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Abstract

Multigraph matching is a recent variant of the graph matching problem. In this frame-
work, the optimization procedure considers several graphs and enforces the consistency of
the matches along the graphs. This constraint can be formalized as a cycle consistency
across the pairwise permutation matrices, which implies the definition of a universe of ver-
tex (Pachauri et al., 2013). The label of each vertex is encoded by a sparse vector and
the dimension of this space corresponds to the rank of the bulk permutation matrix, the
matrix built from the aggregation of all the pairwise permutation matrices. The matching
problem can then be formulated as a non-convex quadratic optimization problem (QAP)
under constraints imposed on the rank and the permutations. In this paper, we introduce a
novel kernelized multigraph matching technique that handles vectors of attributes on both
the vertices and edges of the graphs, while maintaining a low memory usage. We solve the
QAP problem using a projected power optimization approach and propose several projec-
tors leading to improved stability of the results. We provide several experiments showing
that our method is competitive against other unsupervised methods.

Keywords: graph matching, kernel, multi-graph matching, non-convex optimization

1. Introduction & Related work

Graph matching is general problem with many applications such as e.g. object recognition
and registration, or shape matching to cite a few. Let G; and G2 be two graphs with
respectively nq, and no vertices. The pairwise matching problem is often cast as a quadratic
assignment problem (QAP), using the Lawler’s formula (Lawler, 1963),

max  vece(X)T Kvee(X) + tr(K"X) , (1)

X€EPny.ny

with Py, n, the set of permutation matrix of size ny x ng, K¥ € R™*"2 the vertex affinity
matrix and K¢ € R™M™2X™M"2 the edge affinity matrix. These affinity matrices can be built
using kernels, then KV and K¢ are both Gram matrix build using respectively a vertex
kernel and an edge kernel (Zhang et al., 2019).
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As K¢ could be a very large matrix, usually the Koopmans-Beckmann’s QAP (Koop-
mans and Beckmann, 1957) is preferred,

max tr(XA;XAs) 4+ tr(K*X) , (2)

€Pnq,ng

with A; and Ay respectively the adjacency matrices of G; and Gs. (2) is a special case
of Lawler’'s QAP with K¢ = A; ® Ay (the Kronecker product between the two adjacency
matrices).

Recently, Zhang et al. (2019) showed that by using specific kernels for computing the
edge affinity matrix, (1) has a more memory manageable writing. Furthermore, their formu-
lation with kernels allows to match a large diversity of graphs, as kernels can easily manage
labels or vectors of attributes. They also propose a regularization scheme combined with a
Frank-Wolfe optimization leading to very good performances compared to state of the art
methods and good robustness to noise both on attributes and structure.

Multigraph matching is an extension of the graph matching problem, where one aims at
matching several graphs at once while enforcing coherence between the vertex assignments.
In order to enforce the coherence, the idea is to search for a cycle consistency (Pachauri
et al., 2013) between the permutation matrices, i.e. if X;; is the permutation matrix
between graphs i and j, for a graph k we have X; ; = X; 1. X}, ;. It is an approximation since
the graphs may not have the same number of vertices.

Pachauri et al. (2013) showed that the cycle consistency property is equivalent to pro-
jecting the vertices into a discrete space. A matching between two vertices means that
they have the same image in this space. The dimension of this space is directly linked
to the diversity of the vertices in the set of graphs. This diversity reflects the attributes
and/or labels that are defined on the vertices. Recent methods like MatchALS (Zhou et al.,
2015) implicitly use it by minimizing the rank the bulk permutation matrix. Some oth-
ers such as HiPPI (Bernard et al., 2019) and GA-MGM (Wang et al., 2020a) directly run
the optimization in the universe of vertex. On the other side CAO (Yan et al., 2015) and
Floyd (Jiang et al., 2020) optimize both affinity and the cycle consistency using a graduated
scheme. MLRWM-multi (Park and Yoon, 2016), a multigraph extension of RRWM (Cho
et al., 2010) is based on a multi-layer approach to ensure vertex consistency. Most of these
methods relies on non-convex optimization as convex relaxation is not trivial (Fogel et al.,
2013; Swoboda et al., 2019) and may lead to inappropriate solutions in some cases (Aflalo
et al., 2015; Lyzinski et al., 2015). While there is now many works using deep learning
methods (Fey et al., 2020; Wang et al., 2020b; Rolinek et al., 2020; Wang et al., 2021; Liu
et al., 2021b) for graph matching only a few tackle the multi-graph matching problem.

