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Abstract
Scene text detection based on deep neural networks has been extensively studied in the last few
years. However, the task of detecting texts in complex scenes such as bad weather and image
distortions has not received sufficient attentions in existing works, which is crucial for real-world
applications such as text translation, autonomous driving, etc. In this paper, we propose a novel
strategy to automatically search for the effective scene transformation polices to augment images
in the training phase. In addition, we build a new dataset, Robust-Text, to evaluate the robustness
of text detection methods in real complex scenes. Experiments conducted on the ICDAR2015,
MSRA-TD500 and Robust-Text datasets demonstrate that our method can effectively improve the
robustness of text detectors in complex scenes.
Keywords: Scene Text Detection; Scene Transformation; Robustness Enhancements

1. Introduction

Scene text detection is widely used in image and video retrieval, autopilot and text translation, and
has received intensive attention from researchers in areas of Computer Vision and Pattern Recog-
nition. With the help of deep learning techniques, a great progress has been made in scene text
detection. However, current deep learning based text detectors can be easily fooled in some com-
plex scenes. As shown in Figure 1, when encountering object occlusion, bad weather or geometric
distortions, existing state-of-the-art scene text detectors may still miss a large amount of texts, even
though these texts are clearly visible to human eyes.

There exist some works Bahnsen et al. (2018); Mukherjee et al. (2018) that focus on modeling
one single environmental condition, including removing reflection, fog, rain or snow. However, a
variety of complex scenes exist in the wild, it is hard for the detector to know in advance which kind
of conditions the target image belongs to. Moreover, if we design a model for each complex scene to
eliminate the interference from the external environment, the entire detection process could be quite
complicated and inefficient. There also exist some other works Vasiljevic et al. (2016); Zheng et al.
(2016) that try to solve this problem by fine-tuning their models on blurred data. However, directly
fine-tuning on blurred images may lead to underfitting, which significantly affects the performance
of models.

* Indicates the corresponding author.
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Figure 1: Detection results of different methods in real natural scenes. (a) Ground truth. (b) De-
tection results of EAST. (c) Detection results of SegLink. (d) Detection results of MASK
R-CNN. (e) Detection results of EAST with our method.

Based on the semantic segmentation maps and the properties of images from indoor or outdoor
scenes, we design nine types of scene transformations including multi-perspective, reflection, fence,
motion blur, fog, snow, glare, defocus blur and brightness. Furthermore, we adopt a strategy to
automatically search for the transformation policies to augment the training images. To the best of
our knowledge, this is the first work to improve the robustness of scene text detectors in various
kinds of complex scenes. Moreover, a dataset named as Robust-Text containing 100 validation
images and 400 test images from indoor and outdoor scenes is constructed to evaluate the robustness
of scene text detectors in real complex scenes.

Major contributions of this paper can be summarized as follows:

• In order to simulate complex scenes, we design nine types of scene transformations and adopt
a strategy to automatically search for optimal transformation policies to augment images in
the training phase.

• A new dataset, Robust-Text, is proposed to evaluate the robustness of scene text detectors in
real natural scenes.

• The learnable scene transformation technique can effectively improve the robustness of text
detectors in complex scenes.

2. Related Work

2.1. Scene Text Detection

Scene text detection and recognition have been extensively studied for a long time. Before the
prevalence of deep learning, a large number of conventional methods, such as Stroke Width Trans-
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form (SWT) Epshtein et al. (2010) and Maximally Stable Extremal Regions (MSER) Neumann
and Matas (2010), detect scene texts relying on manually designed features. Recently, with the
help of deep neural networks, modern methods, which can be coarsely divided into segmentation-
based Yao et al. (2016); Zhang et al. (2016); Xu et al. (2019); Wu and Natarajan (2017); Polzounov
et al. (2017); Xue et al. (2018) and regression-based Tian et al. (2017, 2015); Liao et al. (2017); Ma
et al. (2018); Lyu et al. (2018), markedly outperform the conventional methods.

However, complex scenes such as bad weather can easily fool deep learning based methods,
which has a huge negative impact on detecting texts in real-world applications. Moreover, existing
datasets contain few images in different complex scenes for text detection and collecting a large
amount of images in complex scenes is difficult. So improving the robustness of scene text detectors
in a simple and effective way becomes increasingly important.

