DECENTRALIZED ADAPTIVE GRADIENT METHODS

Appendix: On the Convergence of Decentralized Adaptive Gradient
Methods

The main purpose of this appendix is to give thorough and detailed proofs for our convergence
analysis described in the main paper. After having established several important Lemmas in Section A,
we provide a proof for our main Theorem, namely Theorem 2, in Section B. Section C and Section D
correspond to the proofs for the extension and application of Theorem 2 to the AMSGrad and
AdaGrad algorithms used as prototypes of our general class of decentralized adaptive gradient
methods. Section E contains additional numerical runs for more empirical insights on our scheme.

Appendix A. Proof of Auxiliary Lemmas

Similarly to Yan et al. (2018); Chen et al. (2019) with SGD (with momentum) and centralized
adaptive gradient methods, define the following auxiliary sequence:

B
1-0
with Xy £ X . Such an auxiliary sequence can help us deal with the bias brought by the momentum
and simplifies the convergence analysis.

Zy =X+
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Lemma 1 For the sequence defined in (4), we have
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Proof: By update rule of Algorithm 2, we first have
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where (i) is due to an interchange of summation and ) °,_, W;; = 1. Then, we have
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which is the desired result. O
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Lemma 2 Given a set of numbers ay, - -- , a, and denote their mean to be a = % > i a;. Define

bi(r) &= max(a;,7) and b(r) = 2 3" | b;(r). For any r and ' with r' > r we have

Z [bi(r) = b(r)| = Z [bi(r') = b(r")] (5)

and when r < min;c,) a;, we have

Do 1bi(r) =b(r)| = la; —al. (6)
i=1 =1

Proof: Without loss of generality, assume a; < a; when i < j, i.e. a; is a non-decreasing
sequence. Define

h(r) = Z bi(r) — b(r)| = Z | max(a;, r) — %Zmax(aj,r)\ .
i=1 i=1 j=1

We need to prove that h is a non-increasing function of r. First, it is easy to see that h is a continuous
function of r with non-differentiable points r = a;, i € [n], thus h is a piece-wise linear function.

Next, we will prove that h(r) is non-increasing in each piece. Define [(7) to be the largest index
with a(l(r)) < r, and s(r) to be the largest index with a,(,) < b(r). Note that we have for i < [(r),
bi(r) = rand for ¢ < s(r) b;(r) — b(r) < 0 since a; is a non-decreasing sequence. Therefore, we
have

I(r) B s(r) n

h(ry=_(b(r) =r)+ Y () —a)+ Y (ai—b(r))

i=1 i=l(r)+1 i=s(r)+1
and

n

i) == [+ Y w

i=l(r)+1

Taking derivative of the above form, we know the derivative of h(r) at differentiable points is

W) =1 1)k (sr) — 1)~ (= s O

=—=((U(r) =n) + (s(r) = U(r)) = (n = s(r))) -
Since we have s(r) < n we know (I(r) —n) + (s(r) — I(r)) — (n — s(r)) < 0 and thus
W(r) <0,

which means /(r) is non-increasing in each piece. Combining with the fact that h(r) is continuous,
(5) is proven. When r < a(i), we have b(i) = max(a;,r) = r, for all r € [n] and b(r) =
% >, a; = a which proves (6). O
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Appendix B. Proof of Theorem 2

To prove convergence of the algorithm, we first define an auxiliary sequence

(Yt - Y75—1) ) @)

with Xo £ X;. Since E[g;;] = Vf(2:;) and u; is a function of Gy.,—1 (which denotes
G1,Ga, -+ ,Gy_1), we have

Gt
thGlt 1 Z U
Z

Assuming smoothness (A1) we have

al V fi(,)
SR

=1

L
F(Zer) < f(20) + (V[(Z0), Zesr = Ze) + 1 26 — A
Using Lemma 1 into the above inequality and take expectation over (; given G1.;—1, we have

EGt|G1;t71 [f(Zt-H)]

Sf(Zt) — <Vf(Zt) N Z vfl(mtl)> + gEGt|G1;tf1 [||Zt+1 — Zt||2]
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i—1 t,1

<Vf Zy), th 1 © \/1% im)>] :

Then take expectation over (G1.;—1 and rearrange, we have

<Vf(Zt) N > vle(j:?)>

i=1

1 1
<Vf Zy), th 1,i © T ut7i>>

In addition, we have
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+ al_iﬁlEGﬂGl;t_l
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and the first term on RHS of the equality can be lower bounded as