In this paper we focus on the unsupervised version of the multigraph matching problem
that is faced in the many applications where no ground truth labeling is available. We
propose an extended version of the framework proposed for KerGM (Zhang et al., 2019)
for multigraph matching with an appropriate projection to fulfill the constraints. The
induced optimization problem is solved using recent non-convex optimization scheme which
guarantees convergence under mild condition. Results on classic data set show promising
results compared to other state-of-art unsupervised methods.

Our main contributions are:
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e An unsupervised multigraph matching method based on Lawler’s QAP which allows
kernel over both edge and vertex attributes while keeping a tractable computer mem-
ory load.

e A flexible algorithm which allows a set of projection power to find cycle consistent
permutation matrices.

e Experiments on real data-sets demonstrating that our approach is competitive with
state-of-art results.

2. Preliminaries about array operations and multi-graph matching

Let {G;}i=1..n be a set of n graphs with Vi,G; = {V;, E; CV; x V;, LY, L¢}, i.e. a graph is
defined by a set of vertices, a set of edges and two functions: L : V + R% which gives the
data vector associated to a vertex and L€ : E — R% which gives the data vector associated
to an edge. We also define 1,, as the identity matrix of size m and 1,, the vector of 1 of
size m. For a matrix X € R™*", we denote for i,j € {1,...,n} by X[i, j] the scalar at line
i and column j, and by X[:, j|] we denote the vector form by column j (and reciprocally for
lines). First we introduce the notion of array operations in Hilbert space, these tools will
be useful to factorize (1) the edge affinity matrices.

2.1. Array operations in Hilbert space

We propose a rapid and simplified introduction to H-operations arrays in Hilbert spaces
presented in Zhang et al. (2019). Let ®, ¥ € R¥*™*™ he 3d-arrays (or 3d-matrices). For
d € R>*™X™ we denote by ®[l,4, j] € R the scalar at coordinates [,4, j and by ®[:,1, j] € R?
the vector at the coordinates 7, j. VX € R™*™ we define the following operations,
1. ®T € R>™*™m with Vi, j, ®[:,4,j] = ®[:,4,4] (i.e. the transpose operation along the
two last axis).

2. &%V € R™*™ where Vi, j,

m m d
[ )i, ] = > (D[syd, k], W[, by gl) =Y 0> @14, K] U[L &, 4] -

k=1 k=1 =

—

3. VX € RXm™m d o X € R™™ where Vi, j,

[® ® X][i, 7] :ZCI) [:,1, k| X[k, j] :ZX D4, k| .
k=1 k=1

Similarly, we define X ® ® € R™*™ where,

m
Vi, 3, [X @ ®][i, j] ZX k, j] -
k=1

The last operator can be read as a parallelized matrix product over the first axis.
We recap several results from Zhang et al. (2019) with the following proposition,
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Proposition 1 (Zhang et al. (2019)) Define the function {.,.) : RIXmXm x gaxmxm _,
R such that Y&, ¥ € R>*™*m (d W) = tr(®T « W). Then (.,.) is a inner product on
REX™Xm and the following equalities are true,

o Let ®, ¥ € R*™*™ e have VX € R™™, (@ ® X, U) = (S, ¥ 0 XT) and (X © ®,¥) =
(0, XToU) .

e VX, Y € R™*™ & € RX™*™ e have, PO X OY =@ (XY), andY © (X © @) =
YX)od.

o Let &, W € R>™X™ e have VX € R™™ (&, U 0 X) = <\I/T *<I>,X> and (&, X © ¥) =
(® %7 X) .

2.2. Building the optimization problem

We assume that the graphs have the same number of vertices m > 0, we add dummy vertices
if necessary. We define the constraints on cycle consistency in Definition 2.

