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Appendix A. QOja’s algorithm and Krasulina’s method

In this section, we briefly discuss two classic first-order algorithms for eigenproblem, Oja’s
method and Krasulina’s method. Let w; € R? be the iterates of estimating the top eigen-
vector of A, at time ¢ and 7 denotes the step size. Oja’s algorithm has the following update
rule: ,
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Hence, Oja’s method is equivalent to the power method when n — oo. Krasulina’s method
uses a similar update rule to Oja’s update but has an additional term:

!
wy 1 = wg +nAwy, w1 =

/
W1
Wiy = we + Iy — wew/ ) Awy, W = ﬁ’

t+1
which is the gradient descent on the objective function:
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The operator (Id—wtth ) is the projection operator, and Amid and Warmuth (2020) showed
that Krasulina’s update corresponds to a projected gradient descent step on the Stiefel
manifold St(d,1) = {w € R? : w'w = 1}. Thus, Krasulina’s method is a Riemannian
optimization method, which is reviewed in the following section. Note that there are funda-
mental differences between Oja’s algorithm and Krasulina’s methods. Krasulina’s method
is equivalent to the power method on the matrix (1 — nw, Aw;)I; + nA at each step, but
Oja’s algorithm is equivalent to the power method on the matrix I +nA. Moreover, 1 should
be less than 1/A; for Krasulina’s method to make (1 — nw," Aw;)Ig+ nA positive, but there
is no restriction for Oja’s algorithm.

Appendix B. Riemannian optimization

We now discuss basic notations of optimization on the Riemannian manifold. Given a
manifold M and = € M, the tangent space is denoted by T, M, the inner product on 7, M
is defined as (-, -);. The retraction R(z,ng) along the direction g € T, M is a smooth map
from T, M to M such that

d
R(z,0) =z, R'(x,0) =g, where R'(z,0)= d—nR(m,n)

The Riemannian gradient grad f is the vector in T, M such that
(grad f(z),9)e = Vf(2)Tg, Vg€ TM.

Given a step size > 0, the gradient descent method based on the retraction updates the
iterates as

Tip1 = Rz, —ngrad f(x)).
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We refer for readers that Absil et al. (2009) provided more details of optimization on Rie-
mannian manifolds. We end this section with a useful lemma in Riemannian optimization.
In particular, Lemma 6 establishes the smoothness property of retraction, which is an es-
sential part of the convergence of first-order methods.

Lemma 6 (Jiang et al., 2017, Lemma 3.2) If f is a differentiable function and its Euclidean
gradient V f is L-Lipschitz continuous, then for any t > 0, there holds that

,e
f(R(z,m)) < f(R(z,0)) + %HR'(%O)HQ —n{grad f(R(z,0)), R(z,0))e,

where L = 2LoG+L2L and |V f()|| < G for all x. Moreover, if R(x,n) is QR factorization
on the Stiefel manifold, we have L1 = 1 +/2/2, Ly = v/10/2.

Appendix C. Stochastic Recursive Gradient Algorithm

This section introduces inexact Stochastic Recursive Gradient Algorithm (iISARAH) (Nguyen
et al., 2021) that employs mini-batch gradients instead of full gradients in the outer loop.
Given a problem of the form

min {f(w) = Zﬂ-(w)} :
i=1

iSARAH is a stochastic variance reduction method which consists of the outer loop and the
inner loop. The outer loop computes the initial estimator of the gradient, while the inner
loop estimates the gradient recursively by new samples. Specifically, in an outer loop, given
an initial iterate wy and a large Bs samples {ig.o)}fzsl drawn uniform from [n], the initial
gradient estimator vg is

With fresh b samples {ig»t)}?zl drawn uniform from [n], SARAH recursively updates the
estimation of the gradient:

b
1
w=y > [Vfim (w) = Vo (wt1)] + V-1,
]:1 J J

and update w;11 = wy — nug with a step size n for ¢ = 1,2,...,m. After m iterations of
the inner loop, use the last iterate of the inner loop to reset wy and recompute vg. Letting
Fi = a(wg,igo),igl), e ,igt)) be the o-algebra generated by past information up to time
t, we note that v; is a biased estimator of the gradient V f(w;) conditioned on F;_1, i.e.
E[vg|Fi—1] = Vf(w) — V f(wi—1) + v4—1, implying following facts:

Proposition 7 v, — V f(w;) is a martingale and the variance is bounded by

E[|vm — V f (wm)[?|Fo] = llvo = V f (wo)||* + D El||vr — ve—1]|*|Fo]
t=1

= STE((fw) — flw—1))?|Fo)-

t=1



Noi1sy RIEMANNIAN GRADIENT DESCENT

Nguyen et al. (2021) used a similar argument. For completeness, we provide the proof here.
Proof Recall F; = a(wg,ig-l), ce 5 )) We know that Efvi|Fi—1] = Vf(ws) — V f(wi—1) +
v—1, implying
Ell|ve — V f (we) 1P| 7] =E[[[[ve = ve1] + [vp-1 = V f(wi-1)] + [V f (we-1) = vpa]|*|F]
=E[||[ve = ve—1] |17 + [Jve—1 = V f (wem) I = [V f (we-1) = v |,

By tower property of conditional expectation, we have

E||ve — V f (we)|[?|Fo]

(12)
=E[[| [ — ve1][1*Fo] + Ell[ve—1 — V f (wi—1)[*[Fo] = E[|V f (we—1) — ve—1]*||Fo)-
Summing Eq. (12) over j = 1...,m implies
Elllvm — V( wm)HQ\fo}
=lvo — V f (wo)|? +ZE I[vr = vea)[1?1F0] = D B[V f(wi1) = ve—a ||| Fo),
t=1 t=1
which completes the proof. |

Appendix D. Proof of Theorem 1

1) Define g; := Apwy, P = Iy — wpw,', 0; = 0(wy, Uy) and ¢y = 1p(ws, Ug). Let u be an
arbitrary unit vector such that u € span(Uy).
First, we derive that

Ay, sin? O(w,Uk) < A\ — w! Ayw < (M — ) sinQ(w, Uk), (13)
and
| Prge|l < 2A1 sin 6(wy, Uy,). (14)
Then we have
‘UT(’wt +nPg; + 77Pt€t)|2
=|u" (w; + nPege) + nu’ Piey|?

>(u' (wy +nPigy)) ((UT(wt +nPgt)) + 277UTPt5t)

C-S ineq
> (T (wi +nPge) (T (wr +nPge)) = 2nlu” Bl

Eq. (13) ‘ orlluT Pl e
> (L g sin® 0wy, u))|uwil? (1 } W) ,
t

(15)

where we have used Cauchy Schwarz inequality (C-S ineq), and

lwe + nPige + nPiee]|* =1 + n?||Poge + Prey|?

<1+ 207 (|| Pegel* + || Peee?) (16)

EBg. (14) 242 i 2 2 112
< 1489 AT sin” O(we, u) + 207 ||| *
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Recall two logarithm inequalities:
x
— < log(1 < fi > —1, 17
1+x*0g( +z) <z forx (17)

and
T 1

>
—log(l —xz) = 1—1log(1l —x)
Then combining two inequality Eq. (15) and Eq. (16) yields

for any x € (0,1) . (18)

Y(wiy1,u)

Eq. (15),Eq. (16)

IN

2n|lu’ P,
Y(ws, u) — log(1 + nAy sin’ O(wy, u)) — log <1 — 77”“15“”&’)

|u T wy|
+ log(1 + 8772)\% sin? 0(w,u) + 2772H5t”2)
Eq. (17),Eq. (18)

A .
< )+ 2Pl (o — s ) sin B

~log (1 _ 2n[sin 9(wt7u)!”€tH> ‘

| cos O(wy, u)|

(19)

Taking the minimum with respect to u over the span(Uy) on both sides of Eq. (19) implies

A 29| sin 6
¢t+1§wt—n<’“—8m%) sin2 6, — log (1_77|Smt’”€t’

+ 2n%||e¢ |2
—— )+ 2Pl

| cos 6|

Now, we would like to show that 1y < 1) for all ¢ by carefully selecting parameters by
the induction argument under conditions that

lleel|? < p?sin® 6y, cos? By > 7. (20)
First, for ¢ = 1, the conditions Eq. (20) implies