1 Vfi<x“>>
VH(Z), Y
< t N; VU
_t|vs@|", 1| ZE VA [T 1| Vi) - & S Vi) |
9 U1/4 9 U1/4 9 U1/4
v 1@ 1] Vi) - 4 28 V|
= U1/4 U1/4 ) U1/4
Vi Z) - Vi) 1] &SN, Vi) - viED) |
U1/4 2 U1/4
L vrE|”s||vs@) - viEo ||| & X Vit —viX|
=9 U1/4 2 U1/4 9 U1/4 )

where the inequalities are all due to Cauchy-Schwartz. Substituting (10) and (9) into (8), we obtain

I 2
1 V(X L
Lo é R | <BUF(Z0) - Blf(Zo)] + SE (120 - 27
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Summing over the above inequality from ¢ = 1 to 7" and dividing both sides by T'cr/2, yields

T

1 Vf(X) 2 L
7B (|5 | | < 7 B0 Bl + 7 3B 1 - 4
2 /81 T 1 1
+T1_ﬁ1tz_;E <Vf Zy), th 1 © m m)>
Dy
2~ | ) .
+ = E [( Vf(Z) V (2 —
& < - Z Ho (JUT \/W)>]
D,
LIPS N Vi) - VX 2 sl
+2YE N 2iz1 Vf ((]?/4) f(X2) W(Zt)U Iy
t=1 L
b

Now we need to upper bound all the terms on RHS of the above inequality to get the convergence
rate. For the terms composing D3 in (11), we can upper bound them by

— 2
Vi(Z) - VX 1 X
) t)| . o V520 - Vi)
U, mine(q [U,""];
1 P
SL——*‘TTW@—XNZ (12)
mine(q[U," "]~

Dy
and

LN Vi) - VI
l]1/4

Zvaz xtz vf(yt)HQ

—1/2
mlnje[d][U / ]

1

L1 Zuxm x|
mln]e[d][U1/2] N =

; 13)

Ds

using Jensen’s inequality, Lipschitz continuity of f;, and the fact that f = % Zf\il fi- Next we need
to bound D, and Ds. Recall the update rule of X;, we have

-2
My ypen o Mok

VUi Z%) VUi—k-1

where we define W9 = 1. Since W is a symmetric matrix, we can decompose it as W = QAQT
where () is a orthonormal matrix and A is a diagonal matrix whose diagonal elements correspond
to eigenvalues of W in an descending order, i.e. A;; = \; with \; being ith largest eigenvalue of

Xt = Xt_1W —

wk (14)
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W. In addition, because W is a doubly stochastic matrix, we know A\; = 1 and ¢; = 1—\/% With
eigen-decomposition of W, we can rewrite Dy as

S s = Xol|* = X - X g1} = [ X:QQ" - 1N1 = Z IXeal*. (15

In addition, we can rewrite (14) as

t—2 t—2
My M
X, =X Wit oy Ly _&—QE tleMQT (16)

k=0 V Ut—k‘ 1 \/

where the last equality is because x1; = w1 j, for all 7, j and thus X1 W = X;. Then we have when
I>1,

M My _j_
Xoq = (X1 — o)y —ELQAQN g = —a Y L gy, (17)

since () is orthonormal and X ¢q; = x1 1 1%(]1 =11 \/]Vqqul =0, foralll #1.
Combining (15) and (17), we have

N N
Ds = i = X" = 3 1 Xal* = Z
i=1 1=2

=2

—2
tkl
E: Nl
VUi—k—1

1 \? 1
§a2<) NdG? -,
€

k=

1—-A

(18)

where the last inequality follows from the fact that g: ; < Goo, ||q;]| = 1, and |N;] < A < 1. Now let
us turn to Dy, it can be rewritten as

2 2
_ B 2
B (1—51> “

2
g( Gl >(fdG&. (19)

Now we know both Dy and Ds are in the order of O(a?) and thus Ds is in the order of O(a?). Next
we will bound D3 and D;. Define G = maxe(r] maxie(n] |V fi(2ei) |l oo Gy = maxe(r] |V f(Zt)]]oos

|2~ %P = | 25 e~ X

A
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Gs & max;e (7] Max;e(n] ||9¢,ill oo and Goo = max(G1, G, G3). Then we have

[l (- 2)
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where the last inequality is due to [u;;]; > €, for all ¢, 4, j. To simplify notations, define || Al|44s =
2_ij |4ij| to be the entry-wise L1 norm of a matrix A, then we obtain

