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Abstract

We consider the regret minimization problem in reinforcement learning (RL) in the episodic
setting. In many real-world RL environments, the state and action spaces are continuous
or very large. Existing approaches establish regret guarantees by either a low-dimensional
representation of the stochastic transition model or an approximation of the Q-functions.
However, the understanding of function approximation schemes for state-value functions
largely remains missing. In this paper, we propose an online model-based RL algorithm,
namely the CME-RL, that learns embeddings of the state-transition distribution in a repro-
ducing kernel Hilbert space while carefully balancing the exploitation-exploration tradeoff.
We demonstrate the efficiency of our algorithm by proving a frequentist (worst-case) regret
bound that is of order Õ

(
HγN

√
N
)
1, where H is the episode length, N is the total number

of time steps and γN is an information theoretic quantity relating the effective dimension
of the state-action feature space. Our method bypasses the need for estimating transition
probabilities and applies to any domain on which kernels can be defined. It also brings
new insights into the general theory of kernel methods for approximate inference and RL
regret minimization.

Keywords: Model-based RL; Value function approximation; Kernel mean embeddings.

1. Introduction

Reinforcement learning (RL) is concerned with learning to take actions to maximize rewards,
by trial and error, in environments that can evolve in response to actions. A Markov decision
process (MDP) (Puterman, 2014) is a popular framework to model decision making in RL
environments. In the MDP, starting from an initial observed state, an agent repeatedly (a)
takes an action, (b) receives a reward, and (c) observes the next state of the MDP. The
traditional RL objective is a search goal – find a policy (a rule to select an action for each
state) with high total reward using as few interactions with the environment as possible,
also known as the sample complexity of RL (Strehl et al., 2009). This is, however, quite
different from the corresponding optimization goal, where the learner seeks to maximize the
total reward earned from all its decisions, or equivalently, minimize the regret or shortfall
in total reward compared to that of an optimal policy (Jaksch et al., 2010). This objective
is relevant in many practical sequential decision-making settings in which every decision
that is taken carries utility or value – recommendation systems, sequential investment and

1. Õ(·) hides only absolute constant and poly-logarithmic factors.
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portfolio allocation, dynamic resource allocation in communication systems etc. In such
online optimization settings, there is no separate budget or time devoted to purely exploring
the unknown environment; rather, exploration and exploitation must be carefully balanced.

1.1. Related work

Several studies have considered the task of regret minimization in tabular MDPs, in which
the state and action spaces are finite, and the value function is represented by a table
(Jaksch et al., 2010; Osband et al., 2013; Gheshlaghi Azar et al., 2017; Dann et al., 2017;
Jin et al., 2018; Efroni et al., 2019; Zanette and Brunskill, 2019). The regret bound achieved
by these works essentially is proportional to

√
SAN , where S and A denote the numbers

of states and actions, respectively, and N the total number of steps. In many practical
applications, however, the number of states and actions is enormous. For example, the game
of Go has a state space with size 3361, and the state and action spaces of certain robotics
applications can even be continuous. These continuous state and action spaces make RL a
challenging task, especially in terms of generalizing learnt knowledge across unseen states
and actions. In such cases, the tabular model suffers from the “curse of dimensionality”
problem. To tackle this issue, the popular “optimism in the face of uncertainty” principle
from Jaksch et al. (2010) has been extended to handle continuous MDPs, when assuming
some Lipschitz-like smoothness or regularity on the rewards and dynamics (Ortner and
Ryabko, 2012; Domingues et al., 2020).

Another line of work considers function approximation, i.e., they use features to param-
eterize reward and transition models, with the hope that the features can capture leading
structures of the MDP (Osband and Van Roy, 2014; Chowdhury and Gopalan, 2019). The
model-based algorithms developed in these works assume oracle access to an optimistic plan-
ner to facilitate the learning. The optimistic planning step is quite prohibitive and often
becomes computationally intractable for continuous state and action spaces. Yang and
Wang (2019) consider a low-rank bilinear transition model bypassing the complicated plan-
ning step; however, their algorithm potentially needs to compute the value function across
all states. This suffers an Ω(S) computational complexity and as a consequence cannot di-
rectly handle continuous state spaces. Ayoub et al. (2020) consider linear-mixture transition
structure that includes the bilinear model as a special case. However, their algorithm too
suffers the Ω(S) computational complexity. To alleviate the computational burden intrinsic
to these model-based approaches, a recent body of work parameterizes the value functions
directly, using d-dimensional state-action feature maps, and develop model-free algorithms
bypassing the need for fully learning the reward and transition models (Jin et al., 2019;
Wang et al., 2019; Zanette et al., 2020a). Under the assumption that the (action-)value
function can be approximated by a linear or a generalized linear function of the feature vec-
tors, these papers develop algorithms with regret bound proportional to poly(d)

√
T , which

is independent of the size of the state and action spaces. Wang et al. (2020) generalizes
this approach by designing an algorithm that works with general (non-linear) value function
approximators and prove a similar regret guarantee that depends on the eluder dimension
(Russo and Van Roy, 2013) and log-covering number of the underlying function class.

