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Abstract
1Adaptive gradient methods including Adam, AdaGrad, and their variants have been very successful
for training deep learning models, such as neural networks. Meanwhile, given the need for distributed
computing, distributed optimization algorithms are rapidly becoming a focal point. With the
growth of computing power and the need for using machine learning models on mobile devices,
the communication cost of distributed training algorithms needs careful consideration. In this
paper, we introduce novel convergent decentralized adaptive gradient methods and rigorously
incorporate adaptive gradient methods into decentralized training procedures. Specifically, we
propose a general algorithmic framework that can convert existing adaptive gradient methods to
their decentralized counterparts. In addition, we thoroughly analyze the convergence behavior of
the proposed algorithmic framework and show that if a given adaptive gradient method converges,
under some specific conditions, then its decentralized counterpart is also convergent. We illustrate
the benefit of our generic decentralized framework on prototype methods, AMSGrad and AdaGrad.

Keywords: Decentralized, Adaptive, Gradient, Convergence, Optimization.

1. Introduction

Distributed training of machine learning models is drawing growing attention in the past few years
due to its practical benefits and necessities, for example, for training massive-scale CTR (click-
through rate) models in commercial advertising (Zhao et al., 2019). Given the evolution of computing
capabilities of CPUs and GPUs, computation time in distributed setting is gradually being dominated
by the communication time under many circumstances (Chilimbi et al., 2014; McMahan et al., 2017;
Zhao et al., 2022). As a result, a large amount of recent works has been focussing on reducing the
communication cost for distributed learning (Alistarh et al., 2017; Lin et al., 2018; Wangni et al.,
2018; Stich et al., 2018; Wang et al., 2018; Tang et al., 2019). In the traditional parameter (central)
server setting, where a parameter server is employed to manage the communication in the whole
network, many effective communication reduction techniques have been proposed based on gradient
(and/or weight) compression and quantization (Aji and Heafield, 2017; Xu et al., 2021; Li et al.,
2022). Despite these communication reduction techniques, its cost usually still scales linearly with
the number of workers. Due to this limitation and with the sheer size of decentralized devices, the
decentralized training paradigm (Duchi et al., 2012) is drawing a lot of attention. In this paradigm,
the parameter server is removed and each node only communicates with its neighbors. It is shown
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in Lian et al. (2017) that, when the training bottleneck is the communication cost, decentralized
training algorithms can outperform parameter server-based procedures. The decentralized paradigm
is also preferred when a central parameter server is by construction not available.

In light of recent advances in nonconvex optimization, an effective way to accelerate training
is by using adaptive gradient methods like AdaGrad (Duchi et al., 2011), Adam (Kingma and Ba,
2015), AMSGrad (Reddi et al., 2018), or OPT-AMSGrad (Wang et al., 2021). Their popularity
are due to their practical benefits in training neural networks, featured by faster convergence and
ease of parameter tuning compared with Stochastic Gradient Descent (SGD) (Robbins and Monro,
1951). Several works have applied adaptive gradient methods to distributed training systems. Reddi
et al. (2021) develop a distributed adaptive optimization framework with applications to federated
learning. Their method employs local SGD computations and a global adaptive learning rate step.
Li et al. (2022) study distributed training with AMSGrad under communication compression. The
work of Chen et al. (2020) propose an algorithm called local AMSGrad, where local workers perform
adaptive gradient updates, instead of local SGD, and a global server aggregates the local model
updates. Also see the extension to local Adam (Zhao et al., 2022) and its application in training
commercial ads CTR models. In these papers, all the training systems exhibit a server/worker
communication structure. On the contrary, in the setting of our paper, nodes can only communicate
to their neighbors on a fixed communication graph. Designing adaptive methods in such setting is
highly non-trivial due to the already complex update rules and to the interaction between the effect
of using adaptive learning rates and the decentralized communication protocols. Therefore, while
our work can be partially viewed as an extension of Chen et al. (2020) to the decentralized scenario,
our algorithm design and analysis involve additional challenges and techniques.

Contributions. This paper attempts to bridge the gap between two realms in nonconvex optimization:

• We investigate the application of adaptive gradient methods in the decentralized training
paradigm, where nodes have only a local view of the whole communication graph. We develop
a general technique that converts a centralized adaptive gradient method to its decentralized
counterpart and highlight the importance of adaptive learning rate consensus.

• By using our proposed technique, we present a new decentralized optimization algorithm,
called decentralized AMSGrad, as the decentralized counterpart of AMSGrad.

• We provide a theoretical verification interface, in Theorem 2, for analyzing the behavior of
decentralized adaptive gradient methods obtained via our technique. Thus, we characterize the
convergence rate of decentralized AMSGrad, which is, to the best of our knowledge, the first
convergent decentralized adaptive gradient method. In particular, our Theorem 3 provides a
convergence rate of order O(

√
d/
√
T ), for the decentralized AMSGrad, when the number of

iterations T is large, hence matching state-of-the-art rates.
• Similar analysis and bounds are provided for the decentralized counterpart of AdaGrad.

