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Abstract

Accurate forecasting of multivariate time series is an extensively studied subject in fi-
nance, transportation, and computer science. Fully mining the correlation and causation
between the variables in a multivariate time series exhibits noticeable results in improv-
ing the performance of a time series model. Recently, some models have explored the
dependencies between variables through end-to-end graph structure learning without the
need for predefined graphs. However, current models do not incorporate the trade-off be-
tween efficiency and flexibility and make insufficient use of the information contained in
time series in the design of graph structure learning algorithms. This paper alleviates the
above issues by proposing Balanced Graph Structure Learning for Forecasting (BGSLF),
a novel and effective deep learning model that joins graph structure learning and forecast-
ing. Technically, BGSLF leverages the spatial information into convolutional operations
and extracts temporal dynamics using the diffusion convolutional recurrent network. The
proposed framework emphasizes the trade-off between efficiency and flexibility by intro-
ducing Multi-Graph Generation Network (MGN) and Graph Selection Module. In addi-
tion, a method named Smooth Sparse Unit (SSU) is designed to sparse the learned graph
structures, which conforms to the sparse spatial correlations in the real world. Extensive
experiments on four real-world datasets demonstrate that our model achieves state-of-
the-art performances with minor trainable parameters. Our code is publicly available at
https://github.com/onceCWJ/BGSLF.
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1. Introduction

Today, our lives benefit significantly from various sensors in many fields, such as weather
forecasting, transportation, hydrology, and electricity. The multivariate time series (MTS)
data generated by sensors has high practical value and attracts many scholars to participate
in the research. MTS forecasting is vital for a learning system that operates in an evolving
environment.

A fundamental assumption in MTS forecasting is the correlations between variables,
which means that a variable’s future information depends not only on its historical infor-
mation but also on the historical information of other variables. Traditional methods, such
as autoregressive integrated moving average (ARIMA) [Lee and Tong (2011)] and vector
auto-regression (VAR) [Zivot and Wang (2006)], are used in many time series forecasting
tasks. However, these models are insufficient to mine intricate spatial-temporal dynamics
or model nonlinear dependencies between MTS data. Recently, some researchers [Sutskever
et al. (2014); Lai et al. (2018); Shih et al. (2019)] have shifted to deep learning and concen-
trated on exploiting prominent temporal patterns shared by MTS. These methods have a
strong capability in modeling temporal dynamics but lack the ability to capture dynamic
spatial relationships.

In the MTS forecasting tasks, effectively modeling and utilizing the correlations between
variables is still a challenging problem. Graph neural networks (GNNs) have shown high
capability in handling relational dependencies due to their compositionality, local connectiv-
ity, and permutation-invariance, so some early work [Li et al. (2018); Chen et al. (2020); Yu
et al. (2018)] has attempted to introduce them into MTS forecasting. However, these graph
neural network methods require a predefined graph structure, and the predefined graph
structures generally are local and static. Hence, they ignore the long-range dependencies of
some nodes and fail to consider the dynamic property of MTS. Moreover, we cannot obtain
such an underlying graph structure in many cases. The method of graph structure learning
(GSL) has been proposed to solve the above questions and attracted much attention [Zhu
et al. (2021)]. Graph structure learning aims to learn the optimal graph structure and
corresponding representation jointly. Furthermore, some literature [Fatemi et al. (2021);
Franceschi et al. (2019); Shang et al. (2021)] has revealed that joint graph learning and
downstream tasks are better than directly using predefined graphs, partly due to the noise
in the predefined graph structure.

Recent models apply graph structure learning to MTS forecasting and achieve promis-
ing results. These representative models are MTS forecasting with GNNs (MTGNN) [Wu
et al. (2020)], Graph for Timeseries (GTS) [Shang et al. (2021)], Adaptive Graph Convolu-
tional Recurrent Network (AGCRN) [BAI et al. (2020)], Graph WaveNet (GWN) [Wu et al.
(2019)], Spatial-temporal attention wavenet (STAWnet) [Tian and Chan (2021)] , Graph
Deviation Network (GDN) and Neural Relational Inference (NRI) [Kipf et al. (2018)]. De-
spite promising results of joint graph structure learning and forecasting in current models,
we argue that these approaches face three major shortcomings.

