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Abstract

In the past few years, supervised-based deep learning methods has yielded good results
in skin lesions diagnosis tasks. Unfortunately, obtaining large of labels for medical im-
ages is expensive and time consuming. In this paper, we propose a self-improving skin
lesions diagnosis (SISLD) framework to explore useful information in unlabeled data. We
first propose a semi-supervised model f , which combining consistency and class-balanced
pseudo-labeling to make full use of unlabeled data in scenarios with sparse manually la-
beled samples, and obtain a teacher model ft by semi-supervised self-training. Then, we
introduce self-distillation method to enable knowledge distillation for the diagnosis of skin
lesions. Finally, we measure diagnostic effectiveness in the context of label sparsity and
class imbalance. The experiments on skin lesion images dataset ISIC2018 shows that SISLD
achieves significant improvements in AUC, Accuracy, Specificity and Sensitivity.
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1. Introduction

The skin is the largest organ of the human body. Sun’s UV-radiation, smoking, alcohol, and
other internal and external factors can cause visible and touchable skin lesions. Skin lesions
primarily include melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC),
actinic keratosis (AKIEC), benign keratosis (BKL), dermatofibroma (DF), and vascular
lesions (VASC), which can be divided into benign and malignant lesions. Malignant lesions
may lead to skin cancer and metastasize to other organs and tissues(Burdick et al., 2018),
while some malignant lesions are skin cancers. Skin cancer is a public health problem that
cannot be ignored, with melanoma being the deadliest skin cancer, capable of spreading to
different parts and organs of the human body. In 2020, new cases of global melanoma were
estimated to exceed 324,000, with almost 57,000 deaths(Sung et al., 2021). Some types of
lesions may not be as deadly as melanoma, such as basal cell carcinoma, but these lesions
can spread and cause disfigurement and are life-threatening(Rubin et al., 2005). Therefore,
the current diagnosis of skin lesions at an early stage is particularly important. If diagnosed
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early, skin cancer can be cured by excision. The huge difference in skin appearance, the
similarities of different skin lesions, and intra-class variation make it difficult to compare
skin lesions and typical tissues with the naked eye, which brings difficulties to the early
and correct diagnosis of skin lesions. Accurate diagnosis of skin lesions is a big challenge in
medical image diagnosis.

Dermoscopy, the primary tool for skin lesion diagnosis(Sultana et al., 2012), can elim-
inate skin surface reflections, and magnify the lesion area to enhance the visualization
of deeper skin. Although it can bring richer visual information than the naked eye, the
visual inspection of skin lesions is still related to subjective factors such as experience
and is time consuming and error prone. Even experienced dermatologists guided by well-
established methods such as the 7-point checklist(Kawahara et al., 2018)and the ABCDE
rules(Goldsmith and Solomon, 2007) may give a dissimilar diagnosis. Therefore, a computer-
aided diagnosis system capable of analyzing dermoscopy images can be established to assist
dermatologists in their diagnosis.

