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Abstract

We provide a robust convergence analysis of the Riemannian gradient descent algorithm
for computing the leading eigenvector of a real symmetric matrix. Our result characterizes
the convergence behavior of the algorithm under the noisy updates, where noises can be
generated by a stochastic process or could be chosen adversarially. The noisy Rieman-
nian gradient descent has a broad range of applications in machine learning and statistics,
e.g., streaming principal component analysis or privacy-preserving spectral analysis. In
particular, we demonstrate the usefulness of our convergence bound with a new eigengap-
dependent sample complexity of the inexact Riemannian stochastic recursive gradient al-
gorithm, which utilizes mini-batch gradients instead of full gradients in outer loops. Our
robust convergence paradigm strictly improves the state-of-the-art sample complexity in
terms of the gap dependence.

Keywords: Sample complexity, principal component analysis, stochastic optimization

1. Introduction

Computing the top eigenvector of a real symmetric matrix is one of the fundamental prob-
lems in numerical linear algebra and has enormous applications to machine learning and
statistics. For instance, principal component analysis (PCA) (Jolliffe and Cadima, 2016) is
the most popular dimensionality reduction tool and widely used in data preprocessing and
unsupervised learning. Formally, given a set of n independent and identically distributed
(ii.d.) samples {a;}}' ; drawn from some distribution with zero mean, define the empirical
covariance matrix as A, = (1/n) 31" a;a] € R4 {u;}4 | as the d eigenvectors of A,
their corresponding eigenvalues as {)\i}’{lzl such that \y = --- = A\ > A1 = -+ > g for
some k > 1, and the i-th eigengap of A, as A; = A\; — Aj+1. The goal of this paper is to
recover the first eigenvector ui, or, equivalently, to minimize the empirical risk as follows:

min f(w)=—-w' A w. (1)
weR:|Jwll2=1

Although deterministic algorithms are well-studied for eigenvector computation, many
applications in machine learning and statistics involve a variety of noise sources including
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sampling, missing data, and privacy constraints. Several works (Hardt and Price, 2014;
Balcan et al., 2016; Xu and Li, 2022) tackled this problem by providing a robust convergence
analysis of the well-known power method without the need for ad-hoc analysis for different
applications. However, given a tolerance tol and supposing that A; > 0, Xu and Li (2022)
applied robustness analysis with momentum acceleration to streaming PCA, which only

leads to a sub-optimal sample complexity O (1 / (A?/ 2 t012)> for achieving a tol-optimal

solution, i.e. finding a solution w such that 1—(w "u1)? < tol. Here, a,, = O(b,,) means there
exists ¢ such that a,, < ¢b,, and a,,, b, are positive sequences. In contrast, the optimal sample
complexity is O (1/(A% tol)) and can be achieved by Oja’s algorithm (i.e., the projected
stochastic gradient descent for the leading eigenvector computation) (Jain et al., 2016).
This gap raises a natural question:

Is it possible to improve rate’s eigengap dependency from 1/(A?/2 tol?) to 1/(A2tol) for
the robustness analysis framework of the eigenvector computation?

Our work fills this missing but important part of the literature by revisiting the Rie-
mannian gradient descent (RGD) for the eigenvector computation. The crucial observation
in our work is that the noisy power method (Hardt and Price, 2014; Balcan et al., 2016; Xu
and Li, 2022) can only reduce the noise by increasing the sample size, while our gradient
descent method introduces a step size parameter which is important in the presence of noise
since the noise magnitude can be reduced by decreasing the step size to achieve convergence.
This critical insight leads to the improvement in our robustness analysis framework.

In this work, we start by investigating the noisy Riemannian gradient descent (NRGD),
a general framework for the leading eigenvector computation when gradients can only be
accessed through inaccurate matrix-vector products. That is, the gradient noises can
be generated by a stochastic process or could be chosen adversarially. We then demon-
strate the power of our robust convergence analysis by presenting a novel result for the
stochastic variance-reduced gradient method without imposing any initial condition. Sev-
eral works (Zhang et al., 2016; Kasai et al., 2018) developed variance reduction methods
to general Riemannian manifolds and used the eigenproblem as their important examples.
However, several facts reveal that very different techniques are needed for eigenproblem.
First, the eigenvector computation is guaranteed to get the first eigenvector with a simple
random initialization, but the conventional optimization analysis can only show convergence
to stationary points. Second, the power method converges linearly, but Eq. (1) is not even
locally strictly convex (Shamir, 2016). It is worth mentioning that one can characterize
convexity-like properties in an open neighborhood of the global optimum with eigengap
(Zhang et al., 2016, Theorem 4). The step-size however introduces an extra eigengap.
Consequently, most convergence results in non-convex optimization only cover sub-linear
convergence, and the analysis relying on convexity-like properties is not tight in terms of
eigengap since it is impossible to prove a convergence rate that is independent of the eigen-
gap. Third, the conventional optimization analysis relies on the condition number, which is
equal to the ratio between the largest and smallest eigenvalue for Eq. (1). This convergence
rate is not tight since the power method only depends on the linear term of the eigengap Aj.
Moreover, the power method can work even when the smallest eigenvalue is zero. All those
observations indicate that the eigenvector computation is so special that different analysis
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approaches are required, and general theories in optimization literature fail to explain the
theoretical behavior of Eq. (1).
Our main contributions are summarized as follows:

1. To the best of our knowledge, we are the first to provide a robustness analysis of the
Riemannian first-order optimization method for the eigenvector computation problem.
Our conditions match those in the existing robustness analysis for power method
(Hardt and Price, 2014; Balcan et al., 2016; Xu and Li, 2022). Moreover, in the two
dimensional space, we provide the first result of noisy gradient methods achieving the
same convergence rate as the power method, which matches the result in Ding et al.
(2020) under the deterministic case.