First, the current models do not emphasize the trade-off between efficiency and flexibil-
ity. The current models either learn a graph adjacency matrix globally (shared by all time
series) or infer an adjacency matrix for each batch. The former can be more efficient but
less flexible as we cannot adjust the graph for different inputs during training and inference.
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On the other hand, the latter enjoys more flexibility but less efficiency as we need to allocate
much memory to store the individual adjacency matrices.

Second, current models like GDN, MTGNN, GWN, and AGCRN essentially gener-
ate graph adjacency matrices through random initialization and refine the graph structure
through end-to-end learning. Although some other models such as GTS and STAWnet apply
training sets of MTS for graph inference, they do not apply substantial domain knowledge
(e.g., periodicity) to fully mine the correlations in multivariate time series, resulting in poor
interpretability and easy overfitting.

Third, some models [Wu et al. (2020); Deng and Hooi (2021)] apply non-differentiable
functions to get sparse graph matrices, which are of high gradient variance bringing in-
creased end-to-end training difficulty.

To circumvent the issues mentioned above, we propose a concise yet practical graph
structure learning framework for multivariate time series forecasting. Our model strikes a
good balance between efficiency and flexibility, and employs more detailed operations in
graph generation. Moreover, we propose a new method to obtain sparse and continuous
graph matrices. The main contributions of our works are as follows:

• We propose a model called Balanced Graph Structure Learning for Forecasting (BGSLF),
which follows a different route with the aim of learning smooth and sparse dependen-
cies between variables while simultaneously training the forecasting module. Different
from other models, our model can generate a specified number of graphs through the
graph structure learning module to balance efficiency and flexibility. Furthermore, we
can select the best graph structure for forecasting during training and inference by
measuring the cosine similarity between the time series variables and all graphs.

• In Graph Structure Learning Module, in order to infer graphs that are more adaptable
to prediction, we introduce some concise yet effective operations to preprocess train-
ing MTS. Through our method, we save lots of parameters and improve forecasting
performances.

• Inspired by Lee (2013), we propose the Smooth Sparse Unit (SSU) intending to infer
continuous and sparse dependencies between variables. With the aid of SSU, the use
of non-differentiable functions (e.g., Top-K operation) or regularization in inferring
sparse graph structures can be avoided.

• We conduct extensive experiments on four real-world multivariate time series datasets,
PEMS04, PEMS08, METR-LA, Solar-Energy. As a result, the proposed model achieves
state-of-the-art results with minor trainable parameters.

2. Related Work

2.1. Spatial-temporal Graph Networks

The graph neural network has achieved great success in capturing spatial relationships. In
order to capture this spatial connection, a variety of methods have been proposed [Kipf
and Welling (2017); Veličković et al. (2018)]. Most of these methods essentially follow the
neighborhood aggregation strategy, in which the node representation updates itself by iter-
atively aggregating the representation of the neighbors in the graph. Recently, to solve the
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complicated spatial and temporal connections in traffic prediction and skeleton-based action
recognition [Shi et al. (2019)], spatial-temporal graph networks were proposed and achieved
superior results. The input of spatial-temporal graph networks is usually a multivariate
time series and an additionally given adjacency matrix. They aim to predict future values
or labels of multivariate time series. The objective of the spatial-temporal graph networks
is to make full use of the structural information to achieve the optimal forecasting effect.
DCRNN [Li et al. (2018)] uses diffusion convolution and encoder-decoder structures to cap-
ture spatial and temporal relationships, respectively. ASTGCN [Guo et al. (2019)] adopts
the spatial-temporal attention mechanism to model dynamic spatial-temporal correlations
in traffic data. More recent works such as MRA-BGCN [Chen et al. (2020)] and GMAN
[Zheng et al. (2020)] further add more complicated spatial and temporal attention mech-
anisms with GCN [Kipf and Welling (2017)] to capture the dynamic spatial and temporal
correlations. The above methods were successful in traffic prediction at the time. However,
these models are limited by the predefined graph structure, so these methods’ performance
and generalization ability can be improved.

