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Abstract

Effective learning in an visual-based environment is essential for reinforcement learning
(RL) agent, while it has been empirically observed that learning from high dimensional
observations such as raw pixels is sample-inefficient. For common practice, RL algorithms
for image input often use encoders composed of CNNs to extract useful features from high
dimensional observations. Recent studies have shown that CNNs have strong inductive
bias towards image styles rather than content (i.e. agent shapes), while content is the
information that RL algorithms should focus on. Inspired by this, we suggest reducing the
intrinsic style bias of CNNs by proposing Contrastive Inductive Bias Controlling Networks
for RL. It can help RL algorithms effectively focus on truly noteworthy information like
agents’ own characteristics. Our approach incorporates two transfer networks and feature
encoder with contrastive learning methods, guiding RL algorithms to learn more efficiently
with sampling. Extensive experiments show that the extended framework greatly enhances
the performance of existing model-free methods (i.e. SAC), enabling it to reach state-of-
the-art performance on the DeepMind control suite benchmark.

Keywords: Reinforcement learning, Contrastive learning, Inductive bias, Style transfer

1. Introduction

Deep reinforcement learning algorithms direct end-to-end training from pixels are promis-
ing and meaningful, which play an important role in the field of control and robotics
(Andrychowicz et al., 2020). Notable success has been achieved in many areas includ-
ing video games (Abadi et al., 2016), autonomous driving (Lillicrap et al., 2015) and robots
(Kalashnikov et al., 2018).

In the past few years, academia has come a long way on tackling the inefficiency of rein-
forcement learning from high dimensional observations(i.e. pixels). Research methods can
be mainly divided into two categories: (i) Auxiliary tasks to help the perception of agents;
(ii) Predicting model of the future world. The former class of methods uses auxiliary tasks
to learn better representations, including alternate tasks (Dwibedi et al., 2018), reconstruc-
tion tasks (Jaderberg et al., 2016) self-prediction (Schwarzer et al., 2020), or contrastive
learning (Srinivas et al., 2020). However, these auxiliary tasks are not directly related to
the goal of training and therefore remove of obtaining the truly needed representations for
RL algorithms.
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Figure 1: Our Contrastive Inductive Bias Controlling (CIBC) Networks. The framework
consists of three main sub-components: a style-transfer network, a content-
transfer network, and a subsequent feature extractor. Two transfer networks
transform the input observations and jointly train adversarially to the subsequent
feature extractor. The feature extractor is trained to help the reinforcement learn-
ing algorithm focus on the truly noteworthy parts of the input information.

For the first category of methods, training a convolutional encoder alongside the value
and policy networks is a frequently used method for visual RL algorithms (Yarats et al.,
2019; Srinivas et al., 2020). However most visual RL algorithms are simple exploitation of
encoders migrated from the field of computer vision. Actually, in contrast to the strong
adaptability of human visual recognition systems, CNNs are vulnerable to different styles
of images among different domains. Recently a series of studies have shown that standard
CNNs have an inductive bias that differs from human vision. It can be explained by the
fact that while people prefer to use content to recognize objects (Landau et al., 1988),
CNNs prefer to use style(i.e., texture) (Baker et al., 2018; Geirhos et al., 2018; Hermann
et al., 2020). For this reason, the encoder composed of CNNs before visual RL tends to
focus on the style of the high dimensional observations(i.e. pixels) rather than the agents’
own information for pixel input in RL. According to the general view, visual RL algorithms
need to acquire some characteristics of the agent itself in the pixels information for training,
which can also be considered as the content of the picture. However, it is the information
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that the encoders prefer less. Since RL algorithms require content information of the agent
from input pixels rather than style information preferred by the encoder, it will definitely
affect the efficiency of visual RL algorithms.