2. We obtain the eigengap-dependent sample complexity of the Riemannian stochastic re-
cursive gradient algorithm (Kasai et al., 2018) as a novel application of the framework
of robust convergence analysis for the eigenvector computation problem. Our result
strictly improves the state-of-the-art gap-dependent sample complexity of steaming
PCA in Hardt and Price (2014); Balcan et al. (2016); Xu and Li (2022).

3. Our convergence result is global and works for arbitrary step sizes as long as the
sample size is large enough when the step size is small.

Organization. Section 2 provides literature review. Section 3 presents the noisy
Riemannian gradient descent and its analysis. Section 4 applies the robust convergence to
stochastic recursive gradient algorithm and gets its eigengap-dependent sample complexity.
Section 5 provides experiments for comparing existing methods on both synthetic and real
datasets. Section 6 gives conclusions and directions for future works. The proofs are deferred
to the appendix.

2. Related Works

The power method (Golub and Van Loan, 2012) serves as the standard method for solv-
ing Eq. (1). It requires a total number of samples at O ((n/A1)log(1/ tol)), if we regard the
given samples as being duplicated in each iteration. For gradient descent (Oja’s rule) or Rie-
mannian gradient descent (Krasulina’s methed), Ding et al. (2020) showed the sample com-
plexity of gradient methods are the same as the power method, i.e., O ((n/A1)log(1/ tol)).
Xu and Li (2021a) further improved the sample complexity to O ((n/ max{A1, tol})log(1/ tol))
for RGD. However, it is hard to apply the result in Xu and Li (2021a) to the robustness
analysis since their analysis involves many calculations on some complicated products or
sums of sequences. The noise in the robustness analysis introduces an extra term of error,
and it is not easy to handle the effect of the error term on recursive formulations from
gradient algorithms. This is also the reason why we cannot extend the argument in Ding
et al. (2020) for the two-dimensional space to higher dimensional spaces (see more details
in Section 3.3.)

In real-world applications, datasets might be too large to have a full pass (n is extremely
large). Stochastic methods such as Oja’s algorithm (Oja and Karhunen, 1985) and incre-
mental algorithms (Arora et al., 2012, 2013) were developed to address this issue of the
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Table 1: This table shows a comparison of first-order methods for eigenvalue computation.
Note that a A b = min{a,b}. “I” means if the algorithm imposes condition on
initialization or not. “G” represents if the algorithm converges to global optimum
or not. “M” indicates if the convergence analysis of the algorithm can use mini-
batch gradients only. “S” demonstrates if the algorithm is stochastic. “V” reveals
if the algorithm employs variance reduction

Reference gap-dependent sample complexity I G M S A%
Power method (Golub and Van Loan, 2012) A5 log(1/ tol)) no yes no 1o 1O
Lanczos algorithm (Golub and Van Loan, 2012) \/LAT log(1/ tol)> no yes no 1no 1o
RGD (Xu and Li, 2021a) m 10g(1/tol)> no yes no 1no 1o
Oja’s Algorithm (Jain et al., 2016) Afltd) no yes yes yes no
streaming PCA (Hardt and Price, 2014) Aifltolz no yes yes yes 1o

NTERT) no yes yes yes 1o

LazySVD (Allen-Zhu and Li, 2016)

n3/4 ,
n+ AT 2) log (%)) no yes no yes 1o
VR-PCA (Shamir, 2015)
RSVRG (Xu and Gao, 2018)

) yes yes no yes yes
) no yes no yes yes
log(1/ tol) 1

Aol /\n—l—A—i)log(
log(1/ tol) 1
< Aol /\n—l—A—%)log(

) no yes yes yes yes

o
o
o
o
o
Faster Noisy Power Method (Xu and Li, 2022) O
o
o
o
Corollary 5 @]

o

1
tol
1
tol

Corollary 5 (2-dim) )) no yes yes yes yes

large scale data. Stochastic algorithms like stochastic gradient descent (SGD) assume we
can query some fresh data points from some distribution at each iteration. While the com-
putational cost of SGD-type algorithms is much cheaper at each iteration, typically, their
convergence rate is significantly slower than deterministic methods. In particular, if only
one data point is accessed at each iteration, it can be shown by matrix Bernstein inequality
that the minimax lower bound of the subspace distance is Q(0?/(nA?)) (Vu et al., 2013),
where o2 is the variance of data and a, = Q(by,) means there exists ¢ such that a,, > cb,.
Thus, online algorithms can only get a sublinear convergence rate with a quadratic term of
the eigengap on general data distributions.