Ay

Bk _ 2ulsinfollleoll
14+ nAg

| cos 6|

W1 <t — 1 ( - 8nA%> sin? 6y — log (1 ) +2n%| 0|

Ay : 2np
éwo —n <W€ — 877)\%) Sll’l2 90 — IOg <1 — T + 27’]2”50”2

A i 2
<o —1n < ko 87})&) sin? 6y + ne + 2772||50||2

14+ nAg Y —2np
nAy 2np 2 2) 9
<tpg — — -2 sin” 6,
<t <2+277Ak o o
provided that
v —=2np >0 (21)
and
AL/ (2 + 2nAL) — 8n2A% > 0. (22)
Thus, the inequality
A 2

2+20A, v —2np
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yields 1 < 9. This completes the case ¢ = 1. Suppose it is true that ¢, < 9. By the
hypothesis, it follows that

Yy sin? 0, S Py (o

.2
0; = > . 24
S log(1 —sin?6;) — —log(1 —sin?6;) — 1+ vy (24)
Then, since cos? §; = exp(—;) and sin?0; < vy, we get
cos? 0y > cos® By, sin?6; < Yy < Yy < (1 + 1) sin? Gy, (25)

where the last inequality follows by Eq. (24). Using Eq. (25) and the conditions Eq. (20),
we have

A . 21| sin 0, |||
P <ty —m <k — 8n/\%> sin® 0, — log <1 — 77thH> + 2772HQH2

1+nAyg | cos 6y (26)
nAg 1 2np(1 + o) 2 2> . 2
<(1- + (49 sin? 0y,
_< 2+277Ak:1+¢0>¢t ( y—2mp TP
provided that v — 2np > 0 and
AR/ (2 + 2nAL) — 87°A3 > 0. (27)
Therefore, 111 < 1 follows if it holds that
A 1 2np(1
nAy _ 2np(1+4o) 22 > 0. (28)

24 2nAr 141y v —2np

Hence, we prove that 1y < 1 since our assumption on 7 Eq. (4) implies Eq. (21),
Eq. (22), Eq. (23), Eq. (27), Eq. (28).
For the second statement, let r = nAy/(2 + 2nAy). Since Eq. (4) implies that

nAg B 2up(1+%o)
4+ 4nAg 1+ ¥ —2np

+ 2n°p?, (29)

we obtain by Eq. (26) and Eq. (29)
Yrpr < (L =r)gh + ?wo < (1—r)'4po + %wo Z%(l —r)i < ((1 )ty g) Yo,

and the theorem for general d follows.

2) For the special case d = 2, let § = 0(w,u;) and ¢ = O(w',u;). We use g = ¢,
wy = w and wyr; = w' for simplify notations. Assume that w = sju; + sous. Then,
Apw = Aisi1e1 + Agsier, which implies

w' =w +nP(A,w + ¢)
=w + nA,w — nw' Ayww + nPe

2
= Z[si(l + 0\ — nw " Aw) + nu; Pelu;.
i=1
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Since n < 1/A1, we know for all i = 1,2
149\ —nw' Aw > 0. (30)
Moreover, since w' A,w = A157 + X257 and s7 + s3 = 1, we know
M —wAw = (A — A\157) — Aass = (A1 — Xa)s2 = (A — Ag)sin? 4. (31)
Since |le|| < p1(A1 — A2)| cos @] = p1(A1 — A2)|s1|, we obtain
|uf Pel|/|s1] < p1(A = A2). (32)

Then, we have

s2(1 +nA2 — nw " Aw) + nug Pe|

= T A T Aw) + ) Pe
_Is2(1+ndg —mw' Aw)| + nluy Pe|
]sl(l +nA1 — nwT Aw)| — n|u] Pel
Eq. (30) |s2|(1 + 1A — anAw) + 17]u2 Pe|
T s1(1 A — qwT Aw) — n|u] Pel

| tan &’