2.2. Robustness Studies

In recent years, the frangibility of deep learning based methods to common corruptions has re-
ceived more and more attention from researchers. Geirhos et al. Geirhos et al. (2018) compared
the generalization capabilities of humans and deep neural networks on object recognition under a
broad range of corruption types. Different corrupted datasets for object and traffic sign recognition
were first proposed by Temel and AlRegib Temel and AlRegib (2018). Latter, Hendrycks and Diet-
terich Hendrycks and Dietterich (2019) established benchmarks consisting of the “IMAGENET-C”
and “IMAGENET-P” datasets to evaluate the robustness of recognition models when affected by
corruptions. Michaelis et al. Michaelis et al. (2019) also proposed three benchmarks composed of
the “Pascal-C”, “Coco-C” and “Cityscapes-C” datasets to assess the performance of object detec-
tion models when the image quality degrades. Actually, there are many other corruptions such as
reflection and glare that often appear in the scenes for text detection, but they are not considered in
above-mentioned benchmarks.

Existing methods designed to alleviate the performance degradation can be roughly classified
into two categories: preprocessing the input data by removing corruption and fine-tuning models
on corrupted data. For example, for the first category, based on CNN, Mukherjee et al. Mukherjee
et al. (2018) proposed NVDeHazenet to restore the quality of images under rainy and foggy cir-
cumstances. However, these methods are designed for a specific category of corruption and when
encountering interferences from other corruption categories, their performance can be greatly re-
duced. For the second category, Vasiljevic et al. Vasiljevic et al. (2016) fine-tuned a pre-trained
model on corrupted images of a specific category, but the model cannot be generalized to other
corruption types.

In order to simulate the common complex scenes, we design nine types of scene transforma-
tions including multi-perspective, reflection, fence, motion blur, fog, snow, glare, defocus blur and
brightness to transform the training images.

2.3. Data Augmentation

Data augmentation has received intensive attention from researchers in areas of image recognition,
object detection, etc. In the past few years, operations including random cropping, scaling, flipping,
rotation and color transformation are commonly performed on benchmark datasets to generate the
augmentation examples. Furthermore, there are some methods such as Cutout DeVries and Taylor
(2017), Mixup Zhang et al. (2017) and CutMix Yun et al. (2019), which achieve promising results on
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image recognition tasks by randomly replacing or masking out the image patches. However, these
methods need to set proper hyper-parameters for specific datasets based on domain knowledge.

Drawing inspiration from the neural architecture search (NAS) algorithms, some current meth-
ods automatically search for the effective augmentation polices for corresponding datasets and mod-
els. Based on the Reinforcement learning (RL) search strategy, AutoAugment Cubuk et al. (2019)
trains a RNN controller to predict the policies for augmenting images. PBA Ho et al. (2019) uses
a population based training to generate the augmentation policies. Fast AutoAugment Lim et al.
(2019) employs the Bayesian optimization to search for the optimal policies.

Based on the scene transformations mentioned above, we design the search space. Inspired by
Fast AutoAugment Lim et al. (2019), we treat the task of finding optimal transformation policies as
a density matching problem and apply the Bayesian optimization to learn the policies.

3. Method Description

3.1. Overview

The text detection models trained on existing datasets perform well on their corresponding test
sets. However, the detection performance of these models will be significantly deteriorated when
encountering widely varying indoor and outdoor scenes such as occlusion, reflection, fog, snow,
motion blur and so on. Moreover, there is currently no dataset specifically designed for text detection
in such complex scenes as mentioned above. Therefore, we adopt a strategy to automatically search
for scene transformation policies to pre-process images on existing datasets to solve the problem of
detecting texts in complicated scenes.

The pipeline of our scene transformation framework is illustrated in Figure 2. First, based on the
target images, we trained a scene text detector. Next, the source image is segmented into different
regions based on semantic information. Meanwhile, a discriminator predicts whether the image
is from indoor or outdoor scenes. If the image comes from indoor scenes, we randomly select
the indoor image materials from the image repository, otherwise the outdoor image materials are
chosen. Then, we randomly select a sub-policy including two consecutive operations to transform
the source image. Furthermore, we explore the policies via the Bayesian optimization method by
minimizing the expected loss of the trained scene text detector on augmented images. Finally, by
using the obtained polices, we perform scene transformations on the input images during the training
phase.