A few recent works have proposed kernel-based value function approximation algorithms.
Yang et al. (2020) consider kernel and neural function approximations and designed algo-
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rithms with regret characterized by intrinsic complexity of the function classes. More closely
related to our work, Domingues et al. (2021) recently proposed a kernel-based RL algorithm
via value function approximation. Their main assumption relies on Lipschitz continuity of
the reward functions and the state transition kernels. In contrast to their work, we are able
to obtain tighter regret bounds by applying typical assumptions in the kernel embeddings
literature, which we show are satisfied for a variety of practical systems. Nevertheless,
there is a lack of theoretical understanding in designing provably efficient model-based RL
algorithms with (non-linear) value function approximation, which we aim to address.

1.2. Contributions

In this work, we revisit function approximation in RL by modeling the value functions
as elements of a reproducing kernel Hilbert space (RKHS) (Schölkopf and Smola, 2002)
compatible with a (possibly infinite dimensional) state feature map. The main motivation
behind this formulation is that the conditional expectations of any function in the RKHS
become a linear operation, via the RKHS inner product with an appropriate distribution
embedding, known as the conditional mean embedding (Muandet et al., 2016). In recent
years, conditional mean embeddings (CMEs) have found extensive applications in many
machine learning tasks (Song et al., 2009, 2010a,b, 2013; Fukumizu et al., 2008, 2009; Hsu
and Ramos, 2019; Chowdhury et al., 2020). The foremost advantage of CMEs in our setup is
that one can directly compute conditional expectations of the value functions based only on
the observed data, since the alternative approach of estimating the transition probabilities
as an intermediate step scales poorly with the dimension of the state space (Grünewälder
et al., 2012). The convergence of conditional mean estimates to the true embeddings in
the RKHS norm has been established by Grünewälder et al. (2012) assuming access to
independent and identically distributed (i.i.d.) transition samples (the “simulator” setting).
However, in the online RL environment like the one considered in this work, one collects
data based on past observations, and hence the existing result fails to remain useful. Against
this backdrop, we make the following contributions:

• In online RL environment, we derive a concentration inequality for mean embedding
estimates of the transition distribution around the true embeddings as a function of
the uncertainties around these estimates (Theorem 1). This bound serves as a key tool
in designing our model-based RL algorithm, while also being of independent interest.

• Focusing on the value function approximation in the RKHS setting, we present the first
model-based RL algorithm, namely the Conditional Mean Embedding RL (CME-RL),
that is provably efficient in regret performance and does not require any additional
oracle access or stronger computational assumptions (Algorithm 1). Concretely, in the
general episodic MDP setting, CME-RL enjoys a regret bound of Õ(HγN

√
N), where

H is the length of each episode, γN is a complexity measure relating the effective
dimension of the RKHS compatible with the state-action features (Theorem 2).

• Our approach is also robust to the RKHS modelling assumption: when the value
functions are not elements of the RKHS, but ζ-close to some RKHS element in the `∞
norm, then (a modified version of) CME-RL achieves a Õ(HγN

√
N+ζN) regret, where

the linear regret term arises due to the function class misspecification (Theorem 3).
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2. Preliminaries

Notations We begin by introducing some notations. Let H be an arbitrary Hilbert
space with inner product 〈·, ·〉H and corresponding norm ‖·‖H. When G is another Hilbert
space, we denote by L(G,H) the Banach space of linear operators A : G → H with bounded
operator norm ‖A‖ := sup‖g‖G=1 ‖A g‖H. We let HS(G,H) denote the subspace of operators

in L(G,H) with bounded Hilbert-Schmidt norm, defined for A ∈ HS(G,H) as ‖A‖HS :=(∑∞
i,j=1 〈fi,A gj〉2H

)1/2
, where the fi’s form a complete orthonormal system (CONS) for H

and the gj ’s form a CONS for G. In the case G = H, we set L(H) := L(H,H). We denote
by L+(H) the set of all bounded, positive-definite linear operators on H, i.e., A ∈ L+(H)
if, for any non-zero h ∈ H, 〈h,Ah〉H > 0.

Regret minimization in finite-horizon episodic MDPs We consider episodic rein-
forcement learning in a finite-horizon Markov decision process (MDP) of episode length
H with (possibly infinite) state and action spaces S and A, respectively, reward function
R : S ×A → [0, 1], and transition probability measure P : S ×A → ∆(S), where ∆(S) de-
notes the probability simplex on S. The learning agent interacts with the MDP in episodes
and, at each episode t, a trajectory (st1, a

t
1, r

t
1, . . . , s

t
H , a

t
H , r

t
H , s

t
H+1) is generated. Here ath

denotes the action taken at state sth, rth := R(sth, a
t
h) denotes the immediate reward, and

sth+1 ∼ P (·|sth, ath) denotes the random next state. The initial state st1 is assumed to be fixed
and history independent, and can even be possibly chosen by an adversary. The episode
terminates when stH+1 is reached, where the agent cannot take any action and hence receives
no reward. The actions are chosen following some policy π = (π1, . . . , πH), where each πh
is a mapping from the state space S into the action space A. The agent would like to find
a policy π that maximizes the long-term expected cumulative reward starting from every
state s ∈ S and every step h ∈ [H], defined as:

V π
h (s) := E

[∑H

j=h
R (sj , πj(sj))

∣∣ sh = s

]
.