To solve the problem of inductive bias presented in the encoder and the mismatch be-
tween auxiliary task objectives and subsequent tasks, we propose Contrastive Inductive
Bias Controlling (CIBC) Networks for reinforcement learning showed in figure 1. We at-
tempt to eliminate the problem of induction bias by means of adversarial learning. It is a
feasible way to obtain networks that focus on unnecessary information as adversarial tar-
gets by style transfer methods (Nam et al., 2021). The whole framework combines two
transfer networks with contrastive method on top of a feature extractor. Contrastive learn-
ing is a self-supervised learning method, which is introduced into the framework to help
the framework better learn the representations of different transfer network outputs. The
style-transfer network and the content-transfer network work together adversarially to sub-
sequent feature extractor. Both transfer networks and feature extractors are trained with
contrastive learning approaches. The training goal of transfer networks is to make the sub-
sequent feature extractor focus on interfering features such as image style, while the goal
of the feature extractor is to get rid of the interference of the previous two parallel trans-
fer networks. Such a network framework allows the elimination of the inductive bias that
arises when simply utilizing encoders, which in turn improves the efficiency of subsequent
RL algorithms.

This paper makes the following key contribution: We present a simple and highly
portable framework CIBC network, controlling the inductive bias problem of visual RL
algorithms due to the use of encoders composed of CNNs. It has the following advantages:
Firstly, it can be seamlessly integrated with the training pipeline of most previous RL al-
gorithms and does not require the introduction of multiple additional hyperparameters.
Secondly, as a approach of the first type but distinct from previous RL algorithms, it is
closely integrated with the original RL algorithms. Our approach focuses on information
that is more relevant to subsequent RL algorithms: agents’ own characteristics, which is a
proven effective direction worthy of auxiliary missions’ attention.

Our approach substantially improves the sample efficiency of subsequent RL algorithms
with minimal changes to the RL architecture. It obtains state-of-the-art performance over
prior state-of-the-art model-free method DrQ-v2 (Yarats et al., 2021a) across most tasks on
DeepMind Control Suite (Tassa et al., 2018) benchmark in terms of sample efficiency. In
addition, the performance is comparable to that of the model-based methods in some tasks.

2. Related work

In this section, we provide a brief introduction to the relevant work our model build on.

2.1. Inductive biases of CNNs

Baker et al. (2018) presented a trained Deep CNN with object silhouettes that preserved
overall shape but were filled with surface texture taken from other objects, and they found
that the shape cues seemed to play little or none role in the classification of animal pictures.
Geirhos et al. (2018) observed that trained CNNs are more likely to make style-biased
decisions for ambiguous stimuli (e.g. images that are stereotyped as different categories).
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In addition, recent studies have also pointed out that convolutional neural networks perform
poorly when only global shapes are given but local textures are not given (Ballester and
Araujo, 2016; Geirhos et al., 2018). Our work takes inspiration from the tendency of CNNs
to learn image style rather than image content.

2.2. Style Processing

We leverage convolutional feature statistics to realize style processing and build style trans-
fer and content transfer networks. This is attributed to previous work on processing feature
statistics in CNNs to change the image style. Gatys et al. (2015) showed that the feature
statistics of CNN can effectively capture the stylistic information of images. Huang and
Belongie (2017) proposed Adaptive instance normalization (AdaIN) and demonstrated that
tuning the mean and variance of the convolutional feature map can easily alter the style
of the image. Nam et al. (2021) proposed Style-Agnostic Networks to reduce the style bias
and made the model more robust under domain shift. An auxiliary style-biased network
Gs was built in this network utilizing a content randomization module which was also a
variant of AdaIN. Karras et al. (2019) proposed Style-GAN and obtained impressive image
generation results by repeatedly applying the AdalN operation in the generative network.

2.3. Contrastive Learning

Contrastive Learning refers to learning representations that are subject to similarity restric-
tions. The framework is usually structured according to similar and dissimilar pairs. It can
be understood as a dictionary lookup task, where positives and negatives represent a set
of key corresponding to the query(or anchor). A classic application scenario of contrastive
learning is instance discrimination (Wu et al., 2018). If the query and the key value are data
augmentations of the same instance(i.e. image), then they are positive or negative pairs.
There are some kinds of loss functions to choose from in contrastive learning. Van den Oord
et al. (2018) proposed InfoNCE and achieved strong performance on four distinct domains:
speech, images, text, reinforcement learning in 3D environments. Triplet was proposed by
Wang and Gupta (2015) and Chopra et al. (2005) have proposed Siamese before.

