . , T

4: Choose action At =

{
argmaxa I

Bandit
a,t with probability 1− α

a ∀a ∈ A with probability α
A

.

5: Observe XAt,t ∼ B (µAt,t).
6: Re-shift observation YAt,NAt,t

= XAt,t.
7: Update NAt,t+1 = NAt,t + 1 and SAt,t+1 = SAt,t +XAt,t.
8: Perform change-point detection using RBOCPD on the sequence

(
YAt,1, ..., YAt,NAt,t

)
.

9: If RBOCPD_Restart(YAt,1, ..., YAt,NAt,t
) = 1 then NAt,t+1 = n0 and SAt,t+1 = s0

10: Update IBandit
At,t+1 according to Eq.(4).

4. Performance Analysis
In this section, we provide a mathematical analysis of the regret upper bound related to
the application of the framework on the Thompson sampling algorithm as bandit. The
analysed strategy is by the way called Bayesian-CPD-TS. First, in Theorem 1 we start
by upper bounding the expected number of pulls related to arm a ∈ A when acting as
sub-optimal arm. To do so, we introduce the quantity E [FT ] which denotes the expected
number of false alarm raised up to horizon T . We also introduce the quantity E [Da,k]
denoting the expected detection delay related to the change-point τa,k. We also denote by
NCa,T :=

∑T−1
t=1 I

{
µa,t ̸= µa,t+1

}
. Then, in Theorem 2 we state the upper bound control

regarding the expected number of the false alarms and the expected detection delay. Finally,
we combine the results of Theorem 1 and Theorem 2 to state the regret upper bound of
the Bayesian-CPD-TS strategy. Due to space limitations, the proofs are presented in the
supplementary material.

Theorem 1 (Bounding the number of samples related to sub-optimal arms). Under As-
sumptions 1 and 3, for any α ∈ (0, 1) and any arm a ∈ A, the Bayesian-CPD-TS strategy
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achieves:

∀ε ∈ [0, 1] , ∃C(θ⋆[1], θa,[1], ..., θ
⋆
[KT ], θa,[KT ]) > 0 :

E
[
Na,T

]
⩽

αT

A
+

NCa,T∑
k=1

E [Da,k] + (NCa,T + E [FT ])× (1 + ε)× log T + log log T

min
k∈[1,KT ],a̸=a⋆k

kl
(
θa,[k], θ

⋆
[k]

) + C

where kl (•, •) stands for the Kullback-Leibler divergence for Bernoulli distributions.

Remark 1. The problem dependant constant C
(
θ⋆[1], θa,[1], ..., θ

⋆
[KT ], θa,[KT ]

)
comes directly

from the analysis of the Thompson sampling in Kaufmann et al. (2012b).

Theorem 2 (False alarm and detection delay control). Under Assumptions 1 and 2 and
for some δ ∈ (0, 1), the control of the expected number of false alarm E [FT ] as well as the
expected detection delays {E [Da,k] , k ∈ [1,NCa,T ]} take the following form.

∀δ ∈ (0, 1) E [FT ] ⩽ δ and ∀k ∈ [1,NCa,T ] E [Da,k] = O

 o
(
log KT

δ

)
2α× min

a:Λa,[k] ̸=0
Λ2
a,[k]


Corollary 1 (Regret upper bound for a known number of change-points). Under Assumption
1 and 2, assuming that the horizon T and the number of change points KT are known in
advance, by choosing α =

√
AKT
T , the regret upper bound of the strategy Bayesian Change-point

detection using Thompson Sampling takes the following form:

RBayesian-CPD-TS
T = O

 KT log T

min
k∈[1,KT ],a̸=a⋆

kl
(
θa,[k], θ

⋆
[k]

) +
√
AKTT


Discussion 1 (Knowledge of the number of break-points KT ). One should note that the
optimal tuning of the exploration rate α requires a prior knowledge on the number of change-
points KT which is a common way to tune the hyper-parameters of the majority of the
non-stationary multi-armed bandit algorithms. For instance, the classical discount factor in
D-UCB (Garivier and Moulines (2011)) depends on KT , the sliding window size in SW-UCB
(Garivier and Moulines (2011)) depends also on KT . Moreover, the exploration rate used in
GLR-KLUCB (Besson and Kaufmann (2019a)) is chosen with respect to KT . Finally, the γ
parameter used in the M UCB strategy (Cao et al. (2018)) is also tuned with respect to the
number of change-points.