3.2. Semantic Coherence

When performing scene transformations on an image, we need to consider the semantic information
of each region in the image. For example, reflections typically occur on the surface of objects such as
windows instead of grass, sky, etc. With the help of acquired semantic information, the transformed
images are more semantically reasonable.

Based on the existing datasets for scene text detection, we trained a classifier to identify whether
the input image is from indoor or outdoor scenes. The ground truth is manually labeled by us. To
further understand the visual scene of images at pixel level, we perform semantic segmentation on
images. There are a large number of objects labeled at pixel level in the COCO 2018 panoptic
segmentation dataset Kirillov et al. (2019) which contains almost all common objects in natural
scenes. Based on the dataset, we adopt the method proposed in Xiong et al. (2019) to automatically
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Figure 2: The pipeline of the proposed scene transformation framework. First, based on the target
images, we train the scene text detector. Next, by using the semantic information and
properties of indoor or outdoor, we randomly select a sub-policy including two consecu-
tive operations to transform the source images. Furthermore, we explore the transforma-
tion policies by minimizing the expected loss of the scene text detector on the augmented
images.

annotate all semantic classes in images. As illustrated in Figure 2, the obtained scene and semantic
information is conducive to performing scene transformations on sensible regions. The details of
using the obtained information in each type of scene will be explained in section 3.3.

3.3. Scene Transformations

When performing scene transformations, we need to distinguish between indoor and outdoor scenes
due to their different properties. For example, there is no snow or fog indoor. In addition, we use
a continuous value of magnitude m at [0, 1] to control the severity levels of scene transformations.
Note that some transformations (e.g., fence, glare) do not have the magnitude. As shown in Figure
3, to simulate complex scenes, we design nine types of scene transformations as follows.

Multi-perspective means taking pictures from multiple perspectives. Images in most existing
datasets are taken from the front of texts, but it’s commonly-seen for ordinary people to take pictures
from many other perspectives in real situations. Therefore, we transform the images from four
perspectives consisting of top left, top right, bottom left and bottom right.

Reflection can appear when taking images through the glass, which causes visual interference
to scene text detection. Based on the semantic segmentation map of the image, we first select some
appropriate semantic areas. Then, according to whether the image is from indoor or outdoor scenes,



CAO ZHOU CHEN

(a) Multi-perspective (b) Reflection (c) Fence

(d) Motion blur (e) Fog (f) Snow

(g) Glare (h) Defocus blur (i) Brightness

Figure 3: An illustration of the proposed nine types of scene transformations.

we mix some randomly-selected image materials in the corresponding category with the selected
areas in the image by a weight of r ∈ [0, 1], which can be used to control the magnitude of this
transformation.

Fence is a kind of common objects occluding texts in natural scenes. We design three different
types of fences and randomly select a fence to render the text regions in images with outdoor scenes.

Motion blur occurs when the camera moves quickly at the time of taking pictures. Given a
radius, sigma and an angle in which the blur should occur, we perform motion blur on the entire im-
age by using the motion-blur function of ImageMagick ImageMagick Studio (2008). The parameter
sigma is used to set different severities of motion blur.

Fog can make objects unrecognizable, which has a huge negative impact on applications such as
the autopilot in real natural scenes. We adopt the diamond-square algorithm Fournier et al. (1982)
to render fog.

Snow generally appears in winter, which can cause large visual disturbances during scene text
detection. We generate a blank image and randomly draw a certain number of white points on it.
Furthermore, the motion-blur function of ImageMagick ImageMagick Studio (2008) is applied on
the generated image to simulate the effect of snow falling. We generate snows in different severities
by setting different numbers of white points and parameter sigma in the motion-blur function.

Glare may appear in some locations of scenes. Because of its high brightness, texts around it
are very difficult to detect. To ensure the recognizability of scene texts, the strong light points are
mainly placed at the border of texts.

Defocus blur refers to the situation where the image is out of focus. We implement this type of
scene transformation through the gaussian blur function in OpenCV Bradski (2000).