We call V π
h : S → R the value function of policy π at step h. Accordingly, we also define

the action-value function, or Q-function, Qπh : S ×A → R as:

Qπh(s, a) := R(s, a) + E
[∑H

j=h+1
R (sj , πj(sj))

∣∣ sh = s, ah = a

]
,

which gives the expected value of cumulative rewards starting from a state-action pair at
the h-th step and following the policy π afterwards. Note that V π

h (s) = Qπh(s, πh(s)) and it
satisfies the Bellman equation:

V π
h (s) = R(s, πh(s)) + EX∼P (·|s,πh(s))

[
V π
h+1(X)

]
, ∀h ∈ [H] , (1)

with V π
H+1(s) = 0 for all s ∈ S. We denote by π? an optimal policy satisfying:

V π?

h (s) = max
π∈Π

V π
h (s), ∀s ∈ S, ∀h ∈ [H],

where Π is the set of all non-stationary policies. Since the episode length is finite, such
a policy exists when the action space A is large but finite (Puterman, 2014). We denote
the optimal value function by V ?

h (s) := V π?

h (s). We also denote the optimal action-value
function (or Q-function) as Q?h(s, a) = maxπ Q

π
h(s, a). It is easily shown that the optimal
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action-value function satisfies the Bellman optimality equation:

Q?h(s, a) := R(s, a) + EX∼P (·|s,a)

[
V ?
h+1(X)

]
, ∀h ∈ [H] , (2)

with V ?
h (s) = maxa∈AQ

?
h(s, a). This implies that the optimal policy is the greedy policy

with respect to the optimal action-value functions. Thus, to find the optimal policy π?, it
suffices to estimate the optimal action-value functions (Q?h)h∈[H].

The agent aims to learn the optimal policy by interacting with the environment during
a set of episodes. We measure performance of the agent by the cumulative (pseudo) regret
accumulated over T episodes, defined as:

R(N) :=
∑T

t=1

[
V ?

1 (st1)− V πt

1 (st1)
]
,

where πt is the policy chosen by the agent at episode t and N = TH is the total number
of steps. The regret measures the quantum of reward that the learner gives up by not
knowing the MDP in advance and applying the optimal policy π? from the start. We seek
algorithms that attain sublinear regretR(N) = o(N) in the number of steps they face, since,
for instance, an algorithm that does not adapt its policy selection behavior depending on
past experience can easily be seen to achieve linear (Ω(N)) regret (Lai and Robbins, 1985).

Value function approximation in episodic MDPs A very large or possibly infinite
state and action space makes reinforcement learning a challenging task. To obtain sub-linear
regret guarantees, it is necessary to posit some regularity assumptions on the underlying
function class. In this paper, we use reproducing kernel Hilbert spaces to model the value
functions. Let Hψ and Hϕ be two RKHSs with continuous positive semi-definite kernel
functions kψ : S × S → R+ and kϕ : (S × A) × (S × A) → R+, with corresponding inner
products 〈·, ·〉Hψ and 〈·, ·〉Hϕ , respectively. There exist feature maps ψ : S → Hψ and

ϕ : S×A → Hϕ such that kψ(·, ·) = 〈ψ(·), ψ(·)〉Hψ and kϕ(·, ·) = 〈ϕ(·), ϕ(·)〉Hϕ , respectively

(Steinwart and Christmann, 2008).
The weakest assumption one can pose on the value functions is realizability, which

posits that the optimal value functions (V ?
h )h∈[H] lie in the RKHS Hψ, or at least are well-

approximated byHψ. For stateless MDPs or multi-armed bandits where H = 1, realizability
alone suffices for provably efficient algorithms (Abbasi-Yadkori et al., 2011; Chowdhury and
Gopalan, 2017). But it does not seem to be sufficient when H > 1, and in these settings
it is common to make stronger assumptions (Jin et al., 2019; Wang et al., 2019, 2020).
Following these works, our main assumption is a closure property for all value functions in
the following class:

V :=

{
s 7→ min

{
H,max

a∈A

{
R(s, a) + 〈ϕ(s, a), µ〉Hϕ + η

√
〈ϕ(s, a),Σ−1ϕ(s, a)〉Hϕ

}}}
, (3)

where 0 < η <∞, µ ∈ Hϕ and Σ ∈ L+(Hϕ) are the parameters of the function class.

Assumption 1 (Optimistic closure) For any V ∈ V (cf. Equation 3), we have V ∈ Hψ.
Furthermore, for a positive constant BV , we have ‖V ‖Hψ 6 BV .