In our algorithm, one key ingredient is the consensus on adaptive learning rates at different
nodes, which is also employed in Chen et al. (2020); Karimi et al. (2021). We show the importance of
consensus on adaptive learning rates in the algorithm design by proving a divergent problem instance
for a recently proposed decentralized adaptive gradient method, namely DADAM (Nazari et al.,
2019), a decentralized version of ADAM. Though consensus is performed on the model parameter,
DADAM lacks consensus principles on the adaptive learning rates.
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Organization. An overview of prior works is provided in Section 2. In Section 3, we show the
importance of adaptive learning rate consensus. In Section 4, we develop our general framework for
converting adaptive gradient methods into their decentralized counterparts along with convergence
analysis and converted algorithms. Illustrative experiments are presented in Section 5.

Notations. xt,i denotes variable x at node i and iteration t. ‖ · ‖abs denotes the entry-wise L1 matrix
norm, i.e. ‖A‖abs =

∑
i,j |Ai,j |. We introduce important notations used throughout the paper: for

any t > 0, Gt := [gt,N ] where [gt,N ] denotes the matrix [gt,1, gt,2, · · · , gt,N ] (where gt,i is a column
vector), Mt := [mt,N ], Xt := [xt,N ], ∇f(Xt) := 1

N

∑N
i=1∇fi(xt,i), Ut := [ut,N ], Ũt := [ũt,N ],

Vt := [vt,N ], V̂t := [v̂t,N ], Xt := 1
N

∑N
i=1 xt,i, U t := 1

N

∑N
i=1 ut,i and Ũt := 1

N

∑N
i=1 ũt,i.

2. Preliminaries

2.1. Related Work

Decentralized optimization. Traditional decentralized optimization methods include well-know
algorithms such as ADMM (Boyd et al., 2011), Dual Averaging (Duchi et al., 2012), Distributed
Subgradient Descent (Nedic and Ozdaglar, 2009). More recent algorithms include EXTRA (Shi et al.,
2015), Next (Lorenzo and Scutari, 2016), Prox-PDA (Hong et al., 2017), GNSD (Lu et al., 2019),
and Choco-SGD (Koloskova et al., 2019). While these algorithms are commonly used in applications
other than deep learning, recent algorithmic advances in the machine learning community have shown
that decentralized optimization can also be useful for training deep models such as neural networks.
Lian et al. (2017) demonstrate that a stochastic version of Decentralized Subgradient Descent can
outperform parameter-server-based algorithms when the communication cost is high. Tang et al.
(2018) propose the D2 algorithm improving the convergence rate over Stochastic Subgradient Descent.
Assran et al. (2019) develop the Stochastic Gradient Push that is more robust to network failures for
training neural networks. The study of decentralized training algorithms in the machine learning
community is at its early stage. One noteworthy work (Nazari et al., 2019) presents a decentralized
version of AMSGrad (Reddi et al., 2018) and it is proven to satisfy some non-standard regret.

Adaptive gradient methods. Adaptive gradient methods have been popular in recent years due to
their superior performance in training neural networks. Most commonly used adaptive methods
include AdaGrad (Duchi et al., 2011) or Adam (Kingma and Ba, 2015) and their variants. Key
features of such methods lie in the use of momentum and adaptive learning rates (which means
that the learning rate is changing during the optimization and is anisotropic, i.e. depends on the
dimension). Adam has been analyzed in Reddi et al. (2018) where the authors point out an error in
previous convergence analyses. A variety of papers have been focusing on analyzing the convergence
behavior of the numerous existing adaptive gradient methods. Ward et al. (2019), Li and Orabona
(2019) derive convergence guarantees for a variant of AdaGrad without coordinate-wise learning
rates. Chen et al. (2019) analyze the convergence behavior of a broad class of algorithms including
AMSGrad and AdaGrad. Zhou et al. (2018) give a more refined analysis of AMSGrad with better
convergence rate. Zou and Shen (2018) provide a unified convergence analysis for AdaGrad with
momentum. Chen et al. (2020); Karimi et al. (2021); Zhao et al. (2022) propose locally adaptive
algorithms in distributed training, and its layerwise accelerated variant and application to real-world
ads CTR models. Li et al. (2022) analyze the convergence of distributed AMSGrad when the
communication between worker and server is compressed. More recent works on adaptive methods
can be found in Zaheer et al. (2018); Agarwal et al. (2019); Luo et al. (2019); Zhou et al. (2020).
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2.2. Decentralized Optimization Framework
In distributed optimization (with N nodes), we aim at solving the following optimization problem

min
x∈Rd

1

N

N∑
i=1

fi(x) , (1)

where x denotes the vector of parameters and fi is only accessible by the ith node. Through the
prism of empirical risk minimization procedures, fi can be viewed as the average loss of the data
samples located at node i, for all i ∈ [N ]. We make the following mild assumptions required for
analyzing the convergence behavior of the different decentralized optimization algorithms:

A1 For all i ∈ [N ], fi is differentiable and the gradients are L-Lipschitz, i.e., for all (x, y) ∈ Rd,
‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖.