Brightness of a scene changes with the external illumination of varying intensities. An environ-
ment that is too bright or too dark may seriously affect the detection of scene texts. Skimage Van der
Walt et al. (2014), a popular Python image library, is used to implement different severities of bright-
ness on images.
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3.4. Searching for Transformation Policies

Search Space The proposed scene transformations (augmentation operations) mentioned above
are employed to transform the input images. Following Fast AutoAugment Lim et al. (2019), our
transformation policies P include several sub-policies where a sub-policy si ∈ P consists of N
consecutive operations {Osi

n (x; p
si
n ,m

si
n ) : n = 1, ..., N}, where N is set to 2 in our experiments.

Each operation O
si
n applied to an input image has two continuous parameters: the calling probability

of applying this operation psin and the magnitude of this operation msi
n :

O
si
n (x; p

si
n ,m

si
n ) :=

{
O(x;msi

n ) : probability psin
x : probability 1− psin .

(1)

Therefore, a sub-policy si can be represented by a composition of operations as follows:

si = O
si
N ((..., O

si
2 ((O

si
1 (x; p

si
1 ,m

si
1 )); p

si
2 ,m

si
2 )); p

si
N ,msi

N ). (2)

Search Strategy As shown in Figure 2, we search for the transformation policies by matching
density between the source and target images. Based on the target images, we first train the scene
text detection model. Furthermore, we explore the transformation policies by tuning calling proba-
bilities and magnitudes of transformation operations for minimizing the expected loss of the trained
model on augmented source images:

s∗i = argmin
si

Loss(θ∗|si(Ds)), (3)

where θ∗ is the parameter trained on the target images Dt, Ds denotes the source images and s∗i
approximately minimizes the distance between the densities of Dt and si(Ds) by minimizing the
expected loss.

Implementation Based on the Bayesian optimization, we explore the desired transformation poli-
cies. Here, we present the implementation details of each step listed in Algorithm 1. In this paper,
Tune Liaw et al. (2018), a scalable hyperparameter tuning library, is used for policy searching. We
explore the the continuous values for the calling probability p and magnitude m for each operation.
At the beginning, the values of p and m are uniformly sampled from [0, 1]. Then, HyperOpt in Tune
modifies the values to minimize the Loss.

Algorithm 1 Searching for Scene Transformation Policies
Input: (θ,Dsource, Dtarget, s, T, P )

P ← ∅
Train θ on Dtarget

for t ∈ {0, ..., T − 1} do
S← BayesOptim(s, Loss(θ|s(Dsource)))
Sn ← Select top-n polices in S
P ← P ∪ Sn

end for
Output: P
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Figure 4: Some qualitative detection results on transformed and real natural images. (a) The de-
tection results on transformed images of EAST trained on the original datasets. (b) The
detection results on transformed images of EAST trained on the transformed images by
using our learnable scene transformation technique. (c) The detection results on Robust-
Text of EAST trained on MSRA-TD500. (d) The detection results on Robust-Text of
EAST trained on the transformed MSRA-TD500 by using the proposed learnable scene
transformation technique.

4. Robust-Text Dataset

There is currently no dataset specifically designed for detecting texts in complex scenes, but these
scenes do exist in real world and pose great challenges for detection tasks. To evaluate the perfor-
mance of models on detecting texts in complex scenes, we propose a dataset named Robust-Text
containing 100 validation images and 400 test images, which include images manually collected
from internet and our own pictures taken by a smart phone. These images are from both indoor
and outdoor scenes, covering a variety of complex scenes such as snow, fog, multi-perspective,
glare, reflection, etc. Some representative images of the proposed dataset are illustrated in Figure 4.
Moreover, texts on those images may be in Chinese, English or the mixture of both. We manually
label texts by using our own labeling tool and all texts in images are annotated at line level by using
minimum bounding rectangles.
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Table 1: Empirically chosen magnitudes for different types of scene transformations
Scene Types Multi-perspective Reflection Fence Motion blur Fog Snow Glare Defocus blur Brightness

Magnitude 0.5 0.3 - 0.3, 0.5 0.3,0.5,0.8 0.3,0.5,0.8 - 0.5 0.3,0.5,0.8

5. Experiments

In this section, we conduct experiments to evaluate several state-of-the-art scene text detection meth-
ods in complex scenes and analyze their detection performance in each scene. Experimental results
demonstrate that the proposed learnable scene transformation technique effectively improves the
robustness of text detectors in complex scenes.