2.2. Graph Structure Learning

Graph representation learning is the core of many forecasting tasks, ranging from traffic
forecasting to fraud detection. Many graph neural network methods are susceptible to the
quality of the graph structure and require a perfect graph structure for learning embeddings.
Most of the recent works on MTS forecasting consider spatial and temporal modules sep-
arately. GWN [Wu et al. (2019)] captures the spatial dependency by training an adaptive
adjacency matrix. STAWnet [Tian and Chan (2021)] takes the method of attention to get
self-learned node embedding so as to capture the spatial dependency. Both STAWnet and
GWN use dilated casual convolutions [Bai et al. (2018)] as the temporal forecasting module.
MTGNN learns two embedding vectors per node and obtains the graph adjacency matrix
through mathematical transformation. Similar to MTGNN, GDN infers the graph by learn-
ing a node embedding per node and builds a kNN graph [Van Lint and Van Hinsbergen
(2012)] where the similarity metric is the cosine of a pair of embeddings. AGCRN [BAI et al.
(2020)] proposes two adaptive modules for enhancing graph convolutional networks to infer
dynamic spatial dependencies among different traffic series. LDS [Franceschi et al. (2019)]
approximately solves a bilevel programming problem to jointly learn the Bernoulli distri-
bution of the adjacency matrices and the parameters of graph convolutional networks. In
order to reduce expensive computation in LDS, GTS no longer regards the graph structure
as hyperparameters for optimization but transforms the problem into unilevel programming.
Other works [Wang et al. (2022); Wang and Feng (2017)] consider generating and sparsi-
fying graphs from spectral methods. Moreover, some studies [Fatemi et al. (2021); Zügner
et al. (2021)] have revealed that there does not exist a golden standard for evaluating the
quality of the learned graph structure except for forecasting accuracy.

3. Methodology

In this section, we first give a mathematical description of the problem addressed in this
paper. Next, we describe two building blocks of our framework, the graph structure learning
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Figure 1: The framework of BGSLF. The training time series are passed through the graph
learning module to generate the graph set A, containing two components, Multi-
Graph Generation Network (MGN) and Smooth Sparse Unit (SSU). Graph selec-
tion is performed in the temporal forecasting module by measuring the similarity
between the input time series and the graphs in A. Finally, the selected graph
matrix and the input data are fed into the diffusion convolutional network to
produce the output.

module and the temporal forecasting module. They work together to capture the spatial-
temporal dependencies. Finally, we outline the architecture of our framework.

3.1. Problem Formulation

In this paper, we focus on exploiting graph structure learning to improve the accuracy of
multivariate time series forecasting. Let xt ∈ RN×D represent the value of a MTS of N
variables at time step t, and D denotes the feature dimension, where xt[i] ∈ RD denotes
the ith variable at time step t. Given the historical M time steps observation sequence
of a multivariate variable X = {xt1 ,xt2 , · · · ,xtM }, our goal is to predict the future E-step
numerical sequence Y = {xtM+1 ,xtM+2 , · · · ,xtM+E}. Note that we do not need a predefined
graph structure here. Specifically, let Xtrain and Xvalid denote the training and validation
sets of multivariate time series respectively, A ∈ RK×K

+ is the adjacent matrix of the graph
representing the proximity between K time series, ω denotes the parameters used in the
GNN and L and F denote the loss functions used during training and validation respec-
tively, the use of graph structure learning for MTS forecasting has a bilevel programming
architecture as

min
A,ωA

F (ωA, A,Xvalid),

s.t. ωA ∈ argmin
ω

L(ω,A,Xtrain).
(1)

Intuitively, the hierarchical relationship results from the fact that the mathematical
program related to the parameters of graph structure learning is part of the constraint of
the temporal forecasting module. However, the bilevel program problem is naturally difficult
to solve. Even for the simplest example, the linear-linear bilevel programming is proved to
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be NP difficult [Colson et al. (2007)]. Therefore, we need to make some approximations to
the original bilevel problem. Similar to Shang et al. (2021), we consider approximating the
bilevel programming to a unilevel programming problem as

min
A(w)

F (w,A,Xtrain). (2)

Because this approach owns the freedom to design the parameterization and can better
control the number of parameters compared to an inner optimization wA. Therefore, the
design of a reasonable parameterization approach is crucial for the graph structure learning
module.