In recent years, deep learning has developed into the current state-of-the-art classifi-
cation algorithms, including supervised learning and semi-supervised learning, which are
generally employed in various image classification and recognition tasks (Szegedy et al.,
2015; He et al., 2016). Supervised learning has become an essential part of many advanced
Skin lesion diagnosis approaches. For example, Kassani and Kassani (2019) employ deep
learning models such as Resnet50, AlexNet(Krizhevsky et al., 2012), etc. to diagnose skin
lesions. They alleviate the negative impact of class imbalance through data augmentation.
Wang et al. (2021) proposed a multi-level attention learning network to improve the diag-
nosis of melanoma. They designed a local learning branch with a Skin Lesion Localization
module to help the network learn features from regions of interest. Moreover, they improved
feature recognition ability by combining information from global and local branches through
a weighted feature integration module. The success of supervised deep learning methods
comes from a large amount of labeled data. For most image-based diseases diagnosis tasks,
it is arduous to obtain a large number of labels. While the unsupervised methods(Chen
et al., 2020; He et al., 2020) does not required labels and focus on the samples themselves,
they are not effective in the diagnosis task. As a compromise, semi-supervised learning
(SSL) utilize both labeled and unlabeled data to train the model, which is more suitable
for image-based diseases diagnosis. The consistency-based semi-supervised approach has
shown its effectiveness. The Temporal Ensembling(Laine and Aila, 2016) maintains a huge
exponential moving average (EMA) matrix during training and adopts it as consistency
target. Maintaining a huge matrix during training will significantly increase training time.
The Mean Teacher(Tarvainen and Valpola, 2017) framework updates the weights of the
teacher model by the EMA weights of the student model, avoiding the need to maintain a
huge matrix during training. Liu et al. (2020) introduced a Sample Relational Consistency
paradigm on the Mean Teacher framework, modeled the relational information of differ-
ent samples through the Gram matrix, and effectively used unlabeled data by minimizing
the SRC paradigm. However, the SRC-MT completely ignores the obtained model, which
include valuable knowledge. The performance of skin lesions diagnosis is limited by the
complexity of the lesions themselves, also related to the imbalanced of skin lesions images.
The excessive imbalance of the images of skin lesions may lead to poor performance. To de-
velop a high-performance CAD system capable of diagnosing skin lesions, this work explores
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the diagnosis in the context of label scarcity and class imbalance. The main contributions
of the proposed method are summarized as follows:

1. We propose a semi-supervised framework SISLD for skin lesion classification. The
pseudo-labeling process of SISLD combine the consistency regularization and class-balanced
pseudo-labeling. We leverage the labeled and unlabeled images to alleviate the interference
of labeled samples scarce and class imbalance.

2. To strengthen the performance of model, we introduce self-distillation in distillation
process.

3. We have carried out several extensive experiments to verify the validity of our frame-
work on ISIC2018 dataset.

2. Method

In this section, we show the mechanism of our framework. To address the issues of class
imbalance and label scarcity in skin lesion images diagnosis task, we aim to utilize unla-
beled data via joint consistency regularization and class-balanced pseudo-labeling. Further-
more, without requiring additional labels, we improve the model performance on imbalanced
datasets through pseudo-labels supervised self-distillation. The proposed SISLD framework
as shown in Fig.1 consists of two parts: a consistent and class-balanced pseudo-labeling
framework in the upper half and a pseudo-labels supervised self-distillation framework in
the lower half. The training algorithm for SISLD is shown in Algorithm 1.

2.1. SISLD Framework

The training process of SISLD include pseudo-labeling and self-distillation.SISLD frame-
work consists of four models, student model fs and teacher model ft of pseudo-labeling
process, student model gs and teacher model gt of self-distillation process. Let the labeled
set be represented as DL = {(xi, yi)}Ni=1, and the unlabeled set as DU = {(xi)}Mi=1, where
xi is the input 2D skin lesion image, yi is the corresponding One-Hot ground truth, yi is
the pseudo-labels. In pseudo-labeling process, we train fs and ft on all data and use the
following minimized combined loss function to optimize the network:

min
θ

N∑
i=1

Ls (fs (xi; θ) , yi, ŷi) + Lu

(
{xi}N+M

i=N+1 ; fs, ft, θ, η, θ
′, η′

)
(1)

Where θ and and θ′ are the parameters of the student and teacher model respectively. η and
η′ donate the perturbations of the input image. During the training process, θ update by
optimizer, and θ′ update by Exponential Moving Average (EMA). Specifically, we update
θ′ at the training step t: θ′t = λθ′t−1 + (1 − λ)θt, λ denote the coefficient that control the
weight of the EMA. The training detail of pseudo-labeling process will be showed in section
2.2.
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Figure 1: An overview of SISLD framework. SISLD consists of two pairs of student-teacher
models, corresponding to two processes. All models are based on Densenet121
networks. In the pseudo-labeling process (top), our framework optimizes the
student model fs by total loss, and teacher model optimize by EMA. The pseudo-
labels come from the prediction of student model fs, filter pseudo-labels and
change its distributions to alleviate class imbalance and noisy pseudo-labels(mid).
As for self-distillation (bottom), SISLD initialize teacher model gt by the weights
of student model fs, and utilize gt to guide the training of student model gs.