5.1. Datasets

ICDAR2015 and ICDAR2015-R Datasets ICDAR2105 Karatzas et al. (2015) was used in the
Challenge 4 of 2015 Robust Reading Competition. This dataset contains 1000 images for training
and 500 images for testing, which are captured without preparation by Google Glasses. The text
instances are annotated as quadrilaterals at word level. ICDAR2015-R, including 1000 images for
validation and 3259 images for testing, is generated by performing nine types of scene transforma-
tions on ICDAR2015. As shown in Table 1, to simulate the situations of real scenes, we empirically
set the magnitude of each scene transformation for ICDAR2015-R.

MSRA-TD500 and MSRA-TD500-R Datasets MSRA-TD500 Yao et al. (2012) is a dataset that
contains 300 training images and 200 testing images, which are taken from indoor and outdoor
scenes. The text instances in images are annotated at line level. MSRA-TD500-R is acquired by
performing nine types of scene transformations on MSRA-TD500 dataset. This dataset consists of
500 validation images and 1746 testing images. The magnitude settings of different scene transfor-
mations in MSRA-TD500-R are the same as those in ICDAR2015-R (see Table 1).

Robust-Text Dataset The dataset we built as mentioned in Section 4.

5.2. Scene Text Detection

Impact of Complex Scenes In order to assess the impact of complex scenes, we evaluate sev-
eral existing text detection methods by training models on the training sets of ICDAR2015 and
MSRA-TD500 and testing them on the test sets of ICDAR2015, ICDAR2015-R, MSRA-TD500
and MSRA-TD500-R.

As we can observe from results listed in Table 2, complex scenes have a huge negative impact
on the performance of scene text detection methods. The performance of EAST Zhou et al. (2017)
drops significantly by 18.0% and 10.5% in f-score on ICDAR2015-R and MSRA-TD500-R, respec-
tively and PAN Wang et al. (2019) suffers a dramatic reduction in f-score by 19.1% and 17.3% on
ICDAR2015-R and MSRA-TD500-R, respectively. We also evaluate CRAFT Baek et al. (2019)
with VGG-16 as the backbone network, whose performance drops by 17.7% and 18.2% in f-score
on ICDAR2015-R and MSRA-TD500-R, respectively. Furthermore, a recently-proposed method
DB-ResNet-50 Liao et al. (2019) does not perform well in this condition, which suffers a reduction
in f-score by 17.5% and 17.6% on ICDAR2015-R and MSRA-TD500-R, respectively.
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Figure 5: The comparison of detection performance of EAST in different scenes. The model is
trained on the training set of MSRA-TD500. Bars colored in blue and red denote results
obtained by testing the model on the test set of MSRA-TD500 and MSRA-TD500-R,
respectively.

Furthermore, based on EAST Zhou et al. (2017), we conduct experiments on MSRA-TD500 and
MSRA-TD500-R to analyze the impact of various scene transformation types on the detection re-
sults. As shown in Figure 5, fence has the greatest interference to detection results, which decreases
the performance by 55.9% in f-score. In addition, multi-perspective, reflection, fog, snow and glare
also greatly affect the detection results, while the interference caused by brightness, motion blur and
defocus blur is relatively small.

Robustness Enhancements For the purpose of improving the robustness of scene text detection
methods, we regard the validation sets of ICDAR2015-R and MSRA-TD500-R as the target images
to search for the corresponding scene transformation policies. Based on the searched policies, we
perform scene transformations on the training sets of ICDAR2015 and MSRA-TD500. Table 2
shows the quantitative results on the test sets of four datasets.

On the one hand, we analyze the effect of the proposed method on the test sets of original
datasets. ‘LST’ stands for the proposed learnable scene transformation technique. From Table 2,
we can observe that EAST [LST] outperforms the original EAST in f-score by 2.5% and 1.4% on
ICDAR2015 and MSRA-TD500, respectively. Furthermore, PAN [LST] outperforms the original
PAN in f-score by 1.0% and 0.9% on ICDAR2015 and MSRA-TD500, respectively. The other
methods also get some improvements on the ICDAR2015 and MSRA-TD500.