3.2. Graph Structure Learning Module

Graph Structure Learning is an essential operation when graph structure is missing or
incomplete. The construction of adjacency matrix is crucial in graph structure learning.
Current methods [Deng and Hooi (2021); Wu et al. (2020); Shang et al. (2021)] focus
on learning discrete adjacency matrix A ∈ {0, 1}K×K . However, binary values can not
represent the rich correlations between variables. Therefore, instead of constructing discrete
adjacency matrices based on Bernoulli sampling or some non-differentiable functions (e.g.,
Top-K operation), we construct continuous adjacency matrices Ai,j ∈ [0, 1] with the aid of
SSU in our model. The training set of MTS is represented by Xtrain ∈ RTtrain×N×D where
Ttrain denotes the number of training time samples, N is the number of road sensors and
D denotes the feature dimension. Given a graph adjacency matrix A and its historical W
step graph signals, our problem is to learn a function FA which is able to forecast its next
H step graph signals. The overall forecasting function can be written as

[Xt−W+1:t, A]
FA−−→ Xt+1:t+H . (3)

3.2.1. Multi-Graph Generation Network

In the graph structure learning module, our purpose is to extract dynamic spatial relation-
ships between variables from the training MTS. Changes in the values of different variables
at cross-time can better reflect the spatial relationships between variables. In the trans-
portation domain, for example, the numerical changes of the sensors over time offer insights
into how traffic dynamics propagate along with the network. Therefore, we first do the
difference operation on the training MTS in order to reveal more moderate correlations:

Diff(X:,1,X:,2,X:,3, · · · ,X:,T ) = {X:,1,X:,2 −X:,1,X:,3 −X:,2, · · · ,X:,T −X:,T−1},
≜ {X̂:,1, X̂:,2, ..., X̂:,T } = X̂ ∈ RTtrain×N×D.

(4)

Then, considering the periodicity of the time series, we set a hyper-parameter period P
to segment X̂ into S = ⌊Ttrain/P ⌋ segments, each containing time series X̂i ∈ RP×N×D, i =
1, 2, ..., S. After obtaining the time-series segments, we concatenate these segments to obtain
a four-dimensional tensor O = [X̂1, X̂2......X̂S] ∈ RS×P×N×D:

O = Concat(Segmentperiod=P (X̂)). (5)
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For the parameterization of A, we use a feature extractor to yield a feature representation
for each graph in A. First, reshape the four-dimensional tensor O ∈ RS×P×N×D to a
three-dimensional tensor Q ∈ RN×S·D×P , in order to save computational consumption
for subsequent calculations and make the dimensions match the subsequent convolutional
operations. Finally, we use 1D convolution and three fully connected layers to transform
the three-dimensional tensor Q to obtain R graphs:

A
′′
= σ(δ(δ(δ(Conv(Q)W1 + b1))W2 + b2)W3 + b3) ∈ RN×R×N , (6)

A′ = reshape(A
′′
) ∈ RR×N×N . (7)

Here δ represents the ReLU activation function, and σ represents the Sigmoid activation
function, W1,W2,W3, b1, b2, b3 are trainable parameters of the fully connected layers. We
adopt a form similar to Squeeze-and-Excitation [Hu et al. (2018)] in the design of the three-
layer fully connected networks, which saves lots of training parameters. The graphs in
the graph set A′

are then passed through SSU to get the final graph representation A for
downstream prediction tasks.

3.2.2. Smooth Sparse Unit

In this section, we propose the Smooth Sparse Unit (SSU) to learn continuous and sparse
graphs instead of using the discrete adjacency matrix produced by Gumbel-softmax sam-
pling [Jang et al. (2016)] in GTS. Inspired by Lee (2013), the mathematical principles of
SSU are as follows:

Lemma 1 Lee (2013) The function f : R → R defined by

f(x) =

{
e−

1
x (x > 0),

0 (x ≤ 0),
(8)

is smooth.