_Is2| L+nAe —nuw' Aw n 1 nlug Pel
[s1] (1 +nA1 — nwT Aw) —nluf Pe[/[s1]  [s1] (1 —nwT Aw +nki) — nluf Pel/|s1]
Eq'z(gl)]tan9| <1 (A=) — n|u{ Pe|/|s1] > 1 n|uq Pe|
L+n(A1 = A2)s5 — nuf Pel/|s1| [s1] 1+ n(A — A2) —nfu] Pe|/|s1]
Eq'§(32)|tan9| <  (m=p)(A = A9) > 1 n|ug Pel
L+ —=p)(A&—A2) /) [si[ 1+ (n—p1)(A = A2)

Eq. (33) | tan 6| /v
< +
L+(m—p1)(A1—A2) 14+ (n—p1)(A—A2)
£ L)
14+ (n—p1)(A1 — A2)

provided that

el

| tan 6|,

|cosO| >, |le]] < p2(A1 — A2)|sind)|. (33)

Thus, we have |tan#’| < |tan 6| since we assume nps < y(n — p1). As a result, |cos€’'| > v,
by the same induction argument for general d > 2, we conclude |tan 6| < |tanfy| and

(n—p1)(A\1 — A2) np2(A1 — A2) /v
L+ (n—p1)(M— >\2)> [ ban Be] + L+ (m—p1)(A1— A2)

Let = (n— p1)(A1 — A2) /(1 4+ (1 — p1)(A1 — A2)). Using the condition

np2(M — A2)/y B_=p)M=2) _ pr
L+(m=—p)(M—A2) ~ 21+ (m—p1)(M1—A2) 2

|tan0t+1| < (1— ]tan90|.

<
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we get

|tan 0y11] < (1 —7) |tan | + §|tan90|

t
< (1 —7)"|tanby| + Z(l - T)t*k%] tan 0|
k=1

< (1 —7)"|tanby| + §|tan00|,

which completes the proof.

Appendix E. Proof of Proposition 3

1) We first show the first part of Proposition 3 for general d. Let f(w;) = 3w, Apw;. Then
f is K-smooth by the condition

max{|ac|?, lara — An} < K. (34)

Recall that R(wi—1,nPi—1v¢—1) = wy, R (wi—1,0) = Py_jvi—1, and P,V f(wy) is Riemannian
gradient (Absil et al., 2009, chapter 4).

Define Eg = E[|Fp]. By Lemma 6 and the fact that r'q = 3[[|7]|* + [l¢||*> + ||r — q||*],
we get

~

2
Eolf(w)] <ol (wi1)] + T Bol| Peoyvi 12 — nEo(PraV f(wi1), Prorti 1)

~

2

=Eo[f(wi-1)] — (77 - 772L> Eo||Pi—1vi-1]* — nEol| P—1 V f (wy—1)]?

+ nEo||P—1V f(wi—1) — Pmqve—1]?,
which implies

,-
Eo[f (wy)] < Eo[f(wi-1)] — (77 - 772L> Eol| Pe—1vi—1]” + nEollve—1 — V f(we—1)|I”.  (35)

Moreover, we have

2
b

1
Eollve — ve—1]|* =Eo 5 > <Vfi<_t) (we) =V, (wt1)>
]:1 J J
K2 K2 2
STEOH’LU;‘, —wi|* < d

(36)

Eol|Pr—1vi-1])?,

where we have used the condition Eq. (34) and the updating rule

b
1
VUt = E Z |:vfz(t) (wt) - sz(t) (’U)tl):| + vi_1,
j=1 J J
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and wj is the vector before projection and the last two inequality is due to the property of
projection. Combining Lemma 7 and Eq. (36) yields

ZEOHUt 1= V(we)|? <ZZEoHvk—vk 1P+ mllvo — V f (wo)|?

t=1 k=1 )
mn?K? ,
< b ;EOHPt 1i—1]|? + mllvg — V f (wo)]|?.