2.4. Visual Reinforcement Learning

Inspired by the success of representation learning in computer vision, auto-encoders are
applied to some visual reinforcement learning and have proven to be successful in practice.
Works like SAC-AE (Yarats et al., 2019), SLAC (Lee et al., 2020) prove the validity of
this idea in visual RL. In addition, other methods of self-supervised learning have been
introduced to this area, such as contrastive learning in CURL (Srinivas et al., 2020) and
ATC (Stooke et al., 2021), contrastive cluster assignment in Proto-RL (Yarats et al., 2021b)
and data augmentation in RAD (Laskin et al., 2020), DrQ (Kostrikov et al., 2020) and Drqg-
v2 (Yarats et al., 2021a). Ye et al. (2021) proposed a sample efficient model-based visual
RL algorithm EffientZero achieves 190.4% mean human performance and 116.0% median
performance on the Atari 100k benchmark. All these methods mentioned above have greatly
reduced the gap between state-based RL and image-based RL. As a representative of the
excellent and clever model-free approaches to Visual RL, Drq-v2 (Yarats et al., 2021a) has
obtained state-of-the-art performance on DeepMind Control Suite (Tassa et al., 2018).
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3. Background

3.1. Reinforcement Learning from Pixels

Image-based control can be expressed in terms of an infinite-horizon partially observable
Markov decision process(POMDP) (Bellman, 1957; Kaelbling et al., 1998). The tuple
(O, A, p,r,v) can be used to describe POMDPs. O represents a high-dimensional obser-
vation space(i.e. images). A represents the action space, and p is the transition dynamics
p = Pr(0}|o<t, at), which means the probability distribution of next observation o, consider-
ing the previous observations o<; and current action a;. r is a reward function which maps
the current observation and action to a reward r : O x A =R. v € [0,1) is the discount
factor. The goal of our training is to find the most appropriate policy m(a;|s;) to maximize
the cumulative discounted return E, = rg + Z;’i 1 ~ry.

3.2. Soft Actor Critic Algorithm

SAC (Haarnoja et al., 2018) is an off-policy model-free RL algorithm that aims to find the
optimal policy to maximize the expected maximum-entropy trajectory returns for MDP
(S,A,p,r,v). SAC is a variant of actor-critic method which learns a policy 7, and two
critics Qg,,Q¢, during the training process. SAC works well when the task input is from
state observations, but fails to learn effective policies from pixels.

3.3. Contrastive Learning

One of the main innovations of our method is to introduce contrastive learning into the
training process of the networks. Through contrastive learning, the networks can improve
the ability to discriminate the style and content of high-dimensional information, so as
to shift attention to where RL algorithms need to pay attention. Contrastive learning
(Hadsell et al., 2006; LeCun et al., 2006; Van den Oord et al., 2018; Wu et al., 2018) often
is interpreted as learning a dictionary lookup task. A query g¢(also referred to as anchor
in contrastive learning), keys IK = {ki, ko,... }(also referred to as target in contrastive
learning) and the partition of K : P(K) = ({k4}, K\{k+}) (positive and negative) are
given for contrastive learning. The objective of contrastive learning is to guarantee that ¢
matches k, with a relatively higher degree than any key in IK\{k,}. Dots products(q” k)
(Wu et al., 2018; He et al., 2020) and bilinear products (Van den Oord et al., 2018; Henaff,
2020) are the most widely used models of the similarity between the anchor and the target.
We use the InfoNCE loss (Van den Oord et al., 2018) as a criterion for contrastive learning:

T
Ly = log exp(q Vlgﬁ) W
exp(¢TWky) + 3,00 exp(¢" Wky)