Next, we perform self-distillation process to train student modelgs and teacher model
gt. The total optimization objective of the self-distillation process can be formulated as
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following:

min
Ω

N∑
i=1

Ls (gs (xi; Ω) , yi, ŷi) + Lkd

(
{xi}N+M

i=N+1 ; gs, gt,Ω,Ω
′
)

(2)

Where Ω and Ω′ are the parameters of the student and teacher model respectively. Different
from the pseudo-labeling process, the parameters of two models all updates by optimizer.
More detail of self-distillation process will be showed in section 2.3.

2.2. Class balanced pseudo-labeling

The key idea of pseudo-labeling is utilize the existing knowledge of the model to keep in-
creasing the number of pseudo labels. Consistency regularization is that for any input,
under different perturbations, the model can still produce the same output as the original.
It should be noted that most SSL methods have examined only consistency regularization
or pseudo-labeling. The different mechanisms make it possible to combine two strategies.
Currently, a framework called FixMatch (Sohn et al., 2020) achieves state-of-the-art per-
formance across many standard SSL baselines by jointing two SSL strategies. Inspired
by FixMatch, we combine pseudo-labeling and consistency regularization on the SRC-MT
framework. We first train SISLD on all data. Then utilize the optimal student model fs
to generate pseudo labels for unlabeled samples. Finally, start next generation and add
pseudo labels to the labeled set.

One primary problem with pseudo-labeling is that since pseudo-labels cannot be guar-
anteed to be 100% correct, the model will inevitably be disturbed by noise labels. Mul-
tiple generations of training will amplify this interference, which is also the disadvantage
of pseudo-labeling(Rizve et al., 2021). To alleviate the influence of noisy labels and ob-
tain trustworthy pseudo-labels, we filter pseudo-labels using a threshold value. Specifically,
for the model predictions, only predictions with confidence greater than τ are retained as
pseudo-labels. To determine the threshold value, we did the following experiments and the
final value of was determined to be 0.90. The ablation studies are shown in Section 3.7.

Despite the fact that the traditional pseudo-labeling strategy has remarkable success,
it still has shortcomings when dealing with class-imbalance problems. Resampling is a
common method to alleviate class imbalance. In previous studies, resampling was done
on labeled samples. In skin lesion diagnosis, it is unacceptable to drop the labeled data.
Consequently, we employ resampling on pseudo-labels. An observation of CReST (Wei
et al., 2021) shows that in the case of class imbalance, the semi-supervised model has low
precision for the majority class and high precision for the minority class, which means the
pseudo-label of the minority class is trustworthy. Thus, the specific approach of the class-
balanced strategy in this work is to reduce the number of pseudo-labels of the majority class
and increase the quantity of pseudo-labels of minority classes. Reducing the quantity of
majority classes pseudo-labels with low precision may decrease the probability of introducing
noisy labels. Concretely, let Zi represent the original distributions of the i-th class(i ∈
(0, 1, 2, 3, 4, 5, 6)), Pn denotes the quantity of pseudo-labels, α is the balance factor. For
a certain quantity of pseudo-labels Pn , the specific quantity of pseudo-labels of the i-th



Deng1 Yin1,2 Yang1,2,*

class(i ∈ (0, 2, 3, 4, 5, 6)) is Ci, and the formula for Ci is as follows:

Ci (Pn) =


Zi +

⌈
α
(
Pn
7 − Zi

)⌉
, i ̸= 1

Pn −
∑

i=(0,2,3,4,5,6)Ci (Pn) , i = 1
(3)

In the pseudo-labeling process, we employ SRC-MT as basic framework. To optimize the
student model fs, we utilize the following minimized combined loss function Lpl to optimize
the network:

Lpl = Ls + Lu, with Lu = Lc + Lsrc (4)

In the Eq 4, Ls represent the supervised loss, which is calculated by ground-truth, pseudo-
labels and the perdition of student model fs. When training at first generation, Ls was
calculated by ground-truth and the perdition of student model fs. Ls represent the unsu-
pervised consistency loss which consist of individual consistency and relation consistency.
The individual consistency loss Lc is defined as following:

Lc =
N+M∑
i=1

Eη′η,
∥∥ft (xi, θ′, η′)− fs (xi, θ, η)