Definition 2 (Cycle-consistency (Bernard et al., 2019)) Let X = {X;; € Prm}i o1
be the set of pairwise matchings in a collection of n objects, where each X; ; is an element

of the set of partial permutation matrices",

Prg = {X € {0,119 © X1, <1, X7 1, < 1.} . (3)

The set X is said to be cycle-consistent if for alli, j,1 € {1,..., k} it holds that: (i) X;; =
I, (identity matching), (i) X;; = XJTI (symmetry), and (iii) X; ;X;; < X5, (transitivity).

The inequalities in this definition allows graphs of different sizes.
From Definition 2, Bernard et al. (2019) formalized the links with the universe of vertices
with the following lemma,

Lemma 3 (Cycle-consistency, universe points (Bernard et al., 2019)) The set X
of pairwise matchings is cycle-consistent, if there exists a collection of rank r {X; € P, :
X1, = Ly}, such that for each X;; € X it holds that X, ; = XiXJT.

Notice that the universe of vertices can be seen as a discrete embedding space for vertices.
From Lemma 3 and using matrix factorization, we build our constraint set as follows,

Cr={X eR™ " : X;; =1p, X;j = XJ; = X; X with X; € Py} . (4)

This formulation implies that X € C, is of rank r.
Let KV € R™™*™" he the full vertex affinity matrix built using a kernel on vertices
where each block K} ; € R™*™ is the Gram matrix of a vertex kernel applied on the data

vectors (through L") on vertices of G; and G;. Let K¢ € R™7*Xmn? 1 the full edge affinity
matrix built using a kernel on edges. Using the Lawler’s QAP, we aim to solve,

max vee(X)T Kevec(X) + tr(KVX) . (5)
Cr

1. All inequalities are element-wise.
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3. Proposed approach

The limitation with (5) is the size of K¢ which may be very large. In order to address this
limitation, we use the framework proposed in Section 2.1 (following the ideas from Zhang
et al. (2019)) to rewrite K¢ by factorizing it using a array ® such that,

vee(X) T Kevece(X) = (# 0 X, X © ) . (6)

To build @, we need to define it for each graph. For graph Gy, let @iXme be defined
as follows,

(7)

By fi, ] Lé(vj,v;) = ¢ j € RY if (vi,v)) € By,
1, 7] =
kL J 0 otherwise .

¢i; is the data vector on the edge (v;,vj). There many way to build these vectors, for
example Gaussian kernels can be approximated using Random Fourier Features (Rahimi
and Recht, 2007) (see also (Liu et al., 2021a) for other kernel approximations). Then
d € RIXWmXnm is given by the 3d-array with the ®;, on the diagonal,

03] 0
® = ©2 (8)
0 :

This formulation has the advantage to be more compact than manipulating the full edge
affinity matrix, since the size of ® is d x nm x nm compare to (nm)? x (nm)? for K¢.
Then we reformulate (5) as

)lglach(X):<<I>®X,X®<I>>—|—tr(KUX). 9)
cCr

This optimization problem is non-convex because of the two constraints (rank and permu-
tation), we need then a dedicated scheme to solve it.

3.1. Optimization scheme

Since (9) is a quadratic optimization problem with non-convex constraints, we use a power
optimization scheme. This scheme has the advantages to have almost no hyper-parameters
and show rather fast convergence rate and the non-convex constraints are deal with a
projector which gives an approximate solution. First we need the gradient of the objective
function in (9).

Proposition 4 The gradient of J in (9) at X is,

VIX)=K'+(@0X)+«dT +dT+« (X0 ) . (10)
Proof Let J = J;+Jy with J1(X) = (0 X, X © ®) and Jo(X) = tr(KVX). By definition
of the gradient we have,

m L (J (X +tE) — 1y (X)) .

(VA ) =
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Using Proposition 1 we have,

JI(X +tE)= (20 (X +tE),(X +tE)0P) ,
=(0OX+tPOE,XOP+tEG D) ,
=(POX,XOP)+t(POE,XOP+tEG D) ,
=(0OX,XOP)+t(POX,EQ®)+t(POE, X0 ®)+

P (@OEEOP) .
From the gradient definition we yield,

(VII(X),E)= (20X, E0®) + (PO E,X0®) ,
={((e0X)*x®"+ 0"« (X ©),E) .