T
Dy < %2 ~ 22 S ITAT — Uyl <2 = 22 L TAT — O

G2, 1 .~ 1 T~ T
N;WHUtN]-NlN—UtQQ llabs

G2 T 1 N .
:WOOZ 261.5” - E Uraiq; llabs »
t=1 =2

where the second inequality is due to Lemma 2, introduced Section A, and the fact that U =
max(Ut, €) (element-wise max operator) Recall from update rule of Uy, by defining V_ 1= Vo and
Up 2 Ui /2, we have for all ¢ > 0, Ut+1 (Ut V1 + V})W Thus, we obtain

t t
U =0W' +> (Vicrk + Vi)W =T+ D (Vi + Vik) QAPQT
k=1 k=1

Then we further obtain when [ # 1,

t

t
Uigr = (Uo+ Y (~Vic1k + Vie) QA QM) = (—Vica + Vicw) @A
k=1 k=1

where the last equality is due to the definition Uo e Uy 2 = €lq 17 N =V eldlﬁ (recall that
= = 1T) and ¢! ¢ = 0 when i # j. Note that by definition of || - ||ss, We have for all
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A, B, [|A+ Bllabs < | Allabs + || Bllabs» then

D6 = N Z 2615 ” ZthlQZ ”Cbbs

2 1 t R N
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t=1 k=1j=1
a2 L1 <
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- 1.5 _ o o)|labs »
VN 265 £=1 — A

where A = max(|\2|, |[A\x|). Combining (20) and (21), we have

G% 1
DZ_\/f2 151 ZH O 1+V)||abs

2D
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Now we need to bound D7, we have

T i 1
Dy = E [( Vf(Z) i
1 ; _< f(Z) th 1 O ( \/m \/7)
T [ N 1 1
<) E |G+ -
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where (a) is due to [d;—1,]; = max([us—1,];,€) and the function max(-,€) is 1-Lipschitz.

addition, by update rule of U;, we have

T

T
S N1 = Utllabs = Y _NTe-1 = (Tc1 = Vieg + Vi) W abs
=1 =1

E

10:-1(QQT — QAQT) + (—Viea + Vi 1)) W || abs

t=1
T ~ N

= N0 O @t = M)ag)) + (=Viez + Vi)Wl abs
t=1 1=2

~

1

N T
(—Vico ke + Vit ) Y @A (1= 2)q] Mlabs + Y 1(=Viea + Vi 1) Wl abs
=2 =1

M-

o~
Il
_

T

_

<
<o

]

T
| = Vico—k + thkHabs\/N/\k) + ) I(=Via + Vie1)llabs
=1

T

I
o+
LI

|
11~

T
H - ‘70—2 + VO—IHabS\/N)\t_O) + Z "(_‘Zt—2 + ‘Z&—l)”abs

1 t=1

T-1 T T

= > (H Voo + Vo—1Habs\/N/\t70> + ) I(=Viz + Vie1)llabs
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Combining (22) and (23), we have

1—A

In

(23)

T
1 1 1 N N
D, < Gc2>o 2¢1.5 NE [ E H(_Vt—Z + Vt—l)”abs VN| . (24)

t=1
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What remains is to bound Zthl E (|| Zi4+1 — Z:||*]. By update rule of Z;, we have

1 Z141 — Z4))?
N N 2
:H 1f151N; =14 O “2—171_\/%)_a]17; gZ;
2 2
<202 1€151]b§;mt_1ﬂ@(\/%— i“) + 202 Jbéj%
2
<2a2<1f1ﬁ1>2G20117§;;16 \/[Utl_l,i]j - \/[tltt,i]j +20 ;é\ﬁ%
<2a2< 5151>2Gg0;§;;16 [um‘]j;é[zt—l,i]j 1942 ]bﬁ;\/g% 2
2
<ot ((22) ek é}i}l oez [0l =[5+ 207 |+ é N
2
-2 2(1f1ﬁ1>2G§O]1V212H(7t—0t_1uabs+2a2 &é\j’% (25)

where the last inequality is again due to the definition that [& ;]; = max([uy];, €) and the fact that
max(-, €) is 1-Lipschitz. Then, we have