Lemma 2 There exists a smooth function φ : R → [0, 1] such that φ(x) ≡ 0 for x ≤
0;φ(x) ∈ (0, 1) for 0 < x < 1;φ(x) ≡ 1 for x ≥ 1.

Proof Let

φ(x) =
αf(x)

αf(x) + f(1− x)
(α ∈ R+), (9)

where f ∈ C∞(R) is defined by Equation (8). It is easy to check that φ(x) ∈ [0, 1], and
φ(x) is 0 for x ≤ 0, 1 for x ≥ 1.

Using the above mathematical formula, the output adjacency matrices A are

A =
αf(A′

)

αf(A′) + f(1− A′)
∈ RR×N×N ,

where 1 denotes the all one matrix, α is the sparsification coefficient (hyper-parameter),
f is an element-wise operator defined by Lemma 1, and A is the graph set that we finally
learned for downstream prediction tasks.

More details for controlling the sparsity effect of α and techniques of redefining gradients
to accelerate convergence are presented in supplementary material.
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3.3. Temporal Forecasting module

3.3.1. Graph Selection

After obtaining R graphs through the MGN and SSU, the optimal graph structure should
be selected for each input time series Xin ∈ RB×Tin×N×D, and we use the following objective
function to represent:

A = argmax
Ai∈A

cos
〈
X TX , Ai

〉
, (10)

where cos ⟨X ,Y⟩ =

∑
i,j

xijyij√∑
i,j

x2
ij ·

∑
i,j

y2ij
, X =

B∑
i=1

D∑
j=1

Xin[i,:,:,j] ∈ RTin×N for each batch and B is the

batch size.

We use the scalar product to calculate the correlation between nodes in the input data
Xin, and cos ⟨·⟩ to measure the similarity between graphs and input data, so as to select
the most suitable graph for training and inference.

3.3.2. Diffusion Convolutional Recurrent Network

Due to its specific design for directed graphs, we adopt DCRNN [Li et al. (2018)] as our
forecasting module to capture temporal trends. Considering that multi-step diffusion may
lead to node homogeneity and bring difficulty to parameter training, we only use one-step
diffusion convolutional operation, which is defined as

WQ
AX =

(
ωQ
0 + ωQ

1 (D
−1
O A) + ωQ

2 (D
−1
I A)

)
X, (11)

with DO and DI being the out-degree and in-degree matrices and ωQ
0 , ω

Q
1 , ω

Q
2 being model

parameters.

We leverage the recurrent neural networks (RNNs) with Gated Recurrent Units (GRU)
to model the temporal dependency:

Rt = sigmoid
(
WR

A (Xt||Ht−1) + bR
)
,

Ct = tanh
(
WC

A (Xt||Rt ⊙Ht−1) + bC
)
,

Ut = sigmoid
(
WU

A (Xt||Ht−1) + bU
)
,

Ht = Ut ⊙Ht−1 + (1− Ut)⊙ Ct,

(12)

where || is concatenation along the feature dimension and ⊙ represents the element-wise
product and bR, bC , bU are model parameters.

3.4. Framework of BGSLF

We present the framework of BGSLF in Figure 1. It consists of a graph structure learning
module and a temporal forecasting module. The graph structure learning module consists
of Multi-Graph Generation Network (MGN) and Smooth Sparse Unit (SSU). The temporal
forecasting module contains the Graph Selection Module and the Diffusion Convolutional
Recurrent Network. By choosing the appropriate graph during training and testing, the
forecasting accuracy can be significantly improved. Different from previous models like
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Table 1: Dataset statistics.

Datasets # Samples # Nodes Sample Rate Input Length Output Length

PEMS04 16,969 307 5 minutes 12 12
PEMS08 17,833 170 5 minutes 12 12
METR-LA 34,272 207 5 minutes 12 12
Solar-Energy 52,560 137 10 minutes 12 12

GTS, AGCRN, and MTGNN, our model can generate a specified number of graphs based
on the training MTS data in the graph structure learning module. Therefore, we need to
select the most appropriate graph for the temporal forecasting module. Furthermore, it
addresses the problem of poor flexibility caused by the global graph and the issue of poor
computational efficiency caused by building one graph for each batch. At the same time, we
propose SSU with two major parts, the sparsification coefficient part to control the sparse
degree and the gradient redefinition technique part to accelerate convergence.