A2 We assume that, at iteration t, node i accesses a stochastic gradient noted gt,i. The stochastic
gradients and the gradients of fi have bounded L∞ norms, i.e. ‖gt,i‖ ≤ G∞, ‖∇fi(x)‖∞ ≤ G∞.

A3 The gradient estimators are unbiased and has bounded variance for each coordinate, i.e.
E[gt,i] = ∇fi(xt,i) and E[([gt,i − fi(xt,i)]j)2] ≤ σ2, for all t, i, j .

Assumptions A1 and A3 are standard in distributed optimization literature. A2 is slightly stronger
than the traditional bounded variance assumption, but is commonly used for the analysis of adaptive
gradient methods (Chen et al., 2019; Ward et al., 2019). Note that the bounded gradient estimator
assumption in A2 implies the bounded variance assumption in A3. We willingly denote the variance
bound and the estimator bound differently to avoid confusion when we use them for different
purposes. In decentralized optimization, the nodes are connected as a graph and each node only
communicates to its neighbors. In such a case, one usually constructs a N × N matrix W for
information sharing for the design of novel algorithms. We denote λi to be its ith largest eigenvalue
and define λ , max(|λ2|, |λN |). We assume the following for the matrix W :

A4 The matrix W satisfies: (I)
∑N

j=1Wi,j = 1,
∑N

i=1Wi,j = 1, Wi,j ≥ 0, (II) λ1 = 1, |λ2| < 1,
|λN | < 1 and (III) Wi,j = 0 if node i and node j are not neighbors.

3. Decentralized Optimization and Adaptive Gradient Methods

We first present the convergence failure of current decentralized adaptive method, such as DADAM (Nazari
et al., 2019), then introduce our general framework for decentralized adaptive methods.

3.1. Divergence of DADAM

Recently, Nazari et al. (2019) initiated an attempt to bring adaptive gradient methods into the
decentralized optimization realm by introducing Decentralized ADAM (DADAM), described in
Algorithm 1. DADAM is essentially a decentralized version of ADAM and the key modification
consists in using a consensus step on the optimization variable x to transmit information across the
network, encouraging its convergence. The matrix W is a doubly stochastic matrix, which satisfies
A4, for achieving average consensus of x. Introducing this mixing matrix is standard for decentralized
algorithm, such as distributed gradient descent (Nedic and Ozdaglar, 2009; Yuan et al., 2016). It is
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proven in Nazari et al. (2019) that DADAM admits a non-standard regret bound in the online setting.
Nevertheless, whether the algorithm can converge to stationary points in standard offline settings
such as training neural networks is still unknown. The convergence failure of DADAM in the offline
settings is established below:

Theorem 1 There exists a problem satisfying the assumptions A1-A4 where DADAM fails to converge
to a stationary point such that∇f(X̄t) = 0.

Proof Consider a two-node setting with objective function f(x) = 1/2
∑2

i=1 fi(x) and f1(x) =
1[|x| ≤ 1]2x2+1[|x| > 1](4|x|−2), f2(x) = 1[|x−1| ≤ 1](x−1)2+1[|x−1| > 1](2|x−1|−1).
We set the mixing matrix W = [0.5, 0.5; 0.5, 0.5]. The optimal solution is x∗ = 1/3. Both f1 and
f2 are smooth and convex with bounded gradient norm 4 and 2, respectively. We also have L = 4
(defined in A1). If we initialize with x1,1 = x1,2 = −1 and run DADAM with β1 = β2 = β3 = 0
and ε ≤ 1, we will get v̂1,1 = 16 and v̂1,2 = 4. Since |gt,1| ≤ 4, |gt,2| ≤ 2 due to bounded gradient,
and (v̂t,1, v̂t,2) are non-decreasing, we have v̂t,1 = 16, v̂t,2 = 4, for all t ≥ 1. Thus, after t = 1,
DADAM is equivalent to running decentralized gradient descent (D-PSGD) (Yuan et al., 2016) with
a re-scaled f1 and f2, i.e. running D-PSGD on f ′(x) =

∑2
i=1 f

′
i(x) with f ′1(x) = 0.25f1(x) and

f ′2(x) = 0.5f2(x), which unique optimal x′ = 0.5. Define x̄t = (xt,1 + xt,2)/2, then by Theorem 2
in Yuan et al. (2016), we have when α < 1/4, f ′(x̄t)− f(x′) = O(1/(αt)). Since f ′ has a unique
optima x′, the above bound implies x̄t is converging to x′ = 0.5 which has non-zero gradient on
function∇f(0.5) = 0.5.