By telescoping Eq. (35), we have
m

)
n°L 2
("7 - > ;1 Eo || Pr—1v—1]]

<Eo[f (wo) = f(wm+1)] + 1) Eolloi—1 = Vf (w—1)[?
t=1

2 m
<f(wo) = f(w.) + nmEollvo — V.f (wo) |2 + =L i

ZEOHPt i,

where w, = arg min,ecr f(w) and the last inequality follows by Eq. (37). Therefore, since
f(wo) — fwy) = A — wy Apwo < Ap(1 — (wg u1)?) = Ay sin 6y,

we get

=5 ) ZE | Pve||?|Fo] < A1sin 6y + nmllvg — Apwol|, (38)

and complete the first statement.
Now we show the second statement. By Jensen’s inequality for conditional expectation
and the fact of martingale E[v, — Apw|Fi—1] = vi—1 — Apwi—1, we have

_ 2 _
E[Hvt .Anth ‘ft_l] . HE [vt .Anwtm_l]

sin® 6, sin Oy

‘2 _ Hvt—l - Anwt—1”2

sin? 6,

Thus, ||v; — Anwe||?/sin? 6y is the submartingale. By Doob’s maximal inequality for sub-
martingale (Durrett, 2019, Thm 5.4.2), we have

_ 2 _ 2
]P{ max ||Ut Anth > pQ} < i}E |:||Um Anme :| )

1<t<m  sin® 6y ~ p? sin? 6y

Define 7 :=1 — % — mn”%. By Lemma 7 and the first part of proposition 3, we have

[vm — Anwi|? 1 2 S 2
Eo . <- lvo — Apwo| +ZEOHUt*Ut71”

sin® 0 sin? =1
KQ
= Eo|| P
_Bssin290 bsm fo Z ol Pr—1vi—1 |
K? K?p

K2
()\1 sin? 0y + am ) ,

~ Bssin?6y  brsin® 6y By
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where we have used vy = Bi Zf:sl a,o (ai(m)Two in the second inequality. Thus, if we
i Y

choose By = B/sin?0y, we have

HUt—Anth2 2 1 HUm_Anme2
P 4= s < <E|E F
{1%%(71 sin? 6, = p? sin? 0 o

K? N MEK?n mn?K*
~ p?B  p?br brp?B "’

Therefore, the proposition for general d follows.
2) in the two-dimensional space, by Eq. (31) we have the tight bound

flwo) — fwe) = A — w(—)rAnwg = (A1 — Ag)sinfy.

Therefore, Eq. (38) and Eq. (39) become
27, K2\ ™
<?7 e m773b> E[[|Pyvt ||| Fo] < Axsin® 6o + nmllvo — Anwll,

and

l|loe — Anwt”2 2 1 lvm — Anwm||2
P = e <=E|E
{12%};1 sin? 6 Sy p? sin? 0 1o

K?  AK?mp  mn’K*4
<55t — + 5
p*B pebT brp*B

The proposition follows.

Appendix F. Proof of Theorem 4

1) It suffices to prove convergence result for one loop of Algorithm 1. Noting that ¢, =
v — Aw; for iIRSRG, we define two events

E = {|le]? < p*sin®Golt = 1,...,m}

and
F = {cos by > ~}.

Then we could apply Theorem 1 under events E and F'. Moreover, Proposition 3 implies
the probability of event E can be bounded as

K2 K277 mn2K4
P(E°) < .
(%) < p%B + p2b1 + bTp?B

For random initialization, we use the following lemmas to bound the probability of event
F. In particular, Lemma 8 controls the distance between random initialization and the first
eigenspace.
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Lemma 8 (Xu and Gao, 2018, Lemma 4.7) For a uniformly sampled point wy € Grass(d, k)
and 0 < v < 1, we have that cos? (U, wo) >~ with probability at least

1 —pr(7)
r(5hr%)
1

7 ) ( d—k 1 d+1
D(3)0(4)

2 727 2

(sin(cos™) (y1/2)))a-)), 1y ( : T sin?(cos ™ (7 (%))> ,

where o F is the Gaussian hypergeometric function of matriz argument.

If we pick m = %log %, then we get

¢ < <(1 —r)" + g) o < (eXp(—Tm) + g) o = Bibo.

The finial conclusion simply follows by the union bound.
2) For d = 2, it suffices to control the probability of the following event

E = {|le¢]| < min{p1A1|cosbp|, p2A1|sinbp|}t =1,...,m},
where e, = v; — Aw;. On the event {|cosfy| > v}, we know
llet]] < min{pi1Ai|cosbyl, p2A1]sinby|} < |ler]] < p1payAi]sinby).
Hence, it suffice to bound
E = {|le]| < p1payAq|sinbpl|t =1,...,m}.