4. Experiments

We verify BGSLF on four public multivariate time series datasets, PEMS04, PEMS08,
METR-LA, and Solar-Energy. PEMS04 is collected by Caltrans Performance Measurement
System (PEMS) and released in ASTGCN [Guo et al. (2019)] consisting of average speed,
traffic volume in San Francisco Bay Area. The period is from January to February 2018.
Similar as PeMS04, PEMS08 consists of average speed, traffic volume collected by PeMS
in San Bernardino from July to August in 2016. METR-LA contains average traffic speed
measured by 207 sensors on the highway of Los Angles Country ranging from Mar 2012 to
Jun 2012. Solar-Energy contains the solar power output from 137 PV plants in Alabama
State in 2007. Z-score normalization is applied to inputs. We adopt the same data pre-
processing procedures as in Li et al. (2018), and the datasets are split in chronological order
with 70% for training, 10% for validation, and 20% for testing. We tune the hyperparameters
on the validation data by grid search for BGSLF. We adopt the Adam optimizer, and the
number of training epochs is set as 300. Detailed data statistics are provided in Table 1.

4.1. Baselines

Select the traditional and leading performance models. We compare BGSLF with the
following models.

• HA Historical average, which models the traffic flow as a periodic process and uses
the weighted average of previous periods as the prediction.

• VAR Vector Auto-Regression [Zivot and Wang (2006)].

• FC-LSTMRecurrent neural network with fully connected LSTM hidden units [Sutskever
et al. (2014)].
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• ASTGCN Attention-based spatio-temporal graph convolutional network, which fur-
ther integrates spatial and temporal attention mechanisms to STGCN for capturing
dynamic spatial and temporal patterns. We take its recent components to ensure the
fairness of comparison [Guo et al. (2019)].

• AGCRN Adaptive Graph Convolutional Recurrent Network. An adaptive graph con-
volutional network, which designs two adaptive modules for enhancing graph convo-
lutional network with new capabilities [BAI et al. (2020)].

• DCRNN Diffusion convolutional recurrent neural network, which incorporates diffu-
sion graph convolution with recurrent neural network in an encoder-decoder manner
[Li et al. (2018)].

• MTGNN Multivariate time series forecasting with graph neural networks, which uses
external features to generate self-adaptive graphs for downstream forecasting module
[Wu et al. (2020)].

• GTS Graph for time series, which aims to jointly learn a latent graph in the time
series and use it for MTS forecasting [Shang et al. (2021)].

4.2. Experimental Setups

We implement our experiments on the platform PyTorch using 4 NVIDIA GeForce RTX
3090 GPUs. The hyperparameter period P is set to 12× 12× 2 = 288, which is equivalent
to using the daily-periodic segment method. We recommend that the hyperparameter R
for the number of generated graphs be set to 2-4, generating too many graphs will lead
to insufficient graph training, and only one graph cannot adequately capture the complex
spatial patterns in the time series. Both will lead to a decrease in the final result. All
of these methods are evaluated with three common metrics: mean absolute error (MAE),
root mean square error (RMSE) and mean absolute percentage error (MAPE). Due to the
non-uniform distribution of the solar power output of PV plants in spatial and temporal
domains, there are many zeros in Solar-Energy. Hence, we only adopt MAE and RMSE
in this dataset. We choose to use mean absolute error (MAE) as the training objective of
BGSLF. Missing values are excluded both from training and testing. All the tests use 12
observed data points to forecast multivariate time series in the next 3, 6, and 12 steps. The
initial learning rate is 3e-3 with declay rate 0.1 per 10 epochs, and the minimum learning
rate is 3e-5. DCRNN and ASTGCN require a predefined graph, but the Solar-Energy
dataset does not have one. Therefore, we apply the training multivariate time series to
construct a kNN graph as the predefined graph structure.
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Table 2: Performance of BGSLF and baselines on four real-world datasets.