While this property seems quite strong, we note that related closure-type assumptions are
common in the literature. We will relax this assumption later in Section 4.3. In addition,
our results do not require explicit knowledge of Hψ nor its kernel kψ, as we will only interact
with elements of V via point evaluations and RKHS norm bounds.
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3. RKHS embeddings of transition distribution

In order to find an estimate of the optimal value function, it is imperative to estimate
the conditional expectations of the form EX∼P (·|s,a)[f(X)]. In the model-based approach
considered in this work, we do so by estimating the mean embedding of the conditional
distribution P (·|s, a), which is the focus of this section. For a bounded kernel2 kψ on the
state space S, the mean embedding of the conditional distribution P (·|s, a) in Hψ is an

element ϑ
(s,a)
P ∈ Hψ such that:

∀f ∈ Hψ, EX∼P (·|s,a)[f(X)] =
〈
f, ϑ

(s,a)
P

〉
Hψ

. (4)

The mean embedding can be explicitly expressed as a function:

ϑ
(s,a)
P (y) = EX∼P (·|s,a) [kψ(X, y)] ,

for all y ∈ S. If the kernel kψ is characteristic, such as a stationary kernel, then the

mapping P (·|s, a) 7→ ϑ
(s,a)
P is injective, defining a one-to-one relationship between transition

distributions and elements of Hψ (Sriperumbudur et al., 2011). Following existing works
(Song et al., 2009; Grünewälder et al., 2012), we now make a smoothness assumption on
the transition distribution.

Assumption 2 For any f ∈ Hψ, the function (s, a) 7→EX∼P (·|s,a) [f(X)] lies in Hϕ.

Under Assumption 2, the mean embeddings admit a linear representation in state-action
features via the conditional embedding operator ΘP ∈ L(Hϕ,Hψ) such that:

∀(s, a) ∈ S ×A, ϑ
(s,a)
P = ΘPϕ(s, a) . (5)

Assumption 2 always holds for finite domains with characteristic kernels. Though it is
not necessarily true for continuous domains, we note that the CMEs for classical linear
(Abbasi-Yadkori and Szepesvári, 2011) and non-linear (Kakade et al., 2020) dynamical
systems satisfy this assumption.

3.1. Sample estimate of conditional mean embedding

At the beginning of each episode t, given the observations Dt := (sτh, a
τ
h, s

τ
h+1)τ<t,h6H until

episode t− 1, we consider a sample based estimate of the conditional embedding operator.
This is achieved by solving the following ridge-regression problem:

min
Θ∈HS(Hϕ,Hψ)

∑
τ<t,h6H

∥∥ψ(sτh+1)−Θϕ(sτh, a
τ
h)
∥∥2

Hψ
+ λ ‖Θ‖2HS , (6)

where λ > 0 is a regularising constant. The solution of Equation 6 is given by:

Θ̂t =
∑

τ<t,h6H
ψ(sτh+1)⊗ ϕ(sτh, a

τ
h)
(

Ĉϕ,t + λ I
)−1

, (7)

where Ĉϕ,t :=
∑

τ<t,h6H ϕ(sτh, a
τ
h)⊗ϕ(sτh, a

τ
h) and ⊗ denotes the tensor product of elements

in a Hilbert space. To simplify notations, we now let n = (t− 1)H denote the total number
of steps completed at the beginning of episode t. We denote a vector kϕ,t(s, a) ∈ Rn and a
matrix Kϕ,t ∈ Rn×n by:

kϕ,t(s, a) := [kϕ ((sτh, a
τ
h), (s, a))]τ<t,h6H , Kϕ,t := [kϕ((sτh, a

τ
h), (sτ

′
h′ , a

τ ′
h′))]τ,τ ′<t,h,h′6H .

2. Boundedness of a kernel holds for any stationary kernel, e.g., the squared exponential kernel and the
Matérn kernel (Rasmussen and Williams, 2006).
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Then, via Equation 7, the conditional mean embeddings can be estimated as

ϑ̂
(s,a)
t = Θ̂tϕ(s, a) =

∑
τ<t,h6H

[αt(s, a)](τ,h) ψ(sτh+1) , (8)

where we define the weight vector αt(s, a) := (Kϕ,t +λ I)−1kϕ,t(s, a).

3.2. Concentration of mean embedding estimates

In this section, we show that for any state-action pair (s, a), the CME estimates ϑ̂
(s,a)
t

lies within a high-probability confidence region around the true embedding ϑ
(s,a)
P . This

eventually translates, via Equation 4, to a concentration property of
〈
f, ϑ̂

(s,a)
t

〉
Hψ

around

EX∼P (·|s,a)[f(X)] for any f ∈ Hψ. The uncertainty of CME estimates can be characterized

by the variance estimate σ2
ϕ,t(s, a) := λ

〈
ϕ(s, a),M−1

t ϕ(s, a)
〉
Hϕ , where Mt := Ĉϕ,t+λ I. To

see this, note that an application of Sherman-Morrison formula yields:

σ2
ϕ,t(s, a) := kϕ((s, a), (s, a))− kϕ,t(s, a)>(Kϕ,t +λ I)−1kϕ,t(s, a) , (9)

which is equivalent to the predictive variance of a Gaussian process (GP) (Rasmussen and
Williams, 2006). Although a sample from a GP is usually not an element of the RKHS
defined by its kernel (Lukic and Beder, 2001), the following result allows us to use σ2

ϕ,t(s, a)
as an error measure.