The equation 1 can be interpreted as the log-loss of the K-way classifier whose correct label
is k?+.
4. Contrastive Inductive Bias Controlling Networks

We propose a Contrastive Inductive Bias Controlling Networks to help RL algorithms to be
able to focus more on the agents’ own characteristics with high-dimensional input informa-
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tion rather than on other distracting information of pictures (e.g. style). It contains three
main sub-components: a contrastive style transfer network, a contrastive content transfer
network, and a feature extractor. By confusing the original image randomized style and
other images randomized the same style, the style transfer network is encouraged to apply
higher attention to the image style during training. For the content transfer network, it
is also encouraged to apply higher attention to the image style during training, by dis-
criminating between the original image randomized intermediate content and other images
randomized with the same content but different styles. These two networks are trained
together adversarially to make the feature extractor less style-biased. In this work, the
statistics of CNN features are used as stylistic representations, and spatial configurations
of CNNs are utilized as content representations. The main method of contrastive learning
used in the article is instance discrimination.

4.1. Contrastive Style Transfer Network

In the contrastive style-transfer network, we implement the style transfer through the style
randomization module. The style randomization(SR) module interpolates feature statistics
between different inputs, thus randomizing the style. In the training process, the original
image is used as the anchor, the original image with the style transfer is used as the positive,
and other chosen images with the same style transfer are used as the negative. The InfoNCE
loss (Van den Oord et al., 2018) of contrastive learning is calculated and its opposite is taken
as the training loss function of the style transfer network, which reduces the similarity
between the original image and the transformed image that has the same content with it
but undergoned style transfer. In this way, the style transfer network is encouraged to
focus more on the style of the images, so that to make the subsequent feature extractor less
style-biased.

Given an initial input image x and another image 2’ chosen at random. We input them
to the feature extractor of style transfer network Gy, to obtain the intermediate feature
layer y and ¢/ € RP***W_ where H and W are the dimensions of spatial space. D is
the number of channels. And then we calculate the mean and standard deviation for each
channel p(y) and o(y) € RP:

1 H W
sz_:lth (2)

H W
o) =\ i Do 3 = )+ )

€ is a small value preventing a standard deviation of 0. The style randomization mod-
ule uses the calculated mean and standard deviation to perform a style transfer through
adaptive instance normalization (AdaIN) (Huang and Belongie, 2017), and then obtain the
intermediate feature maps SR(y,y’) after transfer:

(4)
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N @)y
SR(y,y') =6 ( ) )+ [ (6)
a € (0,1) is an interpolation weight. Afterwards, the obtained intermediate feature maps
are fed into the subsequent feature extractor. And then processing the obtained style
transformed images with the instance discrimination method of contrastive learning.

Due to the brittleness of RL algorithms (Henderson et al., 2018), complex discrimination
may destabilize RL algorithms. In addition, it may also reduce the efficiency of RL algo-
rithms. We therefore use a simple instance discrimination, which can be considered as the
maximization of the mutual information between the original image and the transformed
image. Input the intermediate feature maps of the original image y and the obtained in-
termediate feature maps of transfered images SR(y,y’) to the subsequent feature extractor
Gy and get their intermediate feature maps z and 2’

z=Gys(y) = Gf(Gy,(2)) (7)
SR(z,2') = Gy(SR(y,v')) = Gy (SR(Gy,(x), Gy, (")) (8)

Taking the intermediate feature maps of original image z; as the anchor, the intermediate
feature maps of transformed original image SR(z;,2') as the positive, and other images
with different contents but suffered the same style transfer SR(z;(;), 2') as the negative.
Referring to the form of the formula for InfoNCE loss 1, we can obtain the optimization
objective of the contrastive style transfer network as:

exp(zi - W - SR(z;,2"))
xp(zi - W - SR(2i,2")) + 225520 €xP(2j - W - SR(z5,2"))

(9)

max L. = lo
Gfs styie ge

The above optimization objective can be viewed as minimizing the mutual information
between the original image and the transfer image, and maximizing the mutual information
between different images with different content but undergoned the same style transfer. This
optimization objective will allow the contrastive style transfer network to exert a stronger
attention on the style and thus rely on the style to make decisions.