Stochastic variance-reduced methods serve as a remedy for a sublinear convergence
rate of SGD and are superior in terms of the sample complexity (runtime) compared to
deterministic algorithms or SGD (Gower et al., 2020). Inspired by stochastic variance-
reduced gradient (SVRG) (Johnson and Zhang, 2013), Shamir (2015) proposed a stochastic
variance-reduced version of Oja’s algorithm (VR-PCA). With variance reduction, VR-PCA
works with a constant step size and has a linear convergence rate but with a quadratic
term in eigengap, i.e., the sample complexity is O ((n + 1/Ai) log(l/tol)). However, the
understanding of the gap-dependent sample complexity still remains inadequate, and it was
conjectured that the sample complexity should linearly depend on the eigengap (Shamir,
2015).

We end this section by summarizing a comparison of recent eigensolvers in terms of the
eigengap-dependent sample complexity and several perspectives in Table 1.
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3. Noisy Riemannian Gradient Descent for Eigenvalue Computation

This section gives our main result of the noisy Riemannian gradient descent for the eigen-
vector computation. Before proceeding with our algorithm and analysis, essential notations
are introduced, including a potential function for measuring the closeness of iterates to a
globally optimal solution. Due to the space limitations, we put related concepts, such as
Riemannian optimization and stochastic recursive gradients, in the appendix.

3.1. Notations and notions

We use || - || to denote the 2-norm of a matrix or vector. Define [n] = {1,2,...,n}. For

a function f, we denote Vf as the gradient of f. Let Uy = (uq,...,ux) be the leading

eigenspace. Given two unit vectors u,v, i.e. ||ul| = 1 = ||v||, we define the angle between
T

u and v as O(u,v) = arccos(u' v). Then, the principal angle between w and the space
span(Uy) is O(w,Ug) = mingegpan(v,) 0(w, u), where span(Uy) is the subspace spanned by
columns of Uj.

Instead of focusing on a conventional assumption that A; > 0, we target a general
framework relying on the generalized eigengap Ay and the leading eigenspace Uy. Thus, it
suffices to show the convergence to one of the globally optimal solutions, i.e., a unit vector
u € span(Uyg), instead of a specific solution, e.g., u;. Given a sequence of unit vectors,
{w;}, for measuring the progress of iterates to the leading eigenspace, we define a potential
function ¥ (wy, Ug) = —2log ||U wy|| (Xu and Li, 2021b). We let 1 = 1 (wy, Ug) to simplify
notation. Note that ||U, w| < |Ugl|llw] = 1, so ¥(wt,Ug) > 0. Thus, ¥ indeed is a
well-defined potential function since ¢ (u, Uy) = 0 for all u in the column space of Uy.

Since ||U, wt||? = cos? 0(wy, Uy,), we can write 9 (wy, Uy) = MiNyegpan(Uy ):||ul|=1 ¥ (Wt, 1),
where ¥(wy, u) = —2log |u'w;| = — log cos? O(wy, u). With above equations and the simple
fact that 9 (wy,u) = —log(1 — sin?f(wy,u)) > sin? f(wy, u), we have the following rela-
tion between the conventional potential function sin? §(w;, u) and our proposed potential
function ¥ (wy, u).

cos? B(wy, u) = exp(—th(wg, ), sin? O(wy, u) < P(wy, u). (2)

As we can see, the conventional potential function sin?(wy,u) is dominated by our
potential function, which provides a relationship between the conventional potential function
and our proposed potential function.

3.2. Convergence argument

This section aims to develop the convergence theorem of the noisy Riemannian gradient
descent (NRGD) which is defined as follows:

wiyy = Wi+ NP(Apwy + &), wepr = wiy/||wiy - 3)

where P, .= I; — wtth and &; is the noise that can be generated by a stochastic process or
could be chosen adversarially. Compared to SGD (Oja, 1982; Jain et al., 2016), stochastic
RGD (Krasulina, 1969) remains much less studied. Nevertheless, recent works provide
evidence that RGD may have better theoretical properties than Oja’s rule. For example, Li



CHEN XU LI

et al. (2018) used stochastic RGD to obtain a finer estimate than the minimax lower bound
for sub-Gaussian data i.e. O ((tolAl)_l ZZZQ(Ak/)\l - )\k))), compared to the result for
Oja’s rule (Jain et al., 2016), O (d(Aftol)™1).

In what follows, we state our main theorem which establishes the convergence in terms
of the deterministic error bound. Specifically, this theorem says that if 1 is small enough
and the norm of noise € is upper bounded by the initial value of potential function v, we
can decrease the potential function v at every step.

Theorem 1 Assume that wy is updated by Eq. (3). Given p >0, 5 € (0,1), and an initial
point wy such that cos® 0y > 2 for some y > 0, suppose that ||e¢]|?> < p?sin® Oy for all t and

2p" 16X (1 +nAg) " p2(8+8nAg) 1+ vp — 2np?

Then, we have Y11 < 1. Moreover, it holds that

s = (= + 5w o)

Aj
where r = 24:72772/9 and Yy = Y(we, Ug).