∥∥2
2

(5)

Most of the studies of consistency regularization are however focused on single sample.
Unfortunately, the intrinsic relationship between different samples contains rich semantic
information. To utilize this semantic information, SRC paradigms establish the internal
relationship model between samples through the Gram matrix. Specifically, for n input
samples, let F l ∈ Rn×CHW represent the activation map of the output of penultimate layer,
and reshape F l as Al ∈ Rn×CHW , where H and W are the spatial dimensions of the feature

map, C is the quantity of channels, then calculate the matrix Gl ∈ Rn×n as Gl = Al ·
(
Al

)T
,

and perform l2 normalization on each row Gl
i of G

l to obtained sample relation matrix Rl,
which is expressed as:

Rl =

[
Gl

1∥∥Gl
1

∥∥2
2

, . . . ,
Gl

n

∥Gl
n∥

2
2

]T

(6)

where Gij is the inner product between the vectorized activation maps Al
i and Al

j , which
means the similarity between the activation maps of the i-th sample and the j-th sample
in a batch. Thus, SRC loss define as follows:

Lsrc =
∑

X∈(DUUDL)

1

n

∥∥∥Rl(X; θ, η)−Rl
(
X; θ′, η′

)∥∥∥2
2

(7)

Rl (xi; θ, η) and Rl (xi; θ
′, η′) are different perturbations sample relation matrix computed

on xi. When a generation is completed, we utilize the optimal student model θ′ to generate
pseudo labels for unlabeled samples, the distributions of pseudo labels was control by Eq
3. With each generation, the quantity of pseudo labels increases by 350(5%). Then, start
next generation and add the pseudo labels to labeled set. Repeat the above process until
the maximum number of generations. Since the completion of the pseudo-labeling process,
we select and save the optimal student model for all generations.
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2.3. Pseudo-labels Supervised Self-Distillation

Recent evidence suggests that simply average outputs of multiple different models is a
productive way to boost the performance (Dietterich, 2000) . However, making predictions is
inefficient and computationally expensive. For this reason, Hinton et al. (2015) propose the
concept of knowledge distillation. Knowledge distillation can compress the model so that its
parameters are significantly reduced and it has the performance of a large model. It utilizes
knowledge distilled from a teacher model to guide the training of student model. Knowledge
distillation is usually based on models trained from large datasets, yet the amount of data is
often small for some specific tasks. To deal with this dilemma, Zhang et al. (2019) propose a
self-distillation strategy. Self-distillation achieve performance improvements by employing
itself as the teacher model and does not require additional data as well as calculated costs.
In skin lesion diagnosis, even small performance improvements can save more patients’ lives.
To further boost the performance of our framework, we introduce self-distillation in it. In
previous process, we obtain a best model fs, which satisfies the teacher model required
for self-distillation. The optimal student model fs is used as the teacher model in the
self-distillation process to guide the training of student model gs in self-distillation process.

In self-distillation process, we train the models for 60 epochs. The parameters of student
model Ω is initialized by the optimal student model fs. Consider an image xi randomly
picked from {DU ∪DL} with label yi and pseudo labels ŷi. Taking the image as input, the
student model generates hard prediction Ph and soft prediction Ps, and the teacher model
generates soft labels Pt. During training, the parameter of student model is optimized to
minimize the soft label loss and the hard label loss. The LSD formula is as follows:

Lsd =
1

n

n∑
i=1

T 2 ·DKL (Ps∥Pt) (8)

Where n is the quantity of samples and T is the temperature parameter. The Lrd formula
is as follows:

Lrd =
∑

xi∈(DU∪DL)

1

n

∥∥∥Rl(xi; Ω)−Rl
(
xi; Ω

′)∥∥∥2
2

(9)

Overall, the training proceeds with simultaneous minimization of the overall loss Lkd, which
is the sum of the distilling loss Lsd, Lrd and supervised loss Ls:

Lkd = Ls + Lsd + Lrd (10)

We employ cross-entropy loss as the hard label loss Ls is calculated by ground-truth, pseudo-
labels and Ph.
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Algorithm 1 Training Procedure of the Proposed Method