T

> B[l Zis1 — Zell?]
t=1

2

B 2 11 T T ) N s
<2a2< 1 ) G2 =B | 10— Ui flaps | +20° ) E ||| =D
B - 2 abs :
1-5 N 2¢ — 2 N 2 o
T . . )
. >2 G ! / y 2 1 Gt,i
<a? ( > = E Z‘|(_%—2+V2_1)|| bs |+ 2a ZE 72 ,
a 2 aos '
1-p1) VNeE1-\" |4 > v e

where the last inequality is due to (23).
We now bound the last term on RHS of the above inequality. A trivial bound can be
N

1 Gty

N ; VUt

due to ||gsi|| < Goo and [u;); > €, for all j (verified from update rule of u;; and the assumption
that [vm] j = ¢, for all 7). However, the above bound is independent of N, to get a better bound, we

T

D

t=1

2 T 1
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need a more involved analysis to show its dependency on N. To do this, we first notice that
1 Y g

ti
N Z N

vfz Tt + ét i vf (1’15 ) + ft,
:EGt\GLt—l 2 Z Z < u ’ ; \/717 :
i=1 j=1 tl tJ

2

EGt\GLtﬂ

r 2
(a) 1 o Vi(wea) 1 & |1?
EGt\Gl -1 N Z T + EGt|G1:t—l N2 Up g
i=1 i )i
N ) 2
@ izv‘fl(l‘t’z) ZZEGt‘Glt 1 gtl] ]
N= Vi N2 i=1 1=1 [
N 2 9
9L yo Vhileed)|| 4o
- Ni:1 VUt N €’

where (a) is due to EGt\G1 1€ = 0 and & ; is independent of x; ;, u; ; for all j, and £J, for all
J # 1, (b) comes from the fact that z¢ ;, uy ; are fixed given G4, (¢) is due to Eq, |, _, [[&, Z] < g2
and [uy;]; > € by definition. Then we have

N 2 S 2
z; — =Ec1.1 |EGyGr z; VUi
N 2 2
SEGLt—l % Z W " %%
i=1 ’
" 1zw<>| pio as)
Ni:1 Ut N e
N M

In traditional analysis of SGD-like distributed algorithms, the term corresponding to £ H N

2
]
will be merged with the first order descent when the stepsize is chosen to be small enough. However,
in our case, the term cannot be merged because it is different from the first order descent in our
algorithm. A brute-force upper bound is possible but this will lead to a worse convergence rate in

terms of V. Thus, we need a more detailed analysis for the term in the following.
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r 2
ol SVl | 1 o 1 1
=E NZ \/ﬁt +szfz( tz) <\/m \/U>t>
1 & ]
N;vfi(xtz ( um )
( )l

1 (T
<9F ZM +9R

<9 12M +oE Vfi(wei) ©

N
<o || 2 ZL%(%) 1 9E

L N =1 \/i ] \% Ut i V Ut 1
Summing over 7', we have
T N 2
e || Ly Vo) ‘
t=1 Nz
T [ N 2 T
L Viilae) |
<2> E ||+ — +2» E G 27

For the last term on RHS of (27), we can bound it similarly as what we did for D5 from (20) to (21),
which yields

r 1 & 1 1 1

E|l =Y GL—|— = (28)
2B N | T T

N R R _ (1 5 1=
S . E NZGOQ%ZELE) Hut,iiUtHl :ZE NGOO@HUtl 7Ut”ab8

t=1

T T—1
1 A
S;E N OOQQH Zthlql Habs]_f WQQE[;H( o1+ Vo)llabs

(29)
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Further, we have

T 1 N Vfl(l'tz)

]E . v N v/

2LE N E T,

_ 2 2
1 L V(X V(X)) = Vi)

<2 E — 2 E

>e v vs, +z Nz N

T ilvi) P V(X)) — Vi) ‘2
=9 E — +2 E — — ’

yo (| TR oy |15 TS

and the last term on RHS of the above inequality can be bounded following similar procedures from
(13) to (18), as what we did for D3. Completing the procedures yields

T
ZE
t=1

2 T

1 Nviyt —Vixti
L §R VA -~ hi(ary)

= Ty — X
Ni:1 @ ZH t tH

T
<) E [L“oﬂ (1> Ndagol] (30)
€

p e N 1—A
1 1
=TL=a? dG?

e (1 - )\> Co
Finally, combining (26) to (30), we get
T 2 T -

E||— : <4 E — +4T L« dG%,
e R IRl v &7 AT=A
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1 A N d o
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Combining all above, we obtain

1 o Vi(Xt)
r&E || T
STla(E[f(Zl)] —E[f(Z741)])