Theorem 1 (Concentration of the conditional embedding operator) Suppose that
sups∈S

√
kψ(s, s) 6 Bψ. Then, under Assumption 2, for any λ > 0 and δ ∈ (0, 1],

P
[
∀t ∈ N,

∥∥∥(ΘP − Θ̂t

)
M

1/2
t

∥∥∥ 6 βt(δ)
]
> 1− δ ,

where βt(δ) :=
√

2λB2
P + 256(1 + λ−1) log(det(I +λ−1 Kϕ,t)1/2) log(2t2H/δ), BP > ‖ΘP ‖HS.

Theorem 1 implies a concentration inequality for the CME estimates, since, for all t > 1:∥∥∥ϑ(s,a)
P − ϑ̂(s,a)

t

∥∥∥
Hψ

6
∥∥∥(ΘP − Θ̂t) M

1/2
t

∥∥∥ ‖ϕ(s, a)‖M−1
t

6 βt(δ)λ
−1/2σϕ,t(s, a), ∀(s, a) ∈ S×A,

with probability at least 1− δ. This forms the core of our value function approximations.3

Remark 1 Considering the simulation setting, Grünewälder et al. (2012) assume access
to a sample (si, ai, s

′
i)
m
i=1, drawn i.i.d. from a joint distribution P0 such that the conditional

probabilities satisfy P0(s′i|si, ai) = P (s′i|si, ai),∀i. Under Assumption 2, they establish the

convergence of CME estimates ϑ̂
(s,a)
t to the true CMEs ϑ

(s,a)
P in P0-probability. This guar-

antee, however, does not apply to our setting, since we do not assume any simulator access.

Proof sketch of Theorem 1 To derive this result, we note that the sequence evaluation
noise εth := ψ(sth+1)−ΘPϕ(sth, a

t
h) at each step h of episode t forms a martingale difference

sequence, with each element having a bounded RKHS norm. We overload notation to define,
for each pair (t, h), the operator Mt,h = Mt +

∑
j6h ϕ(stj , a

t
j)⊗ ϕ(sτj , a

τ
j ), and the estimate

Θ̂t,h =
(∑

τ<t,h6H
ψ(sτh+1)⊗ ϕ(sτh, a

τ
h) +

∑
j6h

ψ(stj+1)⊗ ϕ(stj , a
t
j)
)

M−1
t,h .

3. Deshmukh et al. (2017) employ a variant of kernel ridge regression to learn the mean reward function of
a contextual bandit problem. Their concentration bound holds only for finite action space. In contrast,
Theorem 1 holds for infinite state-action spaces, and hence, can be seen as a generalization of their result.
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Now, we consider the random variable zt,h =
∥∥∥(Θ̂t,h −ΘP ) M

1/2
t,h

∥∥∥2

HS
, and prove a high-

probability upper bound on it using Azuma-Hoeffding’s inequality for martingales. In
fact, we show that zt,h 6 β2

t,h(δ) uniformly over all pair (t, h) with probability at least
1− δ, where βt,h(δ) is defined similarly to βt(δ) with only Kϕ,t being replaced by Kϕ,t,h :=
[kϕ((sτj , a

τ
j ), (sτ

′
j′ , a

τ ′
j′ ))](τ,j),(τ ′,j′)6(t,h) – the gram-matrix at step h of episode t. The proof

then follows by noting that
∥∥∥(Θ̂t −ΘP ) M

1/2
t

∥∥∥
HS

= z
1/2
t−1,H 6 βt−1,H(δ) 6 βt(δ). The com-

plete proof is given in the supplementary material.

4. RL exploration using RKHS embeddings

In this section, we aim to develop an online RL algorithm using the conditional mean
embedding estimates that balances exploration and exploitation (near) optimally. We realize
this, at a high level, by following the Upper-Confidence Bound (UCB) principle and thus
our algorithm falls in a similar framework as in Jaksch et al. (2010); Gheshlaghi Azar et al.
(2017); Yang and Wang (2019).

4.1. The Conditional Mean Embedding RL (CME-RL) algorithm

At a high level, each episode t consists of two passes over all steps. In the first pass, we
maintain the Q-function estimates via dynamic programming. To balance the exploration-
exploitation trade-off, we first define a confidence set Ct that contains the set of conditional
embedding operators that are deemed to be consistent with all the data that has been
collected in the past. Specifically, for any δ ∈ (0, 1], λ > 0 and constants BP and Bψ,
Theorem 1 governs us to define the confidence set

Ct :=
{

Θ ∈ L(Hϕ,Hψ) :
∥∥∥(Θ− Θ̂t) M

1/2
t

∥∥∥ 6 βt(δ/2)
}
, (10)

where βt(·) governs the exploration-exploitation trade-off. This confidence set is then used
to compute the optimistic Q-estimates, starting with V t

H+1(s) = 0, and setting:

for h = H,H−1, . . . , 1, V t
h(s) = min

{
H,max

a∈A
Qth(s, a)

}
, (11)

Qth(s, a) = R(s, a) + max
ΘP ′∈Ct

EX∼P ′(·|s,a)

[
V t
h+1(X)

]
. (12)