Input: xi ∈ DL +DU , yi ∈ DL

Output: student model’s parameter θ and teacher model’s parameter θ
′
, student model’s

parameter Ω and teacher model’s parameter Ω
′

1: for T in [1, numgenerations] do
2: for T in [1, numepochs] do
3: sample batch B = Bl +Bu , where Bl = (xi, yi) ∈ Dl and Bu = xi ∈ Du

4: computing student model’s prediction fs (xi; θ,η) and teacher model’s prediction
ft (xi; θ

′,η′) , i ∈ {1, ..., n} where n is the batch size
5: computing the pseudo-labeling total loss according to Eq 4
6: update θ using optimizer,update θ

′
by EMA

7: end for
8: using the optimal student model ft to generate pseudo labels ŷi
9: filtering and change the distribution of pseudo labels by Eq 3

10: end for
11: for T in [1, numepochs] do
12: sample batch B = Bl +Bu , where Bl = (xi, yi) ∈ Dl and Bu = xi ∈ Du

13: computing student model’s prediction gs (xi; Ω) and teacher model’s prediction

gt

(
xi; Ω

′
)
, i ∈ {1, ..., n} where n is the batch size

14: computing the self-distillation total loss according to Eq 10
15: update Ω and Ω

′
using optimizer

16: end for
17: return θ, θ

′
,Ω and Ω

′

3. Experiments

3.1. Dataset

The dataset was provided by the International Skin Imaging Collaboration (ISIC) 2018 Clas-
sification Challenge. The ISIC2018 dataset include 10,015 dermoscopic images of 600×450
size. ISIC2018 has 7 types of lesions, namely MEL, NV, BCC, AKIEC, BKL, DF, VASC.
These lesions have a highly inter-class similarity and significant intra-class variation. Since
only the training set has ground-truth, we randomly divide the training set, 70% for train-
ing, 20% for testing, and 10% for validation. In a real application scenario, the distribution
of the obtained data is imbalanced, so the distribution of the unknown data is also likely to
be imbalanced. The data distribution is roughly similar to training set. The distribution
of dataset is shown in Fig. 2.
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Figure 2: The distribution of the dataset.

3.2. Data Pre-Processing

Due to the uncertainty of the lesion area, skin lesion images may carry hair noise which
block the original disease features. Meanwhile, hair may regard as disease features by the
model, thus affecting the model training. Therefore, we utilize traditional image processing
algorithms to address this issue. First, convert the original image to grayscale, employ
Blackhat operation on grayscale images. Then, use threshold segmentation to get mask
and utilize OpenCV’s inpaint algorithm to repair images. The hair removal effect is shown
in the Fig. 3.

Figure 3: The example of hair removal results.

3.3. Implementation Details

We implement the proposed framework using PyTorch framework, and implement our ex-
periments on a Nvidia RTX 2060. In this work, we use the recurring SRC-MT framework
as the baseline. As the quantity of images of some classes is rare, for all process, we employ
different data augmentation techniques to expand the dataset, such as horizontal flipping,
vertical flipping, Gaussian noise, etc. We employ Adam as the optimizer, the learning rate
is 1e−4 and decayed with a power of 0.9 after each epoch, the dropout rate is 0.2. The batch
size is set to 16, which is composed of 4 labeled samples and 12 unlabeled samples. We
convert the input pixel range to 0-1, and resized images from 600 × 450 to 224×224. We
also normalized the images by subtracting the proposed mean RGB values in the ImageNet
dataset. EMA decay rate is set to 0.99. We employ random rotation, translation, and hor-
izontal flipping as perturbations of input samples. The number of pixels for horizontal and
vertical translation is in range -2% to 2% of the image width, and the probability of flipping
is 50%. The random rotation ranges from -10 to 10. Specifically, in the first generation of
pseudo-labeling process, the parameters of student model fs is initialized by a pretrained
model on ImageNet. The temperature of self-distillation process is set to 2.
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3.4. Evaluation Metrics

The task of ISIC2018 is a multi-class classification problem, to quantitatively evaluate the
proposed method, we employ Area Under receiver operating characteristic Curve (AUC),
Accuracy, Sensitivity, Specificity as the evaluation criteria.