To the best of our knowledge, Theorem 1 is the first robustness analysis of the Rieman-
nian first-order optimization method for the eigenvector computation problem. Choosing

_ log(2/B)  log(2/B) ~( 1
_—log(l—r)N r _O<77Ak)7

where 6~hiddens log factors. Eq. (5) becomes ¢;11 < (9. Hence, given any tol > 0,
it takes O(1/(nAyg)) steps to have 1,11 < tol, which is linear convergence as the same as
power methods. Furthermore, if we can carefully decrease the noise level, the iterates in
Eq. (3) could approach the leading eigenspace Uy. We end this section by providing more
remarks for our theorem:

1. The condition (4) ensures that (1 —r) in Eq. (5) is positive. For a sufficiently small /3,
Theorem 1 requires the noise level p to be also sufficiently small. In other words, there
always exists a small enough p such that the right-hand side of Eq. (4) is satisfied.

2. If k = 1, i.e. Ay > 0, then cos?fy > 0 almost surely with a random initialization.
Hence, our theorem is global convergence by convention. Xu and Gao (2018, Lemma
4.7) further provides the probability of the event that cos?fy > v when A; = 0 and
Ag > 0.

3. We can derive the sufficient condition implying Eq. (4) is positive. Since 7/2p and

PR A 8 (1+¢o)
Ag/(16A1(1 4+ nAg)) are positive, it suﬂices to show s s — 79_277%2
ol

1+77Ak]§/(81+'¢)0)2’ we have 5 = 2np > 3 which implies

is pos-

itive. Assuming n < 4lp and p < 35

ArpB
8(1 4+ nAg)(1 + 1o)?

p p
> > : (6)
v/2 7 v —2np
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It is not hard to see that Eq.(6) implies Eq.(4) is positive, so p should be less than
O(Ag) when Ay is small. This result matches the noise bound of power iterations
(Hardt and Price, 2014, Corollary 1.1).

4. Our result extends the conventionally considered eigengap A; to the generalized eigen-
gap Ar = Ap — Ax_1 > 0, which is critical because the gap-dependent bound for the
noise may be restrictive for the algorithm’s applicability and hurt the convergence and
sample complexity.

5. Theorem 1 requires that 1 needs to be O(Ay), which is unsatisfactory since the theo-
retical upper bound for RGD in the deterministic case is 1/A;. We will show how the
step size can be improved for the two-dimensional case in the next section.

3.3. Refined analysis: two-dimensional case

The key bottleneck of the previous result is that 7 needs to be O(Ay). However, the
theoretical upper bound of n for RGD should be 1/A; (see Appendix A) in the deterministic
case. As a result, setting n = O(Ag) slows down the convergence considerably and is not
optimal. In fact, Ding et al. (2020) improved this upper bound of the step size in the
deterministic case based on the observation that the worst-case convergence rate of RGD
occurs when the initial vector lies in the space spanned by the first two largest eigenvectors.
The crucial insight is that the iterates of the deterministic power method and gradient
descent only stay in the space spanned by the first two largest eigenvectors as long as the
initial vector is in such space, which is not true for stochastic algorithms. Therefore, it
suffices to conduct analysis in a two-dimensional space for deterministic algorithms, but
this argument cannot be easily extended to the stochastic setting. In this section, we only
show that it is possible to improve the step size in this two-dimensional space for NRGD.
The following theorem gives the details.

Theorem 2 Assume that w; is updated by Eq. (3). Given pi,p2 > 0 and B,y € (0,1),
suppose that
[cosbo =, [lee]| < min{p1Ai[cosbyl, p2A1]sinbpl},

for all t and n < 1/A1 such that 2pan < vB(n — p1). Then it holds that | tan ;| < | tan 6|
and

|tan 0y41] < ((1 —r)t 4 g) | tan O],

(n—p1)A1

where 0; = 0(wy, u1) and r = I+(n—p1)Ar”

We can see that the condition on the step size is improved from O(Ap) to O(1/A1).
As a result, to achieve the tol-optimal solution, ¢ can be O(1/A1) in the two dimensional
case, which achieve the same convergence rate as the power method under the case that the
norm of noise is O(A;). As far as we know, this is the first result of gradient methods with
noise achieving the same convergence rate as the power method. The potential function
is changed since we use a different technical approach and k can be only 2 in the two-
dimensional space. Using the fact that sin 6; < tan6;, Theorem 2 indeed provides an upper
bound of the conventional potential function sin 6;, where 0; = 0(wy, u1).
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Algorithm 1 iRSRG

Data: {a;}};

Input: the initial point wg, the step size 7, the number of iterations of the inner loop and
the outer loop M, m, the mini-batch sizes of the inner loop and the outer loop By, b

for s=1...M do

if B; > n then

| vo =3 X el Wi

else
Draw {i; };-3:31 uniformly from [n]
Compute vy = B% Zf;l a;, al-Tj@s,l
end
wWo = We—1

wi = (wo + (g — wowg )vo) /|lwo + n(Ia — wowg Jvo
fort=1...mdo

Draw {i; }?:1 uniformly from [n]

Update v; = %2?21 ai, azj—_ (wp — we—1) + Vi1

W1 = (wt +n(lg — wtth)Ut) [we +n(lg — wtwt—r)th
end
Ws = Wy,
end
Result: wy,

4. Application to Stochastic Recursive Gradients

In this section, we combine NRGD and stochastic recursive gradient algorithm (SARAH) (Nguyen
et al., 2017a; Fang et al., 2018) as a novel application of our robustness analysis in the pre-
vious section. In particular, we will use Theorem 1 and 2 to analyze the convergence prop-
erty of SARAH for the top eigenvalue computation problem. Compared to SVRG, SARAH
employs a biased gradient estimation and has a better convergence rate in a non-convex
setting (Nguyen et al., 2017b). Technically speaking, the martingale property of SARAH
provides a better variance bound and uniform error control, which significantly improves the
previous variance bound for SVRG that Jiang et al. (2017) showed (see Proposition 3). We
give a comprehensive description for our proposed algorithm (inexact Riemannian stochas-
tic recursive gradient (iIRSRG)) in Algorithm 1, which can use mini-batch gradients in
outer loops.