Discussion 2 (Optimality of the regret upper bound). In the sense of the current lower
bound computed for abruptly changing environment which is Ω(T ) and stated in Corollary 14
of Garivier and Moulines (2011), the Bayesian-CPD-TS strategy reaches the order optimal
regret rate.
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5. Simulation Results
We evaluate the Bayesian change-point detection framework applied on the Thompson sam-
pling algorithm (Bayesian-CPD-TS) in two non-stationary environments: a synthetic dataset
(where a switching scenario is simulated) and one real-world dataset from Yahoo!. In both ex-
periments, we compare the performance of Bayesian-CPD-TS against 4 multi-armed bandits
algorithms designed for the non-stationary case: Exp3S (Auer et al. (2003)), Sliding Window
Thompson Sampling (SW-TS Trovo et al. (2020)), Switching Thompson Sampling (Switching-
TS Mellor and Shapiro (2013b)) and Monitored UCB (M-UCB Cao et al. (2018)). For the
M-UCB algorithm, we tune the hyper-parameters based on Remark 1 in Cao et al. (2018).
Namely, we choose w = 4δ̃2

[
(log(2AT 2))1/2 + (log(2T ))1/2

]2, b = [w log(2AT 2)/2
]1/2 and

γ =
√
A(KT − 1)× (2b+ 3

√
w)/(2T ), where δ̃ designates the minimal amplitude of change

defined in Cao et al. (2018) Section 5. We choose τ = 2
√
T log T/KT for SW-TS (same as

the tuning of sliding window UCB in Garivier and Moulines (2011)). For Exp-3S, we use
α = 1/T and γ = min

{
1,
√

A log(AT )/T
}
. Finally, for the Thompson Sampling bandit

used in Bayesian-CPD-TS, we use s0 = f0 = 1 which corresponds to a uniform prior. Finally,
the exploration rate α is tuned following Corollary 1

5.1. Synthetic environment

In this first setting, we generate a piece-wise stationary Bernoulli environment, with a horizon
T = 20000, A = 5 arms and KT = 6 local break-points at time-steps 4000, 9000, 11000,
15000 and 18000 as shown in Figure 1a. We test the above strategies in 50 simulations and
record the mean and std. deviation of the cumulative regrets as indicated in Figure 1b.
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(a) Generated piece-wise stationary Bernoulli
environment with T = 20000, A = 5 and KT =
6.
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(b) Averaged cumulative regrets for different
algorithms in the piece-wise stationary scenario
shown in Figure 1a over 50 runs.

Figure 1: Generated environment and cumulative regrets of MAB strategies from the synthetic
dataset.
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5.2. Real world environment: Yahoo! Dataset
We apply the previous strategies to a Yahoo! Front Page Today Module dataset 1. The dataset
contains a set of recommended articles, each associated with a binary value, representing
whether the user chooses to click the article. We randomly pick A = 4 articles, among a pool
of 50 articles which have been recommended together the most. Each article is associated
with an arm, and we assume a piece-wise stationary Bernoulli process with KT = 10 local
break points, by evaluating the mean click-through rates every 1800 seconds, for a total of
T = 18000 seconds (which is equivalent to five hours). Unlike Cao et al. (2018), we don’t set
a minimum amplitude of change, but we scale the click-through rates in 0-1 range to obtain
greater mean changes. For each strategy, we evaluate the hyper-parameters setting described
above, using the obtained environment shown in Figure 2a. In Figure 2b, we observe the
mean, and std. deviation of the cumulative regrets over 50 simulations.
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18000, A = 4 and KT = 10.
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(b) Averaged cumulative regrets for different
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shown in Figure 2a over 50 runs.

Figure 2: Generated environment and cumulative regrets of MAB strategies from the Yahoo!
Dataset.

Discussion 3 (Analysis of the simulation results). The Bayesian-CPD-TS compares favorably
against the state-of-the-art non-stationary MAB strategies, whether on the synthetic or the
real-world dataset experiment. Another limitation for the other strategies is that they take
a parametric approach to change-point detection, which requires an extra step for hyper-
parameters tuning. M-UCB for example, does not perform well enough in the Yahoo! Dataset
because Assumption 1 in Cao et al. (2018) is not verified.

Discussion 4 (Extension to other distributions). This work can naturally be extended to
other distributions since Thompson Sampling has also been designed for the non-Bernoulli
case. To do so, we should consider an extension of the RBOCPD algorithm to handle non-binary

1. R6B - Yahoo! Front Page Today Module User Click Log Dataset, available on :
https://webscope.sandbox.yahoo.com

https://webscope.sandbox.yahoo.com
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observations by replacing the Laplace predictor with a more suitable predictor for general
observations.

6. Conclusion and Future Works
We have proposed a class of algorithms for the piece-wise stationary bandit problem; the
Bayesian Change-Point detector for bandit framework, Bayesian-CPD-Bandit, which com-
bines the any multi armed bandit algorithm with a optimal restarted Bayesian change-point
detector RBOCPD. In the case where Thompson sampling is chosen as bandit algorithm, we
have derived a regret upper bound of the order of O(

√
ATKT ) matching the existing lower

bound. From the experiments, the application of this framework using Thompson sampling
as bandit algorithm compares favorably against the most popular strategies designed for
the non-stationary bandit setting. This comes directly from the powerful RBOCPD test: its
detection delay is optimal and the false alarm rate probability is well controlled. As future
works, we plan to extend the framework for non-Bernoulli distributions which requires the
adaptation of restarted Bayesian online change-point detection for these distributions.
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