AUC =

∫ 1

0
t(f)d(f) (11)

Accuracy =
TP + TN

TP + TN + FP + FP
(12)

Sensitivity =
TP

TP + FN
(13)

Specificity =
TN

TN + FP
(14)

where TP, FP, TN, FN, t and f refer to true positive, false positive, true negative, false
negative, true positive rate and false positive rate respectively. The AUC value represents
the probability that the predicted positive samples ranks ahead of the negative samples.
Because of the comprehensively considers the sensitivity and specificity of a classifier, the
ISIC skin lesion classification challenge used the AUC value as a gold metrics. Accuracy is
the most common evaluation metric, which measures the overall classification accuracy of
positive and negative samples. Sensitivity indicates the ability to predict positive samples.
In contrast, Specificity measure the ability to predict negative samples.

3.5. Main Results

We compare our framework with baseline, and report the results in Table 1. Compare to the
baseline, fs of SISLD improves the AUC, Sensitivity, Specificity, Accuracy by 1.38%, 6.72%,
0.95%, 0.76% respectively. The experimental results show that our pseudo-labeling strat-
egy could ensure the quality of pseudo-labels and alleviate the influence of class imbalance.
Additionally, SISLD model boost the performance, resulting in 0.14%, 1.83%, 0.21% abso-
lute AUC, Sensitivity, Accuracy improvement, but the Specificity score was comparatively
lower.

Table 1: Classification metrics on ISIC2018 under 20% labeled data setting.

Methods
Percentage Evaluation Metrics

Labeled Unlabeled AUC[%] Sensitivity[%] Specificity[%] Accuracy[%]

Baseline 20% 80% 92.60 67.38 91.92 92.65
fs of SISLD 20% 80% 93.98 74.10 92.87 93.41

SISLD 20% 80% 94.12 75.93 92.87 93.62

3.6. Comparison with Benchmarks

To further evaluate the performance of our method, we compare them with several ex-
isting deep learning frameworks. Table 2 lists the lesion classification results of different
frameworks, which includes SS-DCGAN(Diaz-Pinto et al., 2019), TCSE(Li et al., 2018),
TE(Laine and Aila, 2016) and MT(Tarvainen and Valpola, 2017).SS-DCGAN utilize GAN



A SISLD Framework Via Pseudo-labeling and Self-distillation

to improve the network training in semi-supervised learning. TCSE, TE and MT all em-
ploy consistency regularization optimize the model. We use the supervised method as the
upper bound performance and the recurrent SRC-MT trained with 20% labeled data as the
baseline performance. As we can see in Table 2, SRC-MT can achieve AUC, Sensitivity,
Specificity, and accuracy of 92.60%, 67.38%, 91.92% and 92.65%, both AUC and accuracy
of SRC-MT are better than SS-DCGAN and TCSE. TE and MT archive higher score in
AUC and Sensitivity. In contrast, our method can achieve AUC, Sensitivity, Specificity,
and Accuracy of 94.12%, 75.93%, 92.87% and 93.62%, which means an increase of 1.52%
of AUC, 8.55% of Sensitivity, 0.95% of Specificity and 0.97% of Accuracy. Experimental
results showed that our framework could better utilize the existing labeled samples and un-
labeled samples to boost the performance. The main reason is that, in the pseudo-labeling
process, we set a threshold to ensure the quality of the pseudo labels, and change the dis-
tribution of pseudo labels to reduces the interference of class imbalance on the model. In
the distillation process, we utilize the model and pseudo-labels from the previous process
to achieve model performance improvement through self-distillation.

Table 2: Classification metrics on ISIC2018 under 20% labeled data setting.

Methods
Percentage Evaluation Metrics

Labeled Unlabeled AUC[%] Sensitivity[%] Specificity[%] Accuracy[%]

Upper Bound 100% 0% 95.43 75.20 94.94 95.10
Baseline (SRC-MT) 20% 80% 92.60 67.38 91.92 92.65

SS-DCGAN 20% 80% 91.28 67.72 92.56 92.27
TCSE 20% 80% 92.24 68.17 92.51 92.35
TE 20% 80% 92.70 69.81 92.55 92.26
MT 20% 80% 92.96 69.75 92.20 92.48

SISLD 20% 80% 94.12 75.93 92.87 93.62

3.7. Ablation study

To evaluate and understand the contribution of each critical component in our method, we
implement ablation experiments. The experiments in this section are all performed with
20% labeled data.