Data Models
Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

P
E
M
S
0
4

HA 24.50 39.83 16.58% 24.50 39.83 16.58% 24.50 39.83 16.58%
VAR 20.85 32.54 15.03% 22.33 34.46 16.24% 25.16 38.11 18.79%
FC-LSTM 22.33 34.09 18.91% 25.87 39.27 19.94% 34.09 50.27 25.08%
ASTGCN 19.74 31.50 12.95% 21.49 34.32 13.88% 25.74 40.73 16.22%
DCRNN 18.58 29.78 13.56% 19.84 31.76 14.71% 22.14 34.61 17.46%
MTGNN 23.40 33.25 31.75% 24.15 34.53 32.47% 25.99 37.58 32.34%
AGCRN 18.84 30.74 12.43% 19.53 31.92 12.92% 21.00 34.28 13.73%
GTS 18.90 29.81 12.80% 19.58 31.22 13.48% 20.96 33.30 14.61%
BGSLF (ours) 18.53 29.40 12.73% 19.25 30.85 13.34% 20.49 32.66 14.32%

P
E
M
S
08

HA 21.19 36.64 13.79% 21.19 36.64 13.79% 21.19 36.64 13.79%
VAR 16.56 24.91 10.62% 19.16 28.58 12.34% 23.22 33.93 15.68%
FC-LSTM 17.43 26.87 13.64% 20.82 32.28 12.59% 27.61 41.52 17.75%
ASTGCN 16.03 24.75 10.26% 17.83 27.58 11.20% 21.58 32.80 12.97%
DCRNN 14.50 22.48 9.76% 15.55 24.38 10.45% 17.58 27.30 11.62%
MTGNN 16.48 24.13 22.84% 17.86 26.22 24.32% 20.41 29.39 28.33%
AGCRN 15.33 24.06 9.72% 16.51 26.11 10.31% 19.01 29.94 11.71%
GTS 14.94 23.09 9.77% 15.66 24.33 10.53% 17.07 27.03 11.71%
BGSLF (ours) 14.40 22.62 9.26% 15.04 23.98 9.82% 16.45 26.26 10.76%

M
E
T
R
-L
A

HA 4.15 7.77 12.90% 4.15 7.77 12.90% 4.15 7.77 12.90%
VAR 4.42 7.89 10.20% 5.41 9.13 12.70% 6.52 10.11 15.80%
FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
ASTGCN 3.01 5.85 8.16% 3.53 7.14 10.16% 4.25 8.60 12.80%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
MTGNN 2.69 5.18 6.86% 3.05 6.17 8.19% 3.49 7.23 9.87%
AGCRN 3.60 9.30 7.97% 4.62 11.89 9.73% 5.95 14.80 11.78%
GTS 2.64 4.95 6.80% 3.01 5.85 8.20% 3.41 6.74 9.90%
BGSLF (ours) 2.59 5.09 6.68% 2.97 6.11 8.02% 3.38 7.16 9.44%

S
ol
ar
-E

n
er
gy

HA 6.11 8.74 - 6.11 8.74 - 6.11 8.74 -
VAR 0.79 1.54 - 2.55 3.92 - 4.17 6.12 -
FC-LSTM 0.70 1.88 - 1.17 2.90 - 1.98 4.74 -
ASTGCN 0.65 1.70 - 0.95 2.47 - 1.69 4.12 -
DCRNN 0.58 1.60 - 0.84 2.24 - 1.37 3.64 -
MTGNN 1.36 2.46 - 1.95 3.33 - 2.91 4.66 -
AGCRN 0.58 1.60 - 0.84 2.24 - 1.40 3.67 -
GTS 0.58 1.66 - 0.85 2.33 - 1.37 3.67 -
BGSLF (ours) 0.55 1.56 - 0.80 2.16 - 1.31 3.53 -
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(a) The initial and final states of the first
graph adjacency matrix.

(b) The initial and final states of the sec-
ond graph adjacency matrix.

Figure 2: The adjacent matrices obtained from the graph structure learning module on the
PEMS04 dataset.

Table 3: Trainable Parameters of different graph structure learning based spatial-temporal
models on METR-LA and PEMS04 when achieving the best results.