2
+ o < . ) O 1 L B
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3 2 2 1 Bl 2 Goo
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where Vr = ZL H(—VZ_Q + Vt—l)Habs. Seta = \/ﬁ and when a < iﬁL, we further have

o & ||vrxyl
T;E U(1/4t ‘
= t
4 d o2 1 & v
SE(E[f(Zl)]—E[f(ZT+1)D+4L0¢N?+16L0¢TZE 77 ‘
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+6ad<<1_51> +<1_A>> 22 41667 < _)\)d

2 G2 1 2 1
ES (m( b >€05+>\+ B oLa A)E[VT]

+T€1'5\/N1—>\ 1—,81 1—51
4 . d o2 1 <& V(X)) 2
gﬁ(E[f(Zlﬂ —H}Tlnf(a:))JrzlLaN?JrsLaTZE T/Qt

2 2 2
2 B1 1 G5, 3,72 1 G5
1 L —) =
+6ad<<1_ﬂ1> +<1_)\>> =5t 6a°d (1_)\ 2
2 G2, 1 B \? 1 B 1
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N TVN
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where the first inequality is obtained by moving the term 8La Zt 1 [

Xt
1/2

(32)

f(X)
—1/4

2
] on the

RHS of (31) to the LHS to cancel it using the assumption 8La$ <1 5 followed by multiplying both
sides by 2. The constants introduced in the last step are defined as following

C1 =max(4,4L/e),

. B \? 1\ GL
02_6<<151> * (1A> )Lelﬁ’
Cs :16L2< )

717 <>\+ >G2

6
T (1 51) ot a3l
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€05

Settingi a < {5, We can cancel last term on the RHS of (31) with LHS, then substituting into
Z1 = X1 completes the proof. g
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Appendix C. Proof of Theorem 3

Under some assumptions stated in Corollary 1, we have that

T
V(X Vd . N NSO
TZ:: 71/415 ‘ SC1\/ﬁ ((E[f(Z1)] —Irgnf(x))+a2) —i—CQ?—i-CgW
1 1 Lo .
+ (Cigs + Csgrags ) B ; I(=Viea + Vie))llavs | (33)

where [|-|| 65 denotes the entry-wise Ly norm of a matrix (i.e || A|aps = >, ; |4ij]) and C1, Co, C3, Cy, C
are defined in Theorem 2.
Since Algorithm 3 is a special case of 2, building on result of Theorem 2, we just need to char-

acterize the growth speed of E [Z,‘le (¢ ~Viea + Vt—l) ”abs:| to prove convergence of Algorithm 3.
By the update rule of Algorithm 3, we know V; is non decreasing and thus

N d
= D= loeaaly + [Be-1,ilj]

14=1 j=1

Mﬂ'

T
E [Z 1(=Viea + Vie1) llabs

t=1

t

N

d
DD (baaly + [oe-1,ily)

i=1 j=1

I
M~

t

Il
—
i

(=[0-1,il; + [or-1,l5)

I
e
M~

N
Il
—
.
Il
—

I
WE
Mg

(=[00,ilj + [07—-1.415) | >

Il
—

=17

where the last equality is because we defined Vo121, previously. Furthermore, because || g, i|/oc <
G forall ¢, 7 and vy ; is a exponential moving average of g7 .,k = 1,2, --- ¢, we know |[vy;];] <

G?_, for all t, 4, j. In addition, by update rule of V;, we also know each element of V; also cannot be
greater than G2, i.e. |[01];| < G2, for all ¢,4, j. Given the fact that [0 ;]; > 0, we have

N d

T N d
E ZH( Viea + Viet)llavs | =E ZZ [0,i]j + [07-1,];) | < E ZZG@O = NdG?, .

t=1 i=1 j=1 i=1 j=1
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Substituting the above into (33), we have

T — 2
1 V(X)) Vd . 2 N Nto
—ZE — <Ci (E[f(Z1)] —min f(z)) + 07 ) + Co + C3 7555
T v U2/4 VTN ( T ) T T1odY-
1 1 )
T\ G m T Orisgs ) Ndbs
\/Cj . ) N Nl.5
=0 e (B ()] — min f(2)) + 0%) + Chp + Choprs s
VNd Nd°5
+Ci—— + G5
(34)
where we have
Cr=C, Ch=Cy C4=0C3 C)=CyG* CL=0Cs5G%. (35)

and we conclude the proof. ([l
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Appendix D. Proof of Theorem 4