On the other hand, we analyze the effect of the proposed method on the test sets of transformed
datasets. The detection results of EAST [LST] just decrease by 9.9% and 1.6% on ICDAR2015-R
and MSRA-TD500-R, respectively, while the performance of the original EAST dramatically drops
by 18.0% and 10.5% in f-score on ICDAR2015-R and MSRA-TD500-R, respectively. In addition,
the detection results of DB-ResNet-50 [LST] decrease by 9.8% and 2.5% on ICDAR2015-R and
MSRA-TD500-R, respectively, while the performance of the original DB-ResNet-50 dramatically
drops by 17.5% and 17.6% in f-score on ICDAR2015-R and MSRA-TD500-R, respectively.
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Table 2: The detection results of several methods on ICDAR2015, ICDAR2015-R, MSRA-TD500
and MSRA-TD500-R. These methods are trained on the training images of ICDAR2015
and MSRA-TD500. ‘Validation’ means adding the validation images of ICDAR2015-R or
MSRA-TD500-R based on the training images of ICDAR2015 or MSRA-TD500. ‘LST’
stands for the proposed learnable scene transformation technique.‘R’, ‘P’ and ‘F’ mean the
‘recall’, ‘precision’ and ‘f-score’, respectively.

ICDAR2015 ICDAR2015-R MSRA-TD500 MSRA-TD500-R
Method R P F R P F R P F R P F

PAN Wang et al. (2019) 81.9 84.0 82.9 52.1 82.3 63.8 83.8 84.4 84.1 57.1 80.5 66.8

CRAFT Baek et al. (2019) 84.3 89.8 86.9 57.5 86.8 69.2 78.2 88.2 82.9 52.2 85.1 64.7

DB-ResNet-50 Liao et al. (2019) 80.3 91.3 85.4 54.9 88.9 67.9 80.8 91.1 85.6 55.7 87.2 68.0

EAST Zhou et al. (2017) 76.9 81.1 79.0 48.9 81.1 61.0 60.9 79.0 68.8 46.5 78.2 58.3

PAN Wang et al. (2019) + Validation 82.1 85.1 83.6 65.8 75.0 70.1 84.6 85.6 85.1 72.5 75.8 74.1

CRAFT Baek et al. (2019) + Validation 84.3 89.0 86.6 66.5 77.3 71.5 79.0 87.9 83.2 72.5 80.8 76.4

DB-ResNet-50 Liao et al. (2019) + Validation 82.2 91.3 86.5 74.2 68.6 71.3 82.7 89.8 86.1 72.9 81.8 77.1

EAST Zhou et al. (2017) + Validation 78.8 82.9 80.8 61.5 72.4 66.5 63.1 78.1 69.8 53.6 76.4 63.0

PAN Wang et al. (2019) + LST 82.9 84.9 83.9 68.9 78.3 73.3 85.3 84.7 85.0 79.3 82.1 80.7

CRAFT Baek et al. (2019) + LST 84.6 89.7 87.1 72.5 80.9 76.5 79.2 88.0 83.4 77.4 85.6 81.3

DB-ResNet-50 Liao et al. (2019) + LST 82.0 90.8 86.2 79.1 72.0 75.4 82.2 90.8 86.3 80.1 87.8 83.8
EAST Zhou et al. (2017) + LST 79.2 83.9 81.5 66.8 77.1 71.6 63.3 78.8 70.2 59.3 81.4 68.6

Furthermore, we add the validation images of ‘-R’ dataset in the training phase to exclude
the effects of complex training data. As shown in Table 2, LST outperforms simply adding the
validation images of ICDAR2015-R or MSRA-TD500-R in the complex scenes.

From the experimental results mentioned above, we can observe that the proposed scene trans-
formation technique can be conducive to improving the robustness of detectors in complex scenes.
Moreover, the performance of detectors can also be slightly improved on the original dataset in sim-
ple scenes. Some samples of our detection results on ICDAR2015 and MSRA-TD500 are illustrated
and compared in Figure 4.

Text Detection in Real Complex Scenes To further verify the effectiveness of our method in real
natural scenes, based on some widely-used scene text detectors, we conduct several experiments on
our Robust-Text dataset. Because the Robust-Text and MSRA-TD500 datasets both are taken from
indoors and outdoors and annotated at text-line level, we adopt the training set of MSRA-TD500
for training and the test set of Robust-Text for testing. Based on the validation set of Robust-Text,
we search for the corresponding transformation policies.