Applying the result in Section 3 requires the noise to be controlled at a certain level
(meet the condition ||g;|| < p?sin? fy in Theorem 1, for example) with respect to the eigen-
gap at every step. Then Gaussian distribution concentrations are employed (Hardt and
Price, 2014), so the noise is uniformly bounded with a high probability for streaming PCA
provided that the sample size is large enough. We use a different approach that leverages
the martingale property of stochastic recursive gradients to obtain a uniform bound of the
variance with high probability via Doob’s maximal inequality for submartingale (Durrett,
2019, Thm 5.4.2). The key ingredient is to show the sum of the variance of stochastic recur-



Noi1sy RIEMANNIAN GRADIENT DESCENT

sive gradients can be bounded by the initial value sin? §y. The next proposition summarizes
all auxiliary results.

Proposition 3 Suppose that max;{||la;||?, |aza) — An|?} < K, and let P, := I —wyw, and

L=+ 10 +K/2 andT=1— % — ngKTQ where wy, vy, b, Bs are defined in Algorithm 1.
1) For any d > 2, we have

m
0 Y B[l Proe*| Fo] < Ausin® o + gpmllvg — Apwol,
t=1

where Fy is defined in Appendiz C, and setting Bs = B/sin0y implies

lvg — Awy|? 9 K?  \MK?p  mn?K*
P _— < .
{1%?7(71 sin? 6, SPgs p’B + p2bt bTp%B

2) For two-dimensional space, i.e. d =2, we have
m
™Y E[|Pevel*| Fo] < Aysin®6g + nmllvg — Anwol,
t=1

and setting Bs = B/sin*@y implies

— Awy|? K?  AK? 2K*
) - ”Ut' : we| >pb< & LKy map K
1<t<m  sin® 0y p?B p2b1 bTp%B

We have several observations. First, the boundedness condition on a; is the typical
condition for stochastic methods for eigenvalue computation (Jain et al., 2016; Shamir,
2015). Second, not only the step-size can also be improved in the two-dimensional space
but also we can replace A1 with Ay, which is crucial to makes the sample complexity better
in the two-dimensional case. Third, we have the formula to control the variance without any
assumption on convexity. It is important to avoid using convexity-like properties for getting
a sharper gap-dependent sample complexity. To see this point, Zhang et al. (2016, Theorem
4) stated that there is an open neighborhood of u; that Eq. (1) is gradient dominated, so
it is easy to combine this result and the analysis in Riemannian optimization to get the
gap-dependent sample complexity. However, this approach probably introduces an extra
eigengap in the convergence rate, which is not tight in terms of eigengap since it may be
impossible to prove a convergence rate that is independent of the eigengap. Finally, Jiang
et al. (2017, Lemma 3.6) provided a similar result of Proposition 3 for SVRG. However,
their result depends on the exponential term of m, which may not be practical. In contrast,
our estimation depends linearly on m only, which significantly improves their result and
increases the sample efficiency. This improvement is due to the martingale property of
SARAH and illustrates the benefit of SARAH.

Next, we present our convergence analysis of Algorithm 1. Note that given sequences of
unit vectors {w}, {ws}, we let §; = O(wy, Ug) and 05 = 0(ws, Uy).

Theorem 4 Suppose that maxi{||a¢|?, ||a:a] — An||*} < K. Given 8,7 € (0,1), we run
Algorithm 1 with an initial point wg such that cos® 6y > 2.
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1) For any d > 2, given p > 0, we set

m =r""log(2/8), M =log(¢y/ tol)/log(1/B),
and a step size n such that

77<min{7 A A b — L+ % }
- 2p" 16A1(1 +nAy) p*(8 +8nAk) L +1o  vp—2np* |’

and T > 0. Then it holds that (wpr, Uy) < tol with probability at least

K?  MK?n  mn?K*?
1-M — . 8
<p2B p%or ' brp?B ) Pi(7) ®)
where T =1 — % - anKTQ and r = nAg /(24 2nAg) and pr(v) is defined on Lemma 8.
2) For two-dimensional space, d =2, given p1,p2 > 0, set

m = r~'log(2/8), M = log(| tanfy|/ tol)/ log(1/8),

and step size n < 1/A; such that 71 > 0 and 12 > 0, then we have |tan§M\ < tol with
probability at least

K2 N K27’] ngKéL )
Vo1 AIB T 2pip3Aimeb - bry2pipsATB)

1—mm—M( (9)

where 71 = YB(n — p1) — 2pam, T2 = 1 = B —mnPEZ v = (n— p1)A1/(1+ (0 — p1)A1) and
pr(7) is defined on Lemma 8.