Effect of confidence threshold τ . To investigate the impact of the confidence thresh-
old τ , we implemented ablation studies under different scores on the validation set, and let
Pn=700. The corresponding results are shown in Table 3. As illustrated in Fig. 4, as the
increases of τ , the AUC steadily rises, from 92.22% to 92.61%. A similar observation can
be also found on Accuracy score, and increases in pace with the growth of and peaks at
0.90. However, keep enlarging the value of τ will lead to a performance degradation, when
exceeds 0.90, the Accuracy and AUC decrease significantly. When introducing high confi-
dence pseudo-labels of majority class, incorrect pseudo-labels amplify the misperceptions of
model. As a result, we fix the value of τ as 0.90 in the following experiments.
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Table 3: Results of different confidence threshold τ on the ISIC2018.

Threshold
Percentage Evaluation Metrics

Labeled Unlabeled AUC[%] Accuracy[%]

0.75 20% 80% 92.22 93.22
0.80 20% 80% 92.26 93.25
0.85 20% 80% 92.52 93.44
0.90 20% 80% 92.61 93.47
0.95 20% 80% 92.11 93.40

(a) (b)

Figure 4: The influence of confidence threshold τ on accuracy and AUC.

Effect of balanced factor α. SISLD introduce a balanced factor α that control the
distribution of selected pseudo-labels. In Fig. 5, we show how α influence the performance
over generations. In this section, the experiments are all performed with SISLD on ISIC2018
under 20% (1400) labeled data setting. When α= 0, the method falls back to conventional
pseudo-labeling with the distribution of pseudo-labels equals to labeled data. As we can
see, conventional pseudo-labeling strategies have yielded the best results on accuracy. This
is since our strategy forces the model to improving the performance of minority classes.
As the increases of and the number of pseudo-labels, accuracy becomes worse. The main
reason for this phenomenon is that the dataset is imbalanced, and the performance gains
on minority classes are much less than the performance drops on majority classes. In the
other hand, the AUC of conventional pseudo-labeling strategy is always lower than class
balanced strategy. In contrast, when α=0.25, our class balanced strategy can improved the
AUC and maintain Accuracy stability.
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(a) (b)

Figure 5: The influence of balanced factor α on accuracy and AUC.

Effect of loss function. To achieve knowledge distillation, we probe the effect of loss
functions by comparing performance of only self-distillation Lsd, only relation distillation
Lrd and all loss functions. In Table 4, the results show that both Lsd and Lrd bring moderate
improvement upon the fs of SISLD. Our results demonstrated that use only Lsd and only
Lsd can enhance the performance of baseline model in AUC and Accuracy, while Lsd achieve
best performance. However, distillation with both losses did not achieve further significant
improvements. We speculate that the effect of class imbalance was not eliminated during
the self-distillation.

Table 4: Results of different loss function in self-distillation.

Methods
Percentage Evaluation Metrics

Labeled Unlabeled AUC[%] Sensitivity[%] Specificity[%] Accuracy[%]

fs of SISLD 20% 80% 93.98 74.10 92.94 93.41
w/Lsd 20% 80% 94.12 75.93 92.87 93.62
w/Lrd 20% 80% 94.08 75.40 92.27 93.44

w/Lsd + Lrd 20% 80% 94.01 76.21 93.03 93.38

4. Conclusion

In this work, we propose a novel self-improving framework for skin lesion diagnosis. The
proposed framework includes two process. First, we joint consistency regularization and
pseudo-labeling, and achieve superior performance to existing SSL methods. Second, we
utilize the optimal model of pseudo-labeling process to guide the student model of self-
distillation process. By combining two self-improving methods on consistency regulariza-
tion framework, which are pseudo-labeling and self-distillation, our framework improve the
performance of skin lesion diagnosis without additional labels. The overall results on the
ISIC2018 dataset showed that the proposed framework could effectively utilize unlabeled
data and achieve high performance.
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