‘RST’ denotes the random scene transformation. As shown in Table 3, CRAFT [RST] surpasses
CRAFT by 7.0% (56.1 vs 63.1) in f-score and EAST [RST] surpasses EAST by 4.6% (54.1 vs 58.7)
in f-score. Observing the detection results of PAN [LST] and PAN, a conclusion can be made that
the learnable scene transformation technique significantly improves the f-score of detection results
by 9.1% (56.7 vs 65.8). Furthermore, DB-ResNet-50 [LST] outperforms DB-ResNet-50 [RST] in
f-score by 5.3% (61.4 vs 66.7), which demonstrates that the learnable scene transformation is more
effective than the random scene transformation. Moreover, DB-ResNet-50 [LST] outperforms DB-
ResNet-50 [Validation] in f-score by 4.1% (62.6 vs 66.7), which verifies that ‘LST’ is better than
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Table 3: Results of ablation studies for our method on the proposed Robust-Text dataset. EAST is
adopted for evaluation in experiments. ‘Validation’ means adding the validation images
of Robust-Text dataset based on the training images of MSRA-TD500. ‘RST’ and ‘LST’
denote the random scene transformation and the learnable scene transformation technique,
respectively. ‘R’, ‘P’ and ‘F’ mean the ‘recall’, ‘precision’ and ‘f-score’, respectively.

Method R P F

PAN Wang et al. (2019) 46.9 71.6 56.7
PAN Wang et al. (2019) + RST 58.9 67.0 62.6
PAN Wang et al. (2019) + Validation 57.6 69.8 63.1
PAN Wang et al. (2019) + LST 60.2 72.5 65.8

CRAFT Baek et al. (2019) 45.1 74.2 56.1
CRAFT Baek et al. (2019) + RST 56.5 71.5 63.1
CRAFT Baek et al. (2019) + Validation 55.8 73.7 63.5
CRAFT Baek et al. (2019) + LST 56.9 75.8 65.0

DB-ResNet-50 Liao et al. (2019) 45.2 77.7 57.2
DB-ResNet-50 Liao et al. (2019) + RST 53.1 72.8 61.4
DB-ResNet-50 Liao et al. (2019) + Validation 54.1 74.2 62.6
DB-ResNet-50 Liao et al. (2019) + LST 58.0 78.4 66.7
EAST Zhou et al. (2017) 44.1 70.0 54.1
EAST Zhou et al. (2017) + RST 54.1 64.2 58.7
EAST Zhou et al. (2017) + Validation 54.0 67.1 59.8
EAST Zhou et al. (2017) + LST 56.7 70.6 62.9

simply adding complex training data. Some examples of our detection results on Robust-Text are
shown and compared in Figure 4.

Comparison with the Image Dehazing Method In this section, an experiment on detecting
texts in foggy weather is conducted to compare our method with the image dehazing method
DCPDN Zhang and Patel (2018). We compare the detection results on images dehazed by DCDPN
of EAST trained on MSRA-TD500 with the detection results on original images of EAST trained
on the transformed MSRA-TD500 by using our method with the learnable scene transformation
technique. The qualitative results are shown in Figure 6, from which we can see that the detection
performance of EAST by using our method (the second line in Figure 6) is comparable to that of
EAST by removing the fog in advance (the first line in Figure 6), which demonstrates the effective-
ness of our method. Moreover, our method can be applied to a variety of complex scenes, while the
image dehazing method is only suitable for a single scene.
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(a)

(b)

Figure 6: Comparison with the image dehazing method. (a) The detection results on images de-
hazed by DCDPN Zhang and Patel (2018) of EAST trained on MSRA-TD500. (b) The
detection results on original images of EAST trained on the transformed MSRA-TD500
by using our method.

6. Conclusion

This paper presented a learnable scene transformation framework to effectively improve the robust-
ness of text detectors in complex scenes. Specifically, we designed nine types of scene transforma-
tions and automatically search for the transformation policies to simulate complex scenes during
the training phase. Moreover, we built a new dataset Robust-Text for evaluating the robustness of
text detectors in real complex scenes. Experimental results showed that the robustness of scene text
detectors can be markedly improved by using our learnable scene transformation technique.
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