Algorithm 1 DADAM (with N nodes)
1: Input: α, current point Xt, u 1

2
,i = v̂0,i = ε1,

m0 = 0 and mixing matrix W
2: for t = 1, 2, · · · , T do
3: for all i ∈ [N ] do in parallel
4: gt,i ← ∇fi(xt,i) + ξt,i
5: mt,i = β1mt−1,i + (1− β1)gt,i
6: vt,i = β2vt−1,i + (1− β2)g2t,i
7: v̂t,i = β3v̂t,i + (1− β3) max(v̂t−1,i, vt,i)

8: xt+ 1
2
,i =

∑N
j=1Wijxt,j

9: xt+1,i = xt+ 1
2
,i − α

mt,i√
v̂t,i

10: end for

Theorem 1 shows that, even though
DADAM is proven to satisfy some regret
bounds (Nazari et al., 2019), it can fail to
converge to stationary points in the non-
convex offline setting, commonly used for
training neural networks. We conjecture
that this inconsistency in the convergence
behavior of DADAM is due to the defini-
tion of the regret in Nazari et al. (2019).
The next section presents a unifying de-
centralized adaptive gradient framework
alongside a characterization of a finite-time
and independent of the initialization con-
vergence to some stationary point. In this
section, we discuss the difficulties of designing adaptive gradient methods for decentralized opti-
mization and introduce an algorithmic framework that can turn existing convergent adaptive gradient
methods to their decentralized counterparts.

3.2. Importance and Difficulties of Consensus on Adaptive Learning Rates

The divergent example in the previous section implies that we should synchronize the adaptive
learning rates on different nodes. This can be easily achieved in the parameter server setting where
all the nodes are sending their gradients to a central server at each iteration. The parameter server
can then exploit the received gradients to maintain a sequence of synchronized adaptive learning
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rates when updating the parameters, see Reddi et al. (2021) or Chen et al. (2021) for respectively a
federated and distributed variant of ADAM. However, in our decentralized setting, every node can
only communicate with its neighbors and such central server does not exist, hence Reddi et al. (2021)
and Chen et al. (2021) are not applicable here. Under our setting, the information for updating the
adaptive learning rates can only be shared locally instead of broadcast over the whole network. This
makes it impossible to obtain, in one iteration, a synchronized adaptive learning rate update using all
the information of the network.

– Systemic Approach: On a systemic level, one way to alleviate this bottleneck is to design
communication protocols in order to give each node access to the same aggregated gradients over the
whole network, at least periodically if not at every iteration. Therefore, the nodes can update their
individual adaptive learning rates based on the same shared information. However, such a solution
may introduce an extra communication cost since it involves broadcasting the information over the
whole network.

– Algorithmic Approach: Our contributions being on an algorithmic level, another way to solve
the aforementioned problem is by letting the sequences of adaptive learning rates, present on different
nodes, to gradually consent, through the iterations. Intuitively, if the adaptive learning rates can
consent fast enough, the difference among the adaptive learning rates on different nodes will not
affect the convergence behavior of the algorithm. Consequently, no extra communication costs need
to be introduced. We now develop this exact idea within the existing adaptive methods stressing on
the need for a relatively low-cost and easy-to-implement consensus of adaptive learning rates. Below
is the main archetype of the adaptive rates consensus mechanism within a decentralized framework.

4. A Unifying Decentralized Adaptive Gradient Framework

Algorithm 2 Decentralized Adaptive Gradient
Method (with N nodes)

1: Input: α, initial point x1,i = xinit, u 1
2
,i =

v̂0,i,m0,i = 0, mixing matrix W
2: for t = 1, 2, · · · , T do
3: for all i ∈ [N ] do in parallel
4: gt,i ← ∇fi(xt,i) + ξt,i
5: mt,i = β1mt−1,i + (1− β1)gt,i
6: v̂t,i = rt(g1,i, · · · , gt,i)
7: xt+ 1

2
,i =

∑N
j=1Wijxt,j

8: ũt,i =
∑N

j=1Wij ũt− 1
2
,j

9: ut,i = max(ũt,i, ε)
10: xt+1,i = xt+ 1

2
,i − α

mt,i√
ut,i

11: ũt+ 1
2
,i = ũt,i − v̂t−1,i + v̂t,i

12: end for

While each node can have different v̂t,i in
DADAM (Algorithm 1), one can keep track of
the min/max/average of these learning rates and
use that quantity as the new adaptive learning
rate. The predefinition of some convergent lower
and upper bounds may also lead to a gradual syn-
chronization of the adaptive learning rates on
different nodes as developed in Luo et al. (2019)
for AdaBound. In this paper, we present an
algorithmic framework for decentralized adap-
tive gradient methods, see Algorithm 2, which
uses average consensus of v̂t,i (see consensus
update in line 8 and 11) to help with the con-
vergence. When choosing v̂t,i = 1

t

∑t
k=1 g

2
k,i,

Algorithm 2 becomes a decentralized version
of AdaGrad or if v̂t,i is the adaptive learning
rate for AMSGrad, we obtain the decentralized
AMSGrad (Algorithm 3). The intuition of using
average consensus is that for adaptive gradient methods such as AdaGrad or Adam, v̂t,i approximates
the second moment of the gradient estimator, the average of the estimations of those second moments
from different nodes is an estimation of the second moment on the whole network. This design does



DECENTRALIZED ADAPTIVE GRADIENT METHODS

not introduce any extra hyperparameters that can potentially complicate the tuning process (ε in line
9 is important for numerical stability as in vanilla Adam). The following result gives a finite-time
convergence rate for our framework in Algorithm 2.