We make some remarks about our theorems.

1. For any k, 0 < p(y) < 1. Moreover, pg(v) — 0 as v — 0.

2. Most theorems (Johnson and Zhang, 2013; Nguyen et al., 2021) for stochastic variance
reduction methods use the averaging iterates (1/m) ;" wy to update w, instead of
the last iterate wy,. On the other hand, our algorithm works and analysis holds for
the last iterate.

3. Compared to the result of VR-PCA (Shamir, 2015), we have the same order on the
parameter of 17, m. However, Theorem 4 does not require that the initial point is close
to Ug. As the convergence holds with high probability for any random initial iterate,
it is global by convention.

4. By choosing B and b large enough, the probability that iRSRG fails decreases, which
means our result could always be non-trivial.

5. We can choose 1 small enough to satisfy Eq. (7). Since the step size  depends on the
initial value 7, larger v allows a large step size and implies a faster convergence rate.
However, it is well-known that cos 8(wg, u) < O(1/v/d) with high probability if @ is
uniformly sampled (Hardt and Price, 2014). Warm-start solvers or Oja’s algorithm
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can be used to speed up the algorithm at the beginning. Based on our theorem, there
is no need to access all or large amounts of data to achieve linear convergence at
the beginning. Thus, fewer samples are required to get the same accuracy compared
to other stochastic variance reduction algorithms. This is equivalent to warm-start
schemes, and our theorem provides a uniform perspective by considering the inexact
version of the stochastic recursive gradient.

6. Our theorem does not necessarily require full gradients in the outer loop, which implies
our proposed algorithm can work for streaming data. However, to achieve arbitrary
accuracy, increasing B is necessary, which is typical for variance-reduced methods us-
ing mini-batch gradients in the outer loop (Lei and Jordan, 2017; Nguyen et al., 2021).

The next corollary shows the existence and the order of parameters in Theorem 4 and
derives the total sample complexity of Algorithm 1 under the circumstance that Ay is small
and wy is close to Uy.

Corollary 5 1) For any d > 2, suppose that 3 = 0.5, Ax < 1 and Wy such that cos? g > ~?
and 1 — 1.99pk(v) > 0.5. Then, there exist n, B, b, p such that

n=0(Ar), b=9Q(1/Ay), B=Q(log(1/tol)/AF), p=O(Ay),

Eq. (7) is satisfied, and T > 0. Furthermore, the sample complexity of Algorithm 1 to achieve
tol-accuracy, i.e, sin? 0 < tol, with a probability in Eq. (8) that is larger than 0.99py(7Y), is

log(1/ tol) 1 1
O(( Al T log \ 1) )+

2) For two-dimensional space, d = 2, suppose that B = 0.5, A < A\ and wy such that
cos? 0y > 42 and 1 — 1.99pr(y) > 0.5. Then, there exist n, B, b, p such that

n=0(1), b=Q(1/Ay), B=Q(og(l/to])/A}), p1=0(1), p2=0(1),

and 7y > 0 and T2 > 0. Furthermore, the sample complexity of Algorithm 1 in two-
dimensional space to achieve tol-accuracy, i.e, sin? 0, < tol, with a probability in Eq. (9)
which is larger than 0.99pk(7), is

o (5029 5, LYo () w0

Corollary 5 strictly improves the result or robustness analysis in Hardt and Price (2014);
Xu and Li (2022). In particular, for general d, since n = O(Ax) and m = Q(A;?), letting
n — 00, we get O((log(l/‘col))Q/(A,;2 tol)) that dominates Eq. (10) when tol is small. This
rate is superior to the sub-optimal gap dependency 1/ (A?/ 2 tol?) in Xu and Li (2022) and
near to the optimal lower bound 1/(A2tol) in Jain et al. (2016). We further refine our
analysis in the two-dimensional space where we can choose n = O(1) and match the typical
bound of other stochastic variance-reduced gradient methods (Shamir, 2015; Xu and Gao,
2018) O ((n+ 1/A%)log (1/tol)). Moreover, our proposed method does not require full
gradients when n is large.
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A promising technique is to combine the result in Xu and Li (2022) where they improved
the dependency of the convergence rate over O(\; — \}) to dependency over O(v/ A — Aw),
where k' > k. It is still an open problem how the linearly gap-dependent sample complexity
of the inner loop can be achieved. We also conjecture that B = Q(A,;z) is necessary as the
lower bound of sample complexity for Oja’s algorithm is Q((nAZ)~1). It is also possible to
extend our theorem to more general settings such as computing top-k generalized eigenvalues
Xu and Li (2020, 2021b).

5. Experiments

In this section, we present numerical experiments on synthetic and real datasets. All the
ground truth information, e.g., A\ and Uy, is obtained by SciPy’s “eigh” function or Matlab’s
“eig” function for the purpose of benchmarking. We only consider the case that kK = 1 and
Uy = u1 become the leading eigenvector.