By identification we have VJ;(X) = (& ® X) * ®7 4+ &7 % (X © ®). As the gradient of
Jo(X) =tr(K"X) is VJo(X) = K", we produce (10). [ |

With the gradient we can solve (9) using a power method scheme. The full method is
described in Algorithm 1. Since the gradient is a proxy for the quadratic operator, this
scheme is closely related to HiPPI (Bernard et al., 2019). Assuming that we are able to
solve the projection step, the scheme converges to a stationary point.

Proposition 5 Algorithm 1 produces a monotone sequence and converges to a stationary
point in a finite number of steps.

Proof This proof relies on the same arguments as for HiPPI (Bernard et al., 2019) for its
Proposition 3. Let & = conv(C,) (the convex hull of the constraint set). We can relax (9)
in

max (® © X, X © ®) + tr(K'X) = max vec(X)? K¢vec(X) + tr(K'X),

Xeu Xeu

= min 15(X) — vec(X)T Kvec(X) , (11)

h(X)

with 7, the convex indicator function of set ¢ (i.e. it return 0 for element from U and +oo
otherwise) and K the matrix compound of K¢ with the addition of vec(K™") on the diagonal.
Since (11) is a difference of two convex functions we can apply difference of convex (DC)
programming updates rules (Le Thi and Pham Dinh, 2018) with an initial step Xj,

Vi = Vxh(X) = 2 unvec(Kvec(X;)) ,
Xit1 = argmin 4 (X) — h(Xy) — (X — X, Vi)

= argmin —(X, V}) ,
Xeu

where unvec is the inverse of vec. U is linked with the Birkhoff polytope with the permuta-
tion matrix as extreme points (Maciel and Costeira, 2003; Birdal and Simsekli, 2019). Since
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the maximum of the linear objective over a compact set is attained at its extreme points,
we get,
Xi41 = argmin —(X, V;) |
Xeu
= argmin ||V; — X||% = proje, (Vi)

Xeu
where (X, X) = nm since X is formed from permutation matrices. Then we get from DC
programming property that the sequence {X;}]_, is a increasing sequence for J in (9).
Since C, is a finite set, J is bounded above for any X € C.. Furthermore as Vt > 0, X; € C,,
the increasing sequence {X;}7_, converges to a stationary point. [ |

Algorithm 1: Power method for solving (9)

Input : Affinity vertices matrix K, edges’ data 3d-array ®, tolerance 7, maximal
number of iterations 7', rank r.
Output : X7 the bulk permutation matrix.
Xo — 0;
fort <+ 1to T do
X, VJ(Xy); // Using Proposition 4
Xit1 < proje, (Xi);
if ||Xt+1 — Xt” < 7 then
‘ break;
end
t+—t+1;
end

Complexity of Algorithm 1: The computational complexity of the algorithm mainly
depends on both the computation of the gradient and the projection onto the set of permu-
tations. Since we are dealing with 3d-arrays of size d x m x n the complexity of both * and
® operations is O(d(nm)?). The complexity of the permutation depends on the selected
approach to solve the optimization. We discuss this point in the next section.

Initialization: As many non-convex methods our method is sensitive to the initializa-
tion. For example methods like HiPPI (Bernard et al., 2019) or GA-MGM (Wang et al.,
2020a) cannot start with an uniformly valued matrix. Since they are working in the universe
of vertices, the initialization impacts the projection step and a method like the Hungarian
method will just put the vertex in order (i.e. the vertex 1 will match other vertex 1 and
so on). The algorithm ends-up being stuck in a solution where the permutation matrices
are simply the identity. To avoid such an issue, GA-MGM for example, uses a random
initialization, leading to a non deterministic optimization method. For our method such
initialization is less a problem. If we initialize with the null matrix, the algorithm will only
use the vertex affinity matrix to recover the permutations. Such initialization is relevant if
the affinity is correctly tuned and it makes our method deterministic.

Comparison with closely related methods: While our method is not the first
multi-graph method to include edge attributes, it is the first to propose a tractable way of
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dealing with real-world data. For example, methods like Floyd (Jiang et al., 2020) or deep
learning methods like NGM (Wang et al., 2021) directly work with Lawler’s QAP (1). This
leads to manipulate matrices whose size are quadratic in the number of vertices, so they
only consider pairwise matching for most set of graphs. In comparison, with the arrays,
we are able to manipulate matrices whose sizes linearly depends on the number of vertices.
The cycle consistency constraints can then consider the full set of graphs.