We note here that we only require an optimistic estimate of the optimal Q-function. Hence,
it is not necessary to solve the maximization problem in Equation 12 explicitly. In fact, we
can use a closed-form expression instead of searching for the optimal embedding operator
ΘP ′ in the confidence set Ct. If the value estimate V t

h+1 lies in the RKHS Hψ, we then have
from Equation 4 that EX∼P ′(·|s,a)

[
V t
h+1(X)

]
=
〈
V t
h+1, ϑ

s,a
P ′
〉
Hψ

, and from Equation 8 that:〈
V t
h+1, ϑ̂

(s,a)
t

〉
Hψ

= αt(s, a)>vth+1 = kϕ,t(s, a)>(Kϕ,t +λ I)−1vth+1 ,

where we define the vector vth+1 := [V t
h+1(sτh′+1)]τ<t,h′6H . Now, since the confidence set Ct

is convex, the Q-updates given by Equation 12 admit the closed-form expression:

Qth(s, a) = R(s, a) + kϕ,t(s, a)>(Kϕ,t +λ I)−1vth+1 +
∥∥V t

h+1

∥∥
Hψ

βt(δ/2)λ−1/2σϕ,t(s, a) . (13)

We now note that, by the optimistic closure property (Assumption 1), the value estimate
V t
h given by Equation 11 lies in the RKHS Hψ, rendering the closed-form expression in

Equation 13 valid.
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In the second pass, we execute the greedy policy with respect to the Q-function estimates
obtained in the first pass. Specifically, at each step h, we chose the action:

ath = πth(sth) ∈ argmaxa∈AQ
t
h(sth, a) . (14)

The pseudo-code of CME-RL is given in Algorithm 1. Note that, in order to implement
CME-RL, we do not need to know the kernel kψ; only the knowledge of the upper bound
BV over the RKHS norm of V t

h+1 suffices our purpose. For simplicity of representation,
we assume that the agent, while not knowing the conditional mean embedding operator
ΘP , knows the reward function R. When R is unknown but an element of the RKHS Hϕ,
our algorithm can be extended naturally with an optimistic reward estimation step at each
episode, similar to the contextual bandit setting (Chowdhury and Gopalan, 2017).

Algorithm 1: Conditional Mean Embedding RL (CME-RL)

1 Input: Kernel kϕ, constants BP , BV and Bψ, parameters η > 0 and δ ∈ (0, 1]
2 for episode t = 1, . . . , T do
3 Receive the initial state st1 and set V t

H+1(·) = 0
4 for step h = H, . . . , 1 do // Update value function estimates

5 Qth(·, ·) = R(·, ·) + kϕ,t(·, ·)>(Kϕ,t +λ I)−1vth+1 +BV βt(δ/2)λ−1/2σϕ,t(·, ·)
6 V t

h(·) = min
{
H,maxa∈AQ

t
h(·, a)

}
7 for step h = 1, . . . ,H do // Run episode

8 Take action ath ∈ argmaxa∈AQ
t
h(sth, a) and observe next state sth+1 ∼ P (·|sth, ath)

Computational complexity of CME-RL The dominant cost is evaluating theQ-function
estimates Qth (Equation 13). As typical in kernel methods (Schölkopf and Smola, 2002), it
involves inversion of tH × tH matrices, which take O(t3H3) time. In the policy execution
phase (Equation 14), we do not need to compute the entire Q-function as the algorithm only
queries Q-values at visited states. Hence, assuming a constant cost of optimizing over the
actions, the per-episode running time is O(t3H4). However, using standard sketching tech-
niques like the Nyström approximation (Drineas and Mahoney, 2005) or the random Fourier
features approximation (Rahimi and Recht, 2007), and by using the Sherman-Morrison for-
mula to amortize matrix inversions, per-epsiode running cost can be reduced to O(m2H),
where m is the dimension of feature approximations.

4.2. Regret bound for CME-RL

In this section, we present the regret guarantee of our algorithm. We first define

γN ≡ γϕ,λ,N := sup
X⊂S×A:|X |=N

1

2
log det(I +λ−1 Kϕ,X ) ,

where X = {(si, ai)}i∈[N ] and Kϕ,X = [kϕ((si, ai), (sj , aj))]i,j∈[N ] is the gram matrix over
the data set X . γN denotes the maximum information gain about a (random) function
f sampled from a zero-mean GP with covariance function kϕ after N noisy observations,
obtained by passing f through an i.i.d. Gaussian channel N (0, λ). Consider the case when
kϕ is a squared exponential kernel on Rd. Then it can be verified that γN = O

(
(logN)d+1

)
(Srinivas et al., 2009).
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Theorem 2 (Cumulative regret of CME-RL) Under assumptions 1 and 2, after inter-
acting with the environment for N = TH steps, with probability at least 1 − δ, CME-RL
(Algorithm 1) achieves the regret bound

R(N) 6 2BV αN,δ

√
2(1 + λ−1B2

ϕH)NγN + 2H
√

2N log(2/δ) ,

where Bϕ > sups,a
√
kϕ((s, a), (s, a)), and αN,δ :=

√
2λB2

P + 256(1 + λ−1)γN log(4N2/δ).