For synthetic datasets, we can control the eigengap in the following way. Let

; 911 |g2] |9d—s5|
D=d L,L1—A, ..., 1 =5A = = ... 11
la’g( ) ) ) ) d ) d ) ) d ) ( )
where ¢; is drawn from a standard normal distribution for ¢ = 1,...,d — 5 and A =

0.01,0.001. Following Ding et al. (2020), we sample {a;};_; from normal distribution
N (0, A) and compute the sample covariance matrix as well as the first eigenvector, where
A, U € R™4such that A = UDU ", U is a random dxd orthogonal matrix, NV'(0, A) is the mul-
tivariate normal distribution with zero mean and covariance A. We set n = 10000, d = 20.

For the real datasets, we performed experiments using the popular data of COLO100
and USPS. The USPS is the dataset of images of Handwritten Digits (Hull, 1994) with a
size 9298 x 256. The COLI100 (Nene et al., 1996) is a dataset of gray-scale images of 100
objects with size 7200 x 1024. See Table 2 for more details

Table 2: The summary of real datasets.
dataset n d
Synthetic 10000 20

COLO100 7200 1024
USPS 9298 256

5.1. Algorithms

In this experiment, we only focus on stochastic variance reduced methods for Riemannian
optimization. In particular, we compare the following methods:

1. iRSRG is our proposed method which can employ mini-batch gradients in outer loops
and stated in Algrithm 1 .

2. RSRG (Kasai et al., 2018) is the Riemannian stochastic recursive gradient algorithm.

3. RSVRG (Zhang et al., 2016) is the Riemannian stochastic variance reduced gradient
(SVRG) method.
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Figure 1: Experiments for Synthetic and real data. Each line is average by 100 experiments

RSRG and RSVRG are implemented in Matlab by Hiroyuki Kasai et. al. and their code
can be found in https://github.com/hiroyuki-kasai/RSOpt.

5.2. Parameter setting

In what follows, we discuss how we choose parameters. Heuristically, since our algorithm
converges linearly, we should increase B exponentially based on Theorem 4. In particular,
we set B = B10° and B would be tuned carefully. Moreover, by Corollary 5, m and b should
be of the same order, so we pick m = \/n and b = \/n. The upper bound of the step size
of the Riemannian gradient descent is 1/A;. As a result, given a dataset {a; € ]Rd}l 1, We
choose the step size to be n/ > | [|a;|?, since =31 ||al|| = Trace (2 37 | a;a]) > M.
We fix the step size for all algorithms to get falr comparisons.

5.3. Results
In this study, all algorithms are initialized by wg such that wg = v/rui++/1 pda= ulul o

"= yal”
where 1 is a unit vector uniformly chosen from the unit sphere and » = 10~8. In other words,
we fix the initial angle between wy and u, i.e. u'wy = r. We measure optimality gaps, i.e.
A — @STA@S, in term of sample complexity in this experiment. Note that experiments are
repeated 100 times and results are averaged to eliminate randomness.

Figure 1 shows the results of our experiment. We can see that our inexact scheme
indeed improves the sample complexity, and our proposed method, iRSRG outperforms
other Riemannian stochastic variance reduced gradient methods, which also verifies our
Corollary 5. This phenomenon may be due to extremely small r, and the warm start scheme
is necessary. Moreover, the linear convergence rate is observed, which justifies Theorem 4.


https://github.com/hiroyuki-kasai/RSOpt
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6. Conclusion

In this paper, we provide a robustness analysis of the Riemannian gradient descent method
for the eigenvector computation problem, which is the first result of noisy gradient methods
achieving the same convergence rate as the power method in the two dimensional space. We
leverage our novel framework of robustness analysis to study stochastic recursive gradient
algorithm, which improves the gap-dependent sample complexity of robustness analysis and
match the result from the state-of-the-art stochastic variance-reduced gradient methods.
Our convergence result is global and works for arbitrary step sizes as long as the sample
size is large enough when the step size is small. In particular, our proposed method can use
mini-batch gradients in outer loops, hence it is possible to adapt to streaming data.

References

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrixz
manifolds. Princeton University Press, 2009.

Zeyuan Allen-Zhu and Yuanzhi Li. LazySVD: Even faster SVD decomposition yet without
agonizing pain. In Advances in Neural Information Processing Systems (NeurIPS), pages
974-982, Barcelona, Spain, 2016.

Ehsan Amid and Manfred K. Warmuth. An implicit form of krasulina’s k-pca update with-
out the orthonormality constraint. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence (AAAI), pages 3179-3186, New York, NY, 2020.

Raman Arora, Andrew Cotter, Karen Livescu, and Nathan Srebro. Stochastic optimization
for PCA and PLS. In Proceedings of the 50th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pages 861-868, Allerton Park & Retreat
Center, Monticello, IL, 2012.

Raman Arora, Andrew Cotter, and Nati Srebro. Stochastic optimization of PCA with
capped MSG. In Advances in Neural Information Processing Systems (NIPS), pages
1815-1823, Lake Tahoe, NV, 2013.

Maria-Florina Balcan, Simon Shaolei Du, Yining Wang, and Adams Wei Yu. An improved
gap-dependency analysis of the noisy power method. In Proceedings of the 29th Conference
on Learning Theory (COLT), pages 284-309, New York, NY, 2016.