3.2. Projection over the set of constraints

Optimizing on C, is a NP-Hard problem. Furthermore as mentioned in several publica-
tions (Bernard et al., 2019; Shi et al., 2020), most of the approximation methods are very sen-
sitive to the initialization and some require to provide a reference graph (mSync (Pachauri
et al., 2013) for example). Recent methods include:

mSync (Pachauri et al., 2013) uses an eigen decomposition and a reference graph (the
first graph in the algorithm presented in the paper) combined with the Hungarian
method to recover the permutations.

MatchEIG (Maset et al., 2017) is an alternative to mSync with no reference graph but
still combines eigen decomposition with the Hungarian method. As noticed in Bernard
et al. (2021), the cycle consistency is not guaranteed.

Birkhoff-RLMC (Birdal and Simsekli, 2019) uses a probabilistic method to estimate the
permutation matrix from a noisy observation. This method relies on an optimization
onto Riemannian manifold.

IRGCL (Shi et al., 2020) combines several methods to estimate the permutations from a
noisy permutation matrix. This method requires a reference graph for cycle consis-
tency. They also estimate the projection of each vertex in the universe of vertices.

SQAP (Bernard et al., 2021) is based on QR decomposition and a power method to
recover the permutations from a noisy permutation matrix. As in IRGCL, they esti-
mate the projection of each vertex in the universe of vertices and guarantee the cycle
consistency.

Generalized power method (Ling, 2020, 2022) can be seen as an iterative extension
of MatchEIG where the result is refined through a power method scheme. As for
MatchEIG the cycle consistency is not guaranteed.

In this paper, we propose to use three methods: MatchEIG in the version presented in
Algorithm 2, the iterative version of MatchEIG (Algorithm 3) which is a generalized power
method and we expect it to produce better results (Ling, 2020) and IRGCL (Shi et al., 2020).
To avoid the need of a reference graph, we propose to apply IRGCL combined with SQAP for
solving the inner problem of permutation estimation. We apply it on the permutation matrix
estimated by MatchEIG. While IRGCL is more accurate than MatchEIG, its complexity
may limit its scalability to large data-sets. Notice that all these methods require to have a
estimation of the rank r, some are more sensitive to a bad value than others (Maset et al.,
2017) and finding easily a good guess or the optimal value remains an open question.
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Algorithm 2: MatchEIG (Maset et al., 2017) for computing an approximation of the
permutation matrix where EIG(X) is function which computes the eigen decomposi-
tion of X and Hungarian(Z) is the Hungarian method for estimating the permutations

from Z.
Input : Perturbed bulk permutation matrix X, rank r.

Output : X an estimation of the bulk permutation matrix.
UXUT + EIG(X);
U+ UVE;
for i <1 ton do
for j «+ 1 ton do
Z«Ulim: (i+1Dm,1:7) U [jm: (j+ 1)m,1:7];
X; j < Hungarian(Z);
end

end

Algorithm 3: GPow: an adaptation of the generalized power method (Ling, 2020,
2022) for the bulk permutation matrix estimation.

Input : Perturbed bulk permutation matrix X, rank r, tolerance 7, maximal
number of iterations 7.

Output : X an estimation of the bulk permutation matrix.
Zy < MatchEIG(X,r);
for i< 1to T do

Zy < MatchEIG(X Z;_1,7);

if HZt—l — ZtH < 7 then

‘ break;

end

end

X(—ZT;

Complexity: We report here only the complexity of three methods that will be used
in Section 4. As the version of MatchEIG presented by Algorithm 2 is based on an eigen
decomposition and the Hungarian method the complexity is at least O(n’?m3). SQAP
is mostly based on QR decomposition and GPow iterate MatchEIG-like methods. These
methods have a complexity of O(Tn?m?) with T the maximal number of iterations. IRGCL
is at least as complex because it relies on methods like mSync at each iteration. Thus, while
MatchEIG may be the fastest method, the others may lead to better results that fully respect
the cycle consistency.