Theorem 2 Assume A1-A4. When α ≤ ε0.5

16L , Algorithm 2 yields the following regret bound

1

T

T∑
t=1

E

∥∥∥∥∥∇f(Xt)

U
1/4

t

∥∥∥∥∥
2
 ≤ C1

(
1

Tα
(E[f(Z1)]−min

x
f(x)) + α

dσ2

N

)
+ C2α

2d (2)

+ C3α
3d+

1

T
√
N

(C4 + C5α)E

[
T∑
t=1

‖(−V̂t−2 + V̂t−1)‖abs

]
,

where ‖·‖abs denotes the entry-wiseL1 norm of a matrix (i.e ‖A‖abs =
∑

i,j |Aij |). The constants
C1 = max(4, 4L/ε), C2 = 6((β1/(1− β1))2 + 1/(1− λ)2)LG2

∞/ε
1.5, C3 = 16L2(1− λ)G2

∞/ε
2,

C4 = 2/(ε1.5(1−λ))(λ+β1/(1−β1))G2
∞, C5 = 2/(ε2(1−λ))L(λ+β1/(1−β1))G2

∞+4/(ε2(1−
λ))LG2

∞ are independent of d, T and N . In addition, 1
N

∑N
i=1

∥∥xt,i −Xt

∥∥2 ≤ α2
(

1
1−λ

)2
dG2
∞

1
ε

which quantifies the consensus error.

It is readily seen that the last term on the RHS of (2) is the key to ensure convergence of converted
algorithm since it may not diminish with changing α or T . The growth of this term depends mostly
on the update rule of adaptive learning rate of the original algorithms before conversion. More study
on the growth rate of this term can be found in Chen et al. (2019). Another point worth mentioning is
that α ≤ ε0.5

16L is to guarantee descent for worst case of the class of algorithms (which has Ut = εI, ∀t),
typically this is not required since for most adaptive algorithms, Ut will grow quickly to be way
larger than ε. Interest readers may refer to the final step of the proof.

One can specify α to express convergence in terms of T , d, and N . An immediate result, shown
in Corollary 1, is derived by setting α :=

√
N/
√
Td:

Corollary 1 Assume A1-A4. Set α =
√
N/
√
Td. When α ≤ ε0.5

16L , Algorithm 2 yields:

1

T

T∑
t=1

E

∥∥∥∥∥∇f(Xt)

U
1/4

t

∥∥∥∥∥
2
 ≤ C1

√
d√
TN

(
(E[f(Z1)]−min

x
f(x)) + σ2

)
+ C2

N

T
(3)

+ C3
N1.5

T 1.5d0.5
+

(
C4

1

T
√
N

+ C5
1

T 1.5d0.5

)
E [VT ] ,

where VT :=
∑T

t=1 ‖(−V̂t−2 + V̂t−1)‖abs and C1, C2, C3, C4, C5 are defined in Theorem 2.

Corollary 1 indicates that if E[VT ] = o(T ) and if Ūt is bounded from above, then Algorithm 2 is
guaranteed to converge to stationary points of the objective loss function. Intuitively, this means that
if the adaptive learning rates on different nodes do not change drastically, the algorithm converges.
In the convergence analysis, the term E[VT ] upper bounds the total bias in the updated direction
caused by the correlation between mt,i and v̂t,i. It is shown in Chen et al. (2019) that when N = 1,
E[VT ] = Õ(d) for AdaGrad and AMSGrad. Besides, E[VT ] = Õ(Td) for Adam which does not
converge. Later, we will show the convergence of decentralized versions of AMSGrad and AdaGrad
by bounding this latter term by O(Nd) and O(Nd log(T )), respectively. The intuition behind the
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fact that E[VT ] = o(T ) can guarantee divergence is that the correlation between v̂t,i and mt,i (due
to their shared dependency on past gradients) can make update direction negatively correlated with
true gradient in expectation, leading to a non-negligible bias in the updates. However, the total
bias across T iterations introduced by such a correlation is bounded by the term E[VT ]. Hence, if
E[VT ] grows sublinearly with T , convergence can still be guaranteed. Corollary 1 also conveys the
benefits of using more nodes in the graph. When T is large enough such that the term O(