Qinghua Ding, Kaiwen Zhou, and James Cheng. Tight convergence rate of gradient descent
for eigenvalue computation. In Proceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 3276-3282, 2020, 2020.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press,
2019.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: near-optimal non-
convex optimization via stochastic path-integrated differential estimator. In Advances in
Neural Information Processing Systems (NeurIPS), pages 687-697, Montréal, Canada,
2018.



Noi1sy RIEMANNIAN GRADIENT DESCENT

Gene H Golub and Charles F Van Loan. Matrixz computations, volume 3. JHU press, 2012.

Robert M Gower, Mark Schmidt, Francis Bach, and Peter Richtarik. Variance-reduced
methods for machine learning. Proceedings of the IEEE, 108(11):1968-1983, 2020.

Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applica-
tions. In Advances in Neural Information Processing Systems (NIPS), pages 2861-2869,
Montreal, Quebec, Canada, 2014.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions
on pattern analysis and machine intelligence, 16(5):550-554, 1994.

Prateek Jain, Chi Jin, Sham M. Kakade, Praneeth Netrapalli, and Aaron Sidford. Streaming
PCA: matching matrix bernstein and near-optimal finite sample guarantees for Oja’s
algorithm. In Proceedings of the 29th Conference on Learning Theory (COLT), pages
1147-1164, New York, NY, 2016.

Bo Jiang, Shigian Ma, Anthony Man-Cho So, and Shuzhong Zhang. Vector transport-
free svrg with general retraction for riemannian optimization: Complexity analysis and
practical implementation. arXiv preprint arXiv:1705.09059, 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems (NIPS), pages
315-323, Lake Tahoe, NV, 2013.

Tan T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent devel-
opments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374(2065):20150202, 2016.

Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive gra-
dient algorithm with retraction and vector transport and its convergence analysis. In
Proceedings of the 35th International Conference on Machine Learning (ICML), pages
2521-2529, Stockholmsmaéssan, Stockholm, Sweden, 2018.

TP Krasulina. The method of stochastic approximation for the determination of the least
eigenvalue of a symmetrical matrix. USSR Computational Mathematics and Mathematical
Physics, 9(6):189-195, 1969.

Lihua Lei and Michael I. Jordan. Less than a single pass: Stochastically controlled stochastic
gradient. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 148-156, Fort Lauderdale, FL, 2017.

Chris Junchi Li, Mengdi Wang, Han Liu, and Tong Zhang. Near-optimal stochastic ap-
proximation for online principal component estimation. Math. Program., 167(1):75-97,
2018.

Sameer A Nene, Shree K Nayar, and Hiroshi Murase. Columbia object image library (coil-
20). Technical Report CUCS-005-96, 1996.



CHEN XU LI

Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takdc. SARAH: A novel method
for machine learning problems using stochastic recursive gradient. In Proceedings of the
34th International Conference on Machine Learning (ICML), pages 2613-2621, Sydney,
Australia, 2017a.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Taka¢. Stochastic recursive gradient
algorithm for nonconvex optimization. arXiv preprint arXiv:1705.07261, 2017b.

Lam M. Nguyen, Katya Scheinberg, and Martin Takac. Inexact SARAH algorithm for
stochastic optimization. Optim. Methods Softw., 36(1):237-258, 2021.

Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathe-
matical Biology, 15(3):267-273, 1982.

Erkki Oja and Juha Karhunen. On stochastic approximation of the eigenvectors and eigen-
values of the expectation of a random matrix. Journal of Mathematical Analysis and
Applications, 106(1):69-84, 1985.

Ohad Shamir. A stochastic PCA and SVD algorithm with an exponential convergence rate.
In Proceedings of the 32nd International Conference on Machine Learning (ICML), pages
144-152, Lille, France, 2015.

Ohad Shamir. Fast stochastic algorithms for SVD and PCA: convergence properties and
convexity. In Proceedings of the 33nd International Conference on Machine Learning
(ICML), pages 248-256, New York City, NY, 2016.

Vincent Q Vu, Jing Lei, et al. Minimax sparse principal subspace estimation in high di-
mensions. The Annals of Statistics, 41(6):2905-2947, 2013.

Zhigiang Xu and Xin Gao. On truly block eigensolvers via riemannian optimization. In
International Conference on Artificial Intelligence and Statistics, pages 168-177, 2018.

Zhigiang Xu and Ping Li. A practical riemannian algorithm for computing dominant gen-
eralized eigenspace. In Proceedings of the Thirty-Sixzth Conference on Uncertainty in
Artificial Intelligence (UAI), pages 819-828, virtual online, 2020.

Zhigiang Xu and Ping Li. A comprehensively tight analysis of gradient descent for PCA.
In Advances in Neural Information Processing Systems (NeurIPS), pages 21935-21946,
virtual, 2021a.

Zhigiang Xu and Ping Li. On the riemannian search for eigenvector computation. J. Mach.
Learn. Res., 22:249:1-249:46, 2021b.

Zhigiang Xu and Ping Li. Faster noisy power method. In Proceedings of the International
Conference on Algorithmic Learning Theory (ALT), pages 1138-1164, Paris, France, 2022.

Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Riemannian SVRG: fast stochastic opti-
mization on riemannian manifolds. In Advances in Neural Information Processing Systems
(NIPS), pages 4592-4600, Barcelona, Spain, 2016.