4. Experiments

We extensively benchmark our method on four data-sets. In addition to a synthetic set of
graphs, we consider two multi-image data-sets that are commonly used for graph matching
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comparison: Willow, PascalVOC?. We compare our method against several state-of-art un-
supervised methods: HiPPI (Bernard et al., 2019), MatchEIG (Maset et al., 2017) (without
the thresholding step), GA-MGM (Wang et al., 2020a) and Floyd (Jiang et al., 2020). We
also compare the performances of our method against three state-of-art supervised meth-
ods for pairwise graph matching: DGMC (Fey et al., 2020), NGM (Wang et al., 2021) and
SIGMA (Liu et al., 2021b). Both methods are based on deep learning to learn the best
representation for matching.

Data-set management: All the computer vision data-sets are provided by pytorch-
geometric®. We directly use the keypoint and their attributes (descriptor and position). For
the construction of the graphs from the keypoints, we follow the procedure from Fey et al.
(2020) where the graphs are built using a Delaunay tessellation with an isotropic distance.
For Willow and PascalVOC, the descriptors are taken for each keypoint from the concate-
nated output of reluj-2 and relu5_-1 on a VGG16 network trained on ImageNet (Simonyan
and Zisserman, 2015).

Kernel setting: For the synthetic graphs experiments we only use linear kernels to
avoid hyper-parameter setting. For Willow and Pascal VOC, we use the Gaussian kernel for
computing the vertices weight as in Bernard et al. (2019). We follow also the same protocol
as in Bernard et al. (2019) to compute the weights on the edges. The weights are computed
using a Gaussian kernel applied to the distance between the vertices and the variance is
given by the median of the minimal distances. As kernel on the edges, we use the Random
Fourier Features (RFF) (Rahimi and Recht, 2007) as proposed for KerGM (Zhang et al.,
2019). For all experiments we take a dimension of 100 for the random features.

Initialization: For all our experiments, we initialize our method using the null matrix,
which is equivalent to an initialization using the projection method on the vertex affinity
matrix.

Dummy vertices: For all experiments we add dummy vertices when the size of the
graphs varies. In practice, we add unconnected vertices with attribute values far from the
legitimates ones (the same for all dummy vertices). These vertices are removed before
computing the score, the vertices that are matched to a dummy vertex are then considered
as unmatched. We thus take such configuration into account when defining the score.

Convergence setting: For Algorithm 1 we set the maximal number of iterations to
100 and the tolerance to 1072. The algorithm stops when one of the conditions is met.
For IRGCL we use the same setting and parameters as proposed in Shi et al. (2020). For
Algorithm 3 we set the maximal number of iterations at 100 with a tolerance of 1073.

Similarity scores: We compute the precision and recall directly from the ground truth
bulk permutation matrix Xy.:x. Let X be the current estimated bulk permutation matrix,
the score are then computed as follows:

<Xtruth - I7 X — I> o <Xtruth - 17 X — I>
5 , recall = 5
”X_IHF HXtruth_IHF
2 x precision * recall

precision =

F1 — score =

12
precision + recall (12)

2. Some statistics on these sets can be found in Fey et al. (2020).
3. https://pytorch-geometric.readthedocs.io/en/latest/index.html
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Figure 1: (left) The robustness of our method compare to MatchEIG following the variance
of the noise. (right) The robustness of our method compare to MatchEIG follow-
ing the maximal number of removed vertices and the variance of the noise.

4.1. Synthetic data-set

We use a synthetic data-set to assess the robustness of our method to different perturbations.
In this purpose we adapt the protocol from Gold and Rangarajan (1996); Zhang et al.
(2019) where the graphs are generated from an Erdds-Rényi model. For this experiment, we
generate graphs with 50 vertices and a probability of edges of 0.05 (also named connectivity
density in Gold and Rangarajan (1996)). For each test, we report the mean value across
20 graphs. For each graph, the attributes of the vertices and the edges are random vectors
built from the uniform distribution ¢/(0,1). The dimension of these vectors is set to 10.

First, we assess the sensitivity of our method with respect to noise on the attributes.
For each graph in the set we compute nine shuffled versions to make a total of 10 graphs.
We add the same additive Gaussian noise on the attributes of the vertices and edges, with
different variances. We set the rank to 50, the number of vertices. We compare our method
against MatchEIG (Maset et al., 2017) where only the vertices are taken into account.
Figure 1(left) shows the evolution of the Fl-score as a function of the variance of the noise.
We show only our results with MatchEIG as projector, we also test with IRGCL and GPow
but they yield similar results, so for visualization purpose we selected only one method. Our
method is more robust to noise since it uses both edges and vertices. It is interesting to
see that it is robust to small and mild noise values while the performance severely degrades
with higher noise levels. Compared to MatchEIG, the robustness likely comes from taking
the edges into account, as long as the attributes on edges are reliable.