√
d/
√
TN)

dominates the right hand side of (3), then linear speedup can be achieved by increasing the number
of nodes N . An additional point worth discussing is the importance of the choice for matrix W
since the convergence rate depends on λ which depends on W . A common method to define W for
undirected graph is the Maximum-Degree Method (MDM), see Boyd et al. (2004). Denote di as the
degree of vertex i and dmax = maxi di, MDM sets Wi,i = 1 − di/dmax, Wi,j = 1/dmax if i 6= j
and (i, j) is an edge, and Wi,j = 0 otherwise. This W ensures Assumption A4 for many common
connected graph types, so does the variant γI + (1− γ)W for any γ ∈ [0, 1). A refined choice of
W coupled with a comprehensive discussion on λ of Theorem 2 can be found in Boyd et al. (2009),
e.g., 1− λ = O(1/N2) for cycle graphs, 1− λ = O(1/ log(N)) for hypercube graphs, λ = 0 for
fully connected graph. Intuitively, λ can be close to 1 for sparse graphs and to 0 for dense graphs.
This is consistent with (2), which RHS is large for λ close to 1 and small for λ close to 0.

4.1. Application to AMSGrad algorithm

Algorithm 3 Decentralized AMSGrad (N nodes)
1: Input: learning rate α, initial point x1,i =
xinit, u 1

2
,i = v̂0,i = ε1 (with ε ≥ 0),m0,i =

0, mixing matrix W
2: for t = 1, 2, · · · , T do
3: for all i ∈ [N ] do in parallel
4: gt,i ← ∇fi(xt,i) + ξt,i
5: mt,i = β1mt−1,i + (1− β1)gt,i
6: vt,i = β2vt−1,i + (1− β2)g2t,i
7: v̂t,i = max(v̂t−1,i, vt,i)

8: xt+ 1
2
,i =

∑N
j=1Wijxt,j

9: ũt,i =
∑N

j=1Wij ũt− 1
2
,j

10: ut,i = max(ũt,i, ε)
11: xt+1,i = xt+ 1

2
,i − α

mt,i√
ut,i

12: ũt+ 1
2
,i = ũt,i − v̂t−1,i + v̂t,i

13: end for

We now present, in Algorithm 3, a special
case of our algorithmic framework, namely De-
centralized AMSGrad, which is a decentralized
variant of AMSGrad. Compared with DADAM,
this algorithm exhibits a dynamic average con-
sensus mechanism to keep track of the average
of {v̂t,i}Ni=1, stored as ũt,i on the ith node, and
uses ut,i := max(ũt,i, ε) for updating the adap-
tive learning rate for node i. As the number of
iteration grows, even though v̂t,i on different
nodes can converge to different constants, the
quantity ut,i will converge to the same number
lim
t→∞

1
N

∑N
i=1 v̂t,i if the limit exists.

This average consensus mechanism enables
the consensus of adaptive learning rates on dif-
ferent nodes, which accordingly guarantees the
convergence of the method to stationary points.
The consensus of adaptive learning rates is the
key difference between decentralized AMSGrad
and DADAM and is the reason why decentralized AMSGrad is convergent while DADAM is not.
One may notice that decentralized AMSGrad does not reduce to AMSGrad for N = 1 since the
quantity ut,i in line 10 is calculated based on vt−1,i instead of vt,i. This design encourages the
execution of gradient computation and communication in a parallel manner. Specifically, line 4-7
(line 4-6) in Algorithm 3 (Algorithm 2) can be executed in parallel with line 8-9 (line 7-8) to overlap
communication and computation time. If ut,i depends on vt,i which in turn depends on gt,i, the
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gradient computation must finish before the consensus of the adaptive learning rate in line 9. This can
slow down the running time per-iteration of the algorithm. To avoid such delayed adaptive learning,
adding ũt− 1

2
,i = ũt,i− v̂t−1,i+ v̂t,i before line 9 and getting rid of line 12 in Algorithm 2 is an option.

Similar convergence guarantees will hold since one can easily modify our proof of Theorem 2 for
such update rule. As stated above, Algorithm 3 converges, with the following rate:

Theorem 3 Assume A1-A4. Set α = 1/
√
Td. When α ≤ ε0.5

16L , then Algorithm 3 satisfies:

1

T

T∑
t=1

E

∥∥∥∥∥∇f(Xt)

U
1/4

t

∥∥∥∥∥
2
 ≤ C ′1 √d√

TN

(
Df + σ2

)
+ C ′2

N

T
+ C ′3

N1.5

T 1.5d0.5
+ C ′4

√
Nd

T
+ C ′5

Nd0.5

T 1.5
,

whereDf := E[f(Z1)]−minx f(x),C ′1 = C1,C ′2 = C2,C ′3 = C3,C ′4 = C4G
2
∞ andC ′5 = C5G

2
∞.