By Proposition 3, we

2 2 2 74
P(E) < K : A K 7]2 mn~K -
(p1p27A1)°B  (p1p2yA1)?bT  bT(p1p2vA1)*B

Appendix G. Proof of Corollary 5

1) Note that Ay <1 and 8 = 0.5. Let n = ¢, Ay, and p = ¢,Ay, for ¢, < 1. Since n < 1, we
have . 1
P
—mp? > L e=p< —e=p< S
yp np- = 9 P> 41 P> 1’
yielding that

Ltdo Ay
Yo —2np* ~ 4p*(8 + 8nAk) 1 + 9o

= 64(1 4 10)%p” < Ar(yp — 20p°)

Agyp
2

< 64(1 +v0)*p* <

Ary
<
P = 12801 + )2
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Hence, we know that

< mi v 1 1 < m 1 ~y
min § — C mins -, —————5
n = 2320 16(1 + o) J = 47 128(1 + )2

implies

RN A A Ay I T+
20 16\ (1 +nAg) 2028+ 8nAg) 1+  vp — 2np?
Moreover, since nA, < 1 and m > log(4)/r, we can choose

_ [310g(4)w . [logr(zl)w _ {(2-#27:7@;) 10g(4)w

n <

and set b = {%jﬂ}ﬁq ,B = [CBK*;—‘ .

Note that
773 mn?K? 1 1 LA, 1
1——— > - <« - —c¢p— —3logd)e,p>0«=c¢p < ————.

Since 1 — p(7v) — %pk('y) > 0.5, we get

K?  MK?p  mn’K* 99
1-M - > —
<p23 + 2br + b7 2B pr(v) > 1001%(7)

K?  \K?p  mnp?K* 1
= 3Tz 2B = 9N

p*B pebT brp*B 2M
1

2M

1
e 294 6log(4)pc—n <
cB Cp cB

< cp > 36log(4) M,

cy < .
T 6c,M
In sum, to meet the requirement of (2) in Theorem 4, we need that

> 361og(4)M, ¢, < mind L — 1 ! o] g
— mmns -, ————————5 .
CB = og , Cp > INIn 9’ 32)\13 16(1 T 77/}0)7 6CPM y Cp > 4’ 128(1 + '¢0)2

Since M = log(wo/ tol)/log(2), the number of samples that iRSRG uses to achieve

tol-accuracy is
B log(1/ tol) 1 1
= - =Xl A I il
M (tol * mb) © << AZwl A7) % \wl))

which completes the proof.
2) Note that 8 = 0.5. Let n = ¢,/A1 and p1 = n/2 such that ¢, < 1. Then we know

1
’7("7_91)_4027720<Zp2§g-
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Moreover, since Ay < 1/\; and m > log(4)/r, we can choose m to be

gt o] o]

2 2
Then we set b = {ﬁ-‘ , B = [chlé(izAz-‘ . We have

nL mn’K? 1 1 Lc77 A1
1——— >—-<«< - ———3lo >0 < ——mm.
2 b 2727 2x s(4)e T L+ 6log(4)\

Since we choose 7 such that 1 — p(7) — 25 (7) > 0.5, we get

K? K?2n mn?K* 99
oM (7 223ATB | AT bm%?ﬂ%?f)’) — o) 2 35p20)
K? K?n mn? K4 < 1
=5 P1PQAZB V2pip3Aibr - bTy2pipsATB T 2M
- ;Jr’vfp%% + 8loglt )C : 2;-[‘4
ey > 36 log(4) M o < 1 .
- a7 T M2l

In sun, to meet the assumptions in Theorem 4, we need that

n 1 . 1 A1
pr==, p2 < —, cg > 36log(4)M, ¢, < min )= .
2 8y @) K 6M~2p1p3 " L + 6log(4)\

Since M = log(vo/ tol)/log(1//), the number of samples that iRSRG uses to achieve
tol-accuracy in the two-dimensional space is

B B log(1/ tol) 1 1
M (tol —i—mb) =0 (( AZ tol * A2 log tol

This completes the proof.