Data Models Parameters

METR-
LA

MTGNN 405,452
AGCRN 747,810
GTS 38,478,291
BGSLF 156,698

Data Models Parameters

PEMS-
04

MTGNN 549,100
AGCRN 748,810
GTS 19,125,459
BGSLF 159,934

4.3. Experimental Results

Table 2 compares the performances of BGSLF and baseline models for Horizon 3, 6, and
12 ahead forecasting on PEMS04, PEMS08, METR-LA, and Solar-Energy datasets. Ta-
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Table 4: Performance of different functions on METR-LA.

Data Function
Horizon 3 Horizon 6 Horizon 12

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-
LA

Sigmoid 2.68 5.30 6.94% 3.07 6.34 8.32% 3.48 7.41 9.78%
ReLU 2.59 5.11 6.66% 2.98 6.19 8.10% 3.41 7.29 9.71%
Tanh 2.60 5.12 6.79% 2.99 6.18 8.38% 3.40 7.23 9.99%
Gumbel-softmax 2.85 5.72 7.54% 3.41 7.02 9.72% 4.15 8.52 12.78%
SSU 2.59 5.09 6.68% 2.97 6.11 8.02% 3.38 7.16 9.44%

ble 2 shows the following: (1) On all four datasets collected at multiple locations and
with different sampling rates, our proposed model achieves the start-of-the-art performance
whether long-term or short-term, which demonstrates the effectiveness of our proposed mod-
els. (2) It is necessary to carefully design the graph structure learning module. Methods
like AGCRN and MTGNN apply random initialization to initialize graph structures that
lack latent spatial associations among multivariate time series and may fail to capture crit-
ical dependencies between nodes, resulting in performance degradation. (3) With respect
to the second-best model GTS, we can observe that BGSLF achieves small improvement
on METR-LA. However, it can be seen in Table 3 that the number of parameters of our
proposed model is nearly 240 times less than that of the GTS model, which saves much
memory and dramatically speeds up the training and inference speed. (4) The careful design
of multi-graph generation network and graph selection module help our model dynamically
capture the spatial correlation between nodes and balance efficiency and flexibility.

4.4. Effect of the SSU module

Detailed proof of SSU validity is given in supplementary material. In Table 4, we replace
the SSU with different functions and compare the results. The experimental results prove
the correctness of our idea. Firstly, the expressive power of the continuous matrix is better
than that of the discrete matrix, which is why the effect obtained by continuous function
significantly outweighs Gumbel-softmax. In addition, due to the unique smoothness design
and gradient redefinition method, the effect of SSU is better than other common activation
functions in this task. The dependencies among different sensors learned by the graph
structure learning module are visualized in Figure 2, where we set the number of learned
graphs to 2. The upper heat maps in Figure 2 show the initial graphs obtained when the
model starts training, and the lower represent the graph structure obtained when the model
finishes training. It can be seen that our model successfully learned the sparse relationship
between sensors. At the same time, the final states of the two graphs share similar patterns,
indicating that some nodes are strongly related.

5. Conclusion

In this paper, we propose a novel model that joins graph structure learning and forecasting.
It highlights three critical issues with previous models and provides concise and practical
solutions. Our research emphasizes that the training multivariate time series can be applied
to generate a specified number of valid graph structures, and the optimal spatial structure
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can be selected by computing the similarity of each input multivariate time series. With
a unique design of multi-graph generation network and graph selection module, the model
is well balanced between efficiency and flexibility. Experiments were conducted on four
real-world datasets to demonstrate the superiority of our proposed model. The well-trained
embeddings and learned graphs could also be potentially applied to other tasks. Moreover,
the model can also be used as a component in more complex time series forecasting models
due to its concise design and superior performance.

6. Future Work

The scalability of spatial-temporal graph neural networks is still a challenging problem.
BGSLF can perform well on datasets with a small number of nodes, but the performance
on large-scale nodes is unknown. Nevertheless, so far, few spatial-temporal graph neural
networks take into account scalability issues. In the future, the problem of scalability can
be tentatively solved from the matrix factorization [BAI et al. (2020); Han et al. (2021)] or
from spectral methods [Wang (2021)]. Due to the wide application of big data, the trade-off
between scalability and accuracy will be an essential research direction for spatial-temporal
data mining in the future.
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