C1, C2, C3, C4, C5 are independent of d, T and N defined in Theorem 2. In addition, the consensus

of variables at different nodes is given by 1
N

∑N
i=1

∥∥xt,i −Xt

∥∥2 ≤ N
T

(
1

1−λ

)2
G2
∞

1
ε .

Theorem 3 shows that Algorithm 3 converges with a rate of O(
√
d/
√
T ) when T is large, which

is the best known convergence rate under the given assumptions. Note that in some related works,
SGD admits a convergence rate of O(1/

√
T ) without any dependence on the dimension of the

problem. Such improved convergence rate is derived under the assumption that the gradient estimator
has a bounded L2 norm, hence hiding a dependency of

√
d in the final convergence rate. Another

remark is that the convergence measure can be converted to 1
T

∑T
t=1 E

[∥∥∇f(Xt)
∥∥2] using the

fact that ‖U t‖∞ ≤ G2
∞ (by update rule of Algorithm 3), for easier comparison with prior works.

Algorithm 4 Decentralized AdaGrad (N nodes)
1: Input: learning rate α, initial point x1,i =
xinit, u 1

2
,i = v̂0,i = ε1 (with ε ≥ 0),m0,i =

0, mixing matrix W
2: for t = 1, 2, · · · , T do
3: for all i ∈ [N ] do in parallel
4: gt,i ← ∇fi(xt,i) + ξt,i
5: mt,i = β1mt−1,i + (1− β1)gt,i
6: v̂t,i = t−1

t v̂t−1,i + 1
t g

2
t,i

7: xt+ 1
2
,i =

∑N
j=1Wijxt,j

8: ũt,i =
∑N

j=1Wij ũt− 1
2
,j

9: ut,i = max(ũt,i, ε)
10: xt+1,i = xt+ 1

2
,i − α

mt,i√
ut,i

11: ũt+ 1
2
,i = ũt,i − v̂t−1,i + v̂t,i

12: end for

In the next section, we provide a decentral-
ized version of AdaGrad (Duchi et al., 2011)
(optionally with momentum) converted by Al-
gorithm 2, further supporting the usefulness
of our decentralization framework. The re-
quired modification for decentralized AdaGrad
is to specify line 4 of Algorithm 2 as follows:
v̂t,i = t−1

t v̂t−1,i + 1
t g

2
t,i, which is equivalent to

v̂t,i = 1
t

∑t
k=1 g

2
k,i. We call this algorithm De-

centralized AdaGrad. The pseudo code of the
algorithm is shown in Algorithm 4. There are
two details in Algorithm 4 worth mentioning.
The first one is that the introduced framework
leverages momentum mt,i in the updates, while
original AdaGrad does not use momentum. The
momentum can be turned off by setting β1 = 0
and the convergence results will still hold. The
other one is that in Decentralized AdaGrad, we
use the average instead of the sum in the term v̂t,i. In other words, we write v̂t,i = 1

t

∑t
k=1 g

2
k,i. This

latter point is different from the original AdaGrad which actually uses v̂t,i =
∑t

k=1 g
2
k,i.
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4.2. Application to AdaGrad algorithm

In the original AdaGrad, a constant stepsize (α independent of t or T ) is used with v̂t,i =
∑t

k=1 g
2
k,i.

This is equivalent to using a well-known decreasing stepsize sequence αt = 1√
t

with v̂t,i =
1
t

∑t
k=1 g

2
k,i. In our convergence analysis, which can be found below, we use a constant step-

size α = O( 1√
T

) to replace the decreasing stepsize sequence αt = O( 1√
t
). This is popularly used in

Stochastic Gradient Descent analysis for the sake of simplicity and to achieve a better convergence
rate. In addition, it is easy to modify our theoretical framework to include decreasing stepsize
sequences such as αt = O( 1√

t
). The convergence analysis for decentralized AdaGrad is given in

Theorem 4.

Theorem 4 Under A1-A4, if α =
√
N/
√
Td. When α ≤ ε0.5

16L , then Algorithm 4 satisfies:

1

T

T∑
t=1

E

∥∥∥∥∥∇f(Xt)

U
1/4
t

∥∥∥∥∥
2
 ≤ C ′1

√
d√

TN
D′f +

C ′2
T

+
C ′3N

1.5

T 1.5d0.5
+

√
N(1 + log(T ))

T
(dC ′4 +

√
d

T 0.5
C ′5) ,

where D′f := E[f(Z1)] − minz f(z)] + σ2, C ′1 = C1, C ′2 = C2, C ′3 = C3, C ′4 = C4G
2
∞ and

C ′5 = C5G
2
∞. C1, C2, C3, C4, C5 are defined in Theorem 2 independent of d, T and N . In addition,

the consensus of variables at different nodes is given by 1
N

∑N
i=1

∥∥xt,i −Xt

∥∥2 ≤ N
T

(
1

1−λ

)2
G2
∞

1
ε .