Theorem 2 yields a Õ(HγN
√
N) regret bound for CME-RL. Comparing to the minimax

regret in tabular setting, Θ(H
√
SAN) (Gheshlaghi Azar et al., 2017), our bound replaces

the sublinear dependency on the number of state-action pairs by a linear dependency on
the intrinsic complexity measure, γN , of the feature space Hϕ, which is crucial in the large
state-action space setting that entails function approximation. Additionally, in the kernel-
ized bandit setting (H = 1), our bound matches the best known upper bound O(γN

√
N)

(Chowdhury and Gopalan, 2017). We note, however, that while an MDP has state transi-
tions, the bandits do not, and a naive adaptation of existing kernelized bandit algorithms to
this setting would give a regret exponential in episode length H. Furthermore, due to the
Markov transition structure, the lower bound for kernelized bandits (Scarlett et al., 2017)
does not directly apply here. Hence, it remains an interesting future direction to determine
the optimal dependency on γN .

Conversion to PAC guarantee Similarly to the discussion in Jin et al. (2019), our
regret bound directly translates to a sample complexity or probably approximately correct
(PAC) guarantee in the following sense. Assuming a fixed initial state st1 = s for each
episode t, with at least a constant probability, we can learn an ε-optimal policy π that
satisfies V ?

1 (s) − V π
1 (s) 6 ε by running CME-RL for T = O(d2

effH
2/ε2) episodes, where

deff is a known upper bound over γN , and then output the greedy policy according to the
Q-function at t-th episode, where t is sampled uniformly from [T ]. Here deff effectively
captures the number of significant dimensions of Hϕ.

Remark 2 Yang and Wang (2019) assumes the model P (s′|s, a) = 〈ψ(s′),ΘPϕ(s, a)〉Hψ ,

and propose an algorithm with regret Õ(H2γN
√
N). In comparison, we get an O(H) factor

improvement thanks to a tighter control over the sum of predictive variances. Furthermore,
their algorithm can’t be implemented exactly as they need to apply random sampling to
approximate the estimate Θ̂t. We overcome this implementational bottleneck by virtue of
our novel confidence set construction using the CME estimates (Theorem 1). Moreover, in
contrast to Yang and Wang (2019), our regret guarantee is anytime, i.e., we don’t need to
know the value of N before the algorithm runs.

Remark 3 Considering linear function approximation (Hϕ = Rd), Jin et al. (2019) as-
sumes that for any V ∈ V (Equation 3), the map (s, a) 7→ EX∼P (·|s,a)[V (X)] lies in Hϕ, and

propose a model-free algorithm with regret Õ(
√
H3d3N). For linear kernels, it can be verified

that γN = O(d logN) and thus our regret (Theorem 2) is of the order Õ(Hd
√
N). We note

that this apparent improvement in our bound is a consequence of slightly stronger assump-
tions 1 and 2. While they obtain the bound by proving a uniform concentration result over
the set V, our result uses a novel concentration property of CME estimates (Theorem 1).
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Proof sketch of Theorem 2 A control on theQ-function estimates Qth leads to the regret
bound, as our policy is based onQth. We prove that as long as ΘP lies in the confidence set Ct,
the Q-updates are optimistic estimates of the optimal Q-values, i.e., Q?h(s, a) 6 Qth(s, a) for
all (s, a), and thus, allow us to pick an optimistic action while sufficiently exploring the state
space. This implies V ?

1 (st1) 6 V t
1 (st1), so that the regret R(N) 6

∑T
t=1

(
V t

1 (st1)− V πt
1 (st1)

)
.

Letting gt1(st1) := V t
1 (st1) − V πt

1 (st1) denote the gap between the most optimistic value and
the actual value obtained at episode t, we then have

gt1(st1) 6
∑H

h=1

(
Qth(sth, a

t
h)−

(
R(sth, a

t
h) + EX∼P (·|sth,a

t
h)

[
V t
h+1(X)

] )
+mt

h

)
,

where (mt
h)t,h denotes a martingale difference sequence. We control this via the Azuma-

Hoeffding inequality as
∑

t,hmt,h = O(H
√
N). The rest of the terms inside the summation

can be controlled, by Theorem 1 and by design of the confidence set Ct, using the predictive
variances σ2

ϕ,t(s
t
h, a

t
h). In fact, for ΘP ∈ Ct, it holds that

Qth(s, a)−
(
R(s, a) + EX∼P (·|s,a)

[
V t
h+1(X)

])
6 2BV βt(δ/2)λ−1/2σϕ,t(s, a) .

Now, the proof can be completed by showing that
∑

t,h σϕ,t(s
t
h, a

t
h) = O

(√
HNγN

)
. Com-

plete proof of this result is given in the supplementary material.

4.3. Robustness to model misspecification

Theorem 2 hinges on the fact that any optimistic estimate of the value function can be spec-
ified as an element in Hψ. In this section, we study the case when there is a misspecification
error. Formally, we consider the following assumption.

Assumption 3 (Approximate optimistic closure) There exists constants ζ > 0 and
BV > 0, such that for any V ∈ V (Equation 3), there exists a function Ṽ ∈ Hψ which
satisfies ‖V − Ṽ ‖∞ 6 ζ and ‖Ṽ ‖Hψ 6 BV . We call ζ the misspecification error.