The proof follows the same flow as that of Theorem 3. Under assumptions stated in Corollary 1, set

o = /N /v/Td, we have that

1 & vl Nz ‘ N NLS
T;E ‘ Ui1/4t)‘ Scl\/ﬁ((E[f(zl)]_ngnf(x))‘f‘UQ)+CQ?+C3W

, (36)

T A A
Z [(=Vi2 + Vie1)l|abs
=1

1 1
+ <C4T\/N T C5T1.5d0.5> E

where [|-|| 65 denotes the entry-wise Ly norm of a matrix (i.e || A|aps = >, ; |4ij]) and C1, Co, C3, Cy, C
are defined in Theorem 2.
Again, Since decentralized AdaGrad is a special case of 2, we can apply Corollary 1 and what

we need is to upper bound E [EtT:l (=Vig + Vi_1) Habs} derive convergence rate. By the update

rule of decentralized AdaGrad, we have 0; ; = %(2221 g,% ;) fort > 1 and 0y ; = €l. Then we have
fort > 3,

T
E D l(=Viea + Vie) labs

Li=1
[T N 4

=E Z Z Z‘ - [vt_Q l]] + [Ut—lﬂ]]’
| t=1 i=1 j=1
[T N 4 =

<E1D. D D |- 5D akil +7 ng ||+ Nd(G, —¢)
| t=3 i=1 j=1 =1
[T N 4 ) | )

<E D> > D> 1G5 75 D gktl) + 7 loia )l | + NdGZ
| t=3 i=1 j=1 el
(7 N 4 . o ,

=k (=) (D ghaly) + == [9i1 il | + NdG2
;;; (t—=1)(t-2) ; O
[T N 4 ) o X

<E max [ —————— (Y g2, —— (9210 | | + NdG2
T o 2

<E |Nd o | 4 Nd

< ;t_l + NdG%,

<NdG21 ¢(T) + NdG2
=NdG? (log(T) + 1)

where the first equality is because we defined V_; £ V{ previously and |gk.illo0 < Goo by assump-
tion.
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Substituting the above into (36), we have

v f X1) Vd , ) N N5
ZE —_— SCl (E[f(Zl)] — min f(x)) +o + 027 + Cgm
e | |0 o0 2 (i g st 7)o
1 1 9
Vi | N1
~Ci = ((BU(20)] = min f(@)) + 0°) + Clo + Chpss
dv/N(log(T) + 1) log(T) +1)NVd
where we have
Cr=C Ch=0Cy CL=0C3 C)=0CG* CL=CsG%. (37)
and we conclude the proof. g

Appendix E. Additional Experiments and Details

In this section, we compare the training loss and testing accuracy of different algorithms, namely
Decentralized Stochastic Gradient Descent (D-PSGD), Decentralized ADAM (DADAM) and our
proposed Decentralized AMSGrad, with different stepsizes on heterogeneous data distribution. We
use 5 nodes and the heterogeneous data distribution is created by assigning each node with data of
only two labels. Note that there are no overlapping labels between different nodes. For all algorithms,
we compare stepsizes in the grid [10~!,1072,1073,107%,1072,1076].

training loss

number of iterations x10*

Figure 3: Training loss and Testing accuracy for different stepsizes for D-PSGD

Figure 3 shows the training loss and test accuracy for D-PSGD algorithm. We observe that
the stepsize 10~3 works best for D-PSGD in terms of test accuracy and 10~ works best in terms
of training loss. This difference is caused by the inconsistency among the value of parameters on
different nodes when the stepsize is large. The training loss is calculated as the average of the loss
value of different local models evaluated on their local training batch. Thus, while the training loss is
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small at a particular node, the test accuracy will be low when evaluating data with labels not seen by
the node (recall that each node contains data with different labels since we are in the heterogeneous
setting).
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Figure 5: Training loss and Testing accuracy for different stepsizes for DADAM

Figure 4 shows the performance of decentralized AMSGrad with different stepsizes. We see that
its best performance is better than the one of D-PSGD. Its performance is also more stable in the
sense that the test performance is less sensitive to stepsize tuning according to our experiments.

Figure 5 displays the performance of Decentralized ADAM algorithm. As expected, the perfor-
mance of DADAM is not as good as D-PSGD or decentralized AMSGrad. Its divergence characteris-
tic, highlighted Section 3.1, coupled with the heterogeneity in the data amplify its non-convergence
issue in our experiments. From the experiments above, we can see the benefits of decentralized
AMSGrad both in terms of performance and ease of parameter tuning, and the importance of ensuring
the theoretical convergence of any newly proposed methods in the presented setting.
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