5. Numerical Experiments

In this section, we conduct some experiments to test the performance of Decentralized AMSGrad,
developed in Algorithm 3, on both homogeneous data and heterogeneous (i.e. the data generating dis-
tribution on different nodes are assumed to be different) data distribution. Comparison with DADAM
and the decentralized parallel stochastic gradient descent (D-PSGD) developed in Lian et al. (2017)
are conducted. We train a Convolutional Neural Network (CNN) with 3 convolution layers followed
by a fully connected layer on MNIST (LeCun, 1998). We set ε = 10−6 for both Decentralized AMS-
Grad and DADAM. The learning rate is chosen from the grid [10−1, 10−2, 10−3, 10−4, 10−5, 10−6]
based on validation accuracy for all algorithms. In the following experiments, the graph contains
5 nodes and each node can only communicate with its two adjacent neighbors forming a cycle.
Regarding the mixing matrix W , we set Wij = 1/3 if nodes i and j are neighbors and Wij = 0
otherwise. More details on experiments can be found in the supplementary material of our paper.

5.1. Effect of heterogeneity

Homogeneous data: The whole dataset is shuffled and evenly split into different nodes. Such a
setting is possible when the nodes are in a computer cluster. We note, Figure 1, that decentralized
AMSGrad and DADAM perform quite similarly while D-PSGD (labelled as DGD) is much slower
both in terms of training loss and test accuracy. Though the (possible) non convergence of DADAM,
mentioned prior, its performance are empirically good on homogeneous data. The reason is that the
adaptive learning rates tend to be similar on different nodes under homogeneous data distribution.

Heterogeneous data: Here, each node only contains training data with two labels out of ten.
Such a setting is common when data shuffling is prohibited, such as in federated learning. We can
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Figure 1: Training loss and Testing accuracy for homogeneous (upper panels) and heterogeneous
data (bottom panels)

see that each algorithm converges significantly slower than with homogeneous data. Especially,
the performance of DADAM deteriorates significantly. Decentralized AMSGrad achieves the best
training and testing performance in that setting as observed in Figure 1.

5.2. Sensitivity to the Learning Rate

We compare the training loss and testing accuracies of different D-PSGD, DADAM, and our proposed
Decentralized AMSGrad, with different stepsizes on heterogeneous data distribution. We use 5
nodes and the heterogeneous data distribution is created by assigning each node with data of only
two labels. Note that there are no overlapping labels between different nodes. We observe Figure 2
that the stepsize 10−3 works best for D-PSGD in terms of test accuracy and 10−1 works best in
terms of training loss. This difference is caused by the inconsistency among the model parameters
on different nodes when the stepsize is large. Figure 2 shows the performance of decentralized
AMSGrad with different stepsizes. We see that its best performance is better than the one of D-PSGD
and displays a more stable test accuracy, i.e. less sensitive to the stepsize tuning. As expected, the
performance of DADAM is not as good as D-PSGD or Decentralized AMSGrad, see Figure 2. Its
divergence characteristic, highlighted Section 3.1, coupled with the heterogeneity in the data amplify
its non-convergence issue. We note the advantages of Decentralized AMSGrad both in terms of
performance and ease of tuning.



CHEN KARIMI ZHAO LI

0 2 4 6 8 10

number of iterations 10
4

0

0.5

1

1.5

2

2.5

tr
a
in

in
g
 l
o
s
s

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

0 2 4 6 8 10

number of iterations 10
4

0

0.5

1

1.5

2

2.5

tr
a
in

in
g
 l
o
s
s

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

0 2 4 6 8 10

number of iterations 10
4

0

0.5

1

1.5

2

2.5

tr
a
in

in
g
 l
o
s
s

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

0 2 4 6 8 10

number of iterations 10
4

0

0.2

0.4

0.6

0.8

1

te
s
t 
a
c
c
u
ra

c
y

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

0 2 4 6 8 10

number of iterations 10
4

0

0.2

0.4

0.6

0.8

te
s
t 

a
c
c
u

ra
c
y

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

0 2 4 6 8 10

number of iterations 10
4

0

0.2

0.4

0.6

0.8

1

te
s
t 
a
c
c
u
ra

c
y

1e-1

1e-2

1e-3

1e-4

1e-5

1e-6

Figure 2: Training Loss (upper panels) and Testing Accuracy (bottom panels) comparison of different
stepsizes for various methods. Order of plots (left to right): DP-SGD, DADAM and DAMS.

6. Conclusion

This paper studies the problem of designing adaptive gradient methods for decentralized training.
We propose a unifying algorithmic framework that can convert existing adaptive gradient methods
to decentralized settings. We rigorously show that if the original algorithm converges under some
minor conditions, the converted algorithm obtained using our proposed framework is guaranteed to
converge to stationary points of the objective loss function. By applying our framework to AMSGrad,
we propose the first convergent adaptive gradient methods, namely Decentralized AMSGrad. We also
give an extension to a decentralized variant of AdaGrad for completeness of our converting scheme.
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