Secondly, we assess the robustness of our method against vertex removal. For this,
we remove vertices at random until a maximal number is reached. This means that for
a given set of graphs, the number of vertices removed is not the same for all the graphs
but cannot exceed the specified maximum. The removed vertices are disconnected from
the other vertices and transformed into dummy in order to preserve an equal number of
vertices. We also add different levels of noise on the attributes (same variance for edge and
vertex data vectors). The results are presented by Figure 1(right). In absence of noise,
MatchEIG shows a better robustness to vertex removal. But when we add the noise, our
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Method/Class H Car ‘ Duck ‘ Face ‘ Motorbike | Winebottle
MatchEIG (Maset et al., 2017) 234 | 36.1 | 47.6 19.4 21.1
HiPPI (Bernard et al., 2019) 74.0 | 88.0 | 100 84.0 95.0
GA-MGM (Wang et al., 2020a) || 74.6 | 90.0 | 99.7 89.2 93.7
Floyd-c (Jiang et al., 2020) 85.0 | 79.3 | 100 84.3 93.1
DGMC (Fey et al., 2020) 95.53 | 93.0 | 100 99.4 99.39
NGM-v2 (Wang et al., 2021) 97.4 | 934 | 100 98.6 98.3
Our (MatchEIG) 89.6 | 80.1 | 100 82.0 93.0
Our (GPow) 90.3 | 78.6 | 100 80.7 96.1
Our (IRGCL) 83.5 74.5 100 83.7 93.8

Table 1: Fl-score of the different approaches on the Willow data-set. DGMC and NGM-
v2 are supervised method where the vertices attributes are learned using deep

learning framework. The others methods are unsupervised. We remind that the
IRGCL method is combined with SQAD and initialized with MatchEIG result.

method performs better. Note that the matching quality degrades severely with increased
maximal number of removed vertices. This is expected since removing vertices leads to
changes in the edges and but also in the topology of the graphs.

4.2. Willow data-set

Willow is an image data-set composed of 5 classes of objects. For each class we have a
minimum of 40 graphs with exactly 10 vertices. Here we use the same edge attributes as
in Bernard et al. (2019) where the weights are computed using the median distance between
vertices.

In order to find an appropriate set of hyper-parameters we run a grid-search on the
variance for the Gaussian kernel on the vertices and the parameter of the RFF. The tested
values range from 10 to 100 for an additive step of 10 for the vertices and from 107% to 1
with a multiplicative step of 0.1 for the edges. For each set of values, we take at random
10 graphs from the car class and apply our method to estimate the Fl-score. We repeat
the process 10 times and report the mean of the scores. We use the set with the best mean
score (80 for vertices and 1077 for edges).

We present the results in Table 1. Here we use three methods for the projection onto per-
mutations set: MatchEIG, GPow and IRGCL (with SQAD for the inner optimization step).
For all methods expect MatchEIG we report the score from the articles. For MatchEIG
we used our own implementation. The results show that we are competitive compared to
other state-of-art methods. On the projection side, IRGCL leads to better results on mo-
torbike while GPow is better on winebottle. Between the three methods, MatchEIG gives
the best average results and is a little better than unsupervised state-of-art methods like
Floyd-c (Jiang et al., 2020).