The quality of this approximation will further depend upon how well any V ∈ V can
be approximated by a low-norm function in Hψ. One specialization is to the case when
V ∈ Cb(S), the vector space of continuous and bounded functions on S, and kψ is a Cb(S)-
universal kernel (Steinwart and Christmann, 2008). In this case, we can choose Ṽ such that
‖V −Ṽ ‖∞ is arbitrarily small. For technical reasons, we also make the following assumption.

Assumption 4 The RKHS Hψ contains the constant functions.4

The following theorem states that our algorithm is in fact robust to a small model misspeci-
fication. To achieve this, we only need to adopt a different exploration term in Equation 13
to account for the misspecification error ζ. To this end, define the Q-function updates as

Qth(s, a) := R(s, a)+kϕ,t(s, a)>(Kϕ,t +λ I)−1vth+1+
(
BV + ζ ‖1‖Hψ

)
βt(δ/2)σϕ,t(s, a) , (15)

where ‖1‖Hψ denotes the norm of the all-one function s 7→ 1 in Hψ.

Theorem 3 (Cumulative regret under misspecification) Under assumptions 2, 3 and
4, with probability at least 1− δ, CME-RL achieves the regret bound

R(N) 6 2
(
BV + ζ ‖1‖Hψ

)
αN,δ

√
2(1 + λ−1B2

ϕH)NγN + 4ζN + 2H
√

2N log(2/δ) ,

4. This is a mild assumption. For any RKHS Hψ, the direct sum Hψ + R, where R denotes the RKHS
associated with the kernel k(s, s′) = 1, is again a RKHS with kernel knew(s, s′) := kψ(s, s′) + 1.
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where Bϕ and αN,δ are as given in Theorem 2.

In comparison with Theorem 2, Theorem 3 asserts that CME-RL will incur at most an
additional O(ζγN

√
HN + ζN) regret when the model is misspecified. This additional term

is linear in N due to the intrinsic bias introduced by the approximation. This linear de-
pendency is standard in the literature, e.g., it is present even in the easier setting of linear
function approximation (Jin et al., 2019). When ζ is sufficiently small (as is typical for
universal kernels kψ), our algorithm will still enjoy good theoretical guarantees.

Conversion to PAC guarantee Similar to Theorem 2, we can also convert Theorem 3
to a PAC guarantee. Assuming a fixed initial state s, with at least a constant probability,
we can learn an ε-optimal policy π that satisfies V ?

1 (s)− V π
1 (s) 6 ε+ ζγNH

3/2 by running
CME-RL for T = O(d2

effH
2/ε2) episodes.

Remark 4 (Regret under unknown misspecification error) When the misspecifica-
tion error ζ is unknown to the agent apriori, one can invoke the dynamic regret balancing
scheme of Cutkosky et al. (2021) to get essentially a similar bound as Theorem 3 (albeit
with a polylog factor blow-up). In fact, Cutkosky et al. (2021) gives a bound for the linear
MDP model of Jin et al. (2019). Similar techniques can be incorporated to derive a regret
bound with unknown ζ in our setting also.

Proof sketch of Theorem 3 Similar to the proof of Theorem 2, we control the Q-
function estimates Qth(s, a) (cf. Equation 15), but with necessary modifications taking the
effect of the misspecification error ζ into account. Specifically, we show, for ΘP ∈ Ct, that

Qth(s, a)−
(
R(s, a) + EX∼P (·|s,a)

[
V t
h+1(X)

])
6 2
(
BV + ζ ‖1‖Hψ

)
λ−1/2βt(δ/2)σϕ,t(s, a) + 2ζ .

With the result above, we can derive an upper bound on the optimal value Q?h as Q?h(s, a) 6
Qth(s, a) + 2(H − h)ζ, which allows us to pick an optimistic action. The proof then follows
similar steps of Theorem 2 via control of predictive variances and Azuma’s inequality.
Complete proof is given in the supplementary material.

5. Conclusion

In this paper, we have presented a novel model-based RL algorithm with sub-linear regret
guarantees under an optimistic RKHS-closure assumption on the value functions, without
requiring a “simulator” access. The algorithm essentially performs an optimistic value iter-
ation step, which is derived from a novel concentration inequality for the mean embeddings
of the transition distribution. We have also shown robustness of our algorithm to small
model misspecifications.

As future work, it remains an open research direction to relax the strong optimistic clo-
sure assumption to a milder one, as in Zanette et al. (2020b) and Domingues et al. (2021),
without sacrificing on the computational and regret performances. In terms of computa-
tional complexity, Vial et al. (2022) proposed an algorithm for misspecified linear MDPs
with bounded per-iteration computational complexity. Although our method has compu-
tational complexity growing with the number of data points, we highlight that constant
cost per iteration can be achieved with kernel-based approximations by means of low-rank
decompositions (Gijsberts and Metta, 2013), which is another avenue for future work.
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reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning (ICML), pages 263–272, 2017.

Arjan Gijsberts and Giorgio Metta. Real-time model learning using Incremental Sparse
Spectrum Gaussian Process Regression. Neural Networks, 41:59–69, 2013.
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