4.3. PascalVOC data-set

PascalVOC is an image data-set composed of 20 classes of objects with key points on each
image. This database is challenging since the number of vertices vary greatly inside a
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Method/Class || Aero | Bike | Bird | Boat | Bottle | Bus | Car | Cat | Chair | Cow
MatchEIG (Maset et al., 2017) 9.0 15.3 15.8 16.8 19.8 23.5 13.3 13.0 11.5 9.4
NGM (unsup) (Wang et al., 2021) 30.8 42.5 44.3 33.8 39.8 52.2 49.2 53.9 27.5 42.4
SIGMA (Liu et al., 2021b) 55.1 70.6 57.8 71.3 88.0 88.6 88.2 75.5 46.8 70.9
DGMC (Fey et al., 2020) 50.1 65.4 55.7 65.3 80.0 83.5 78.3 69.7 34.7 60.7
NGM-v2 (Wang et al., 2021) 61.8 71.2 77.6 78.8 87.3 93.6 87.7 79.8 55.4 77.8
Ours (Eig) 10.7 41.6 24.6 24.3 47.6 31.0 19.0 24.1 14.4 10.4
Method/Class “ Table [ Dog [ Horse [ M-Bike [ Person [ Plant [ Sheep [ Sofa [ Train [ TV
MatchEIG (Maset et al., 2017) 19.2 12.2 9.6 11.7 6.5 20.1 10.6 15.3 28.0 36.5
NGM (unsup) (Wang et al., 2021) 29.3 49.1 45.1 45.1 24.0 48.3 49.9 29.9 70.2 73.3
SIGMA (Liu et al., 2021b) 90.4 66.5 78.0 67.5 65.0 96.7 68.5 97.9 94.3 86.1
DGMC (Fey et al., 2020) 70.4 59.9 70.0 62.2 56.1 80.2 70.3 88.8 81.1 84.3
NGM-v2 (Wang et al., 2021) 89.5 78.8 80.1 79.2 62.6 97.7 77.7 75.7 96.7 93.2
Ours (Eig) 15.4 15.1 15.4 20.3 8.0 60.2 10.6 17.2 48.3 62.3

Table 2: Fl-score of the different approaches on the PascalVOC data-set.

class and there are also outliers. The number of vertices for a graph can vary from 1 to
16. For this data-set with follow the protocol from Fey et al. (2020) (it differs from the
protocol of Wang et al. (2021) as they have different limits for the number of vertices). For
comparison purpose we only use the test sets of each category.

For the hyper-parameters estimations we use the same protocol as for Willow (Sec-
tion 4.2) but using the horse class. The optimal parameter were 60 for vertices and 0.01
for edges. We report the results in Table 2. Except MatchEIG where we use our own im-
plementation, the results of the other methods are taken from the articles. Notice that we
also report the results from NGM-v2 using an unsupervised setting with the same VGG16
data of the vertices. While supervised methods clearly perform better on this set, we are
competitive with the two unsupervised methods. For computational reasons we did not
apply IRGCL or GPow for the projection step. Interestingly while our method generally
outperform MatchEIG, there are some classes where it is the reverse (e.g. tables). This
could be explained by the way the edges are built (Delaunay tessellation). For some classes
we are even better than the unsupervised version of NGM-v2 (bottle and plant).

These results are in line with our experiment on the robustness in Section 4.1. Since
PascalVOC graphs are affected by noise and vertex suppression, our method performs badly
on the most degraded category. Furthermore some categories are only composed by few
graphs, for the test set. The cycle consistency is then insufficient to recover the good
matches.

5. Conclusion and future work

We propose a generalization of the KerGM approach (Zhang et al., 2019) for multi-graph
matching. Our approach allows for more flexibility than previous methods for dealing
attributes on edges. While others methods directly deals with Lawler’s QAP, our approach
relies on more efficient matrices and arrays and can be applied to larger and more complex
data-sets. Contrary to other methods (Bernard et al., 2019; Wang et al., 2020a), we do not
optimize in the universe of vertices, but directly manage the projection onto the permutation
sets. This avoids some common limitations induced by the definition of the universe of
vertices. In addition, our approach benefits from recently published methods to estimate
the projection in reasonable computational times.

The kernel framework is very flexible and allows for specific definitions of the affinity
on vertices and edges. For the edges we only use the classical Random Fourier Feature,
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but one can use more adapted features (Li et al., 2019) while keeping a tractable memory
load. As an unsupervised method, the matching relies essentially on the constraints and the
experiments show it is sufficient to deal with mild level of noise and almost homogeneous,
in term of number of vertices, sets of graphs. Managing more complex sets requires either
supervised learning or additional constraints.

Potential improvements include building a stochastic version of the method in order
to be able to handle very large sets of graphs, for example by adapting stochastic DC
methods (Xu et al., 2019). We also seek to improve the projection step while keeping an
acceptable computational burden.
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