4.2. Contrastive Content Transfer Network

In order to make the feature extractor unable to recognize the information of the agents’
own characteristics in pictures, we also use a contrastive content transfer network to make
the subsequent feature extractor unable to distinguish the content information in pictures.
The contrastive content transfer network uses a content randomization module. It will keep
the style of the picture but change its content.

For an input z and another image z’ chosen at random, we input them to the feature
extractor of content transfer network Gy, and get their corresponding intermediate feature
maps y and y’. AdaIN method is used to get the content of ¢/ and preserve the style of y:

CR(y.y) = oly) - (W) T uly) (10)

This can be considered as a transformation of the content of original image x. Afterwards,
similar to the style transfer network, the obtained intermediate feature maps are input
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to the subsequent feature extractor Gy and get the subsequent intermediate feature maps
noted as z and z’.

CR(z, ") = G;(CR(y,¢)) = G(CR(G. (), Gy (2))) (11)

Taking the intermediate feature maps of original image z; as the anchor, the intermediate
feature maps of transformed original image C'R(z;,2') as the positive, and other images
with different styles but suffered the same content transfer as the negative, denoted as
CR(2;j(j£i), #')- The optimization goal of the contrastive content transfer network is:

min L =1lo exp(z; - W - CR(z;,2'))
Gy, ot & exp(zi - W - CR(2i,2')) + X500 exp(z5 - W - OR(z, 7))

(12)

The optimization goal above can be considered as maximizing the similarity of the original
images and their transformed editions with content transfer, so that the contrastive con-
tent transfer network pays less attention to the content of pictures and more attention to
other distracting information in pictures (e.g., style). In this way the feature extractor of
the content transformation network Gy, is trained adversarially to the subsequent feature
extractor Gy.

Algorithm 1 Optimization Process of CIBC Networks

Input : Total number of environment steps T, transfer update interval T, encoder update
intervals T, replay buffer D

Output: Actor network, Q network

for each timestep t +— 1 to T do
ap ~ m(-[st), sp ~ p(-|st, ar)
D+ DU (st,as,7,8;)
if t%T, == 0 then
| UpdateStyleNetwork(D), UpdateContentNetwork(D)
end

if t%7Ty == 0 then
| UpdateEncoderNetwork(D)
end

UpdateCritic(D), UpdateActor(D)
UpdateEncoderNetwork(D)
end

4.3. Feature Extractor Implementation

The feature extractor G is trained to fool the prior contrastive style transfer network and
contrastive content transfer network. So its training goal is to distinguish between the
original image and the transformed image, and then extract the really needed information
from RL algorithms. So one part of its optimization goal is exactly contrary to style transfer
networks, to maximize the similarity between original images and their style transformed
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Algorithm 2 Optimization Process of Transfer Networks

Input : mini-batch size N, replay buffer D, feature extractor of style transfer network G/,,
feature extractor of content transfer network Gy, , subsequent feature extractor
Gy, replay buffer D

procedure UPDATESTYLENETWORK(D)

/ N
(80, a4, 3i+1)¢:1 €D

for each i=1,...,N do
zi = Gyyi) = Gp(Gy,(si))
SR(zi,2') = Gp(SR(y,y)) = G§(SR(Gy, (), Gy, (2')))

L —1o exp(z;-W-SR(z;,2"))
style = 108 exp(zi W-SR(2:,2"))+ 2 ; (20 exP(z;-W-SR(z5,2"))

93 - 05 + )\s . vﬁsLstyle

end
procedure UPDATECONTENTNETWORK(D)
(85, a4,, S;-&-l)ﬁ\; €D
for each i=1,...,N do
zi = Gyp(yi) = Gy(Gy,(si))
CR(z,2') = G;(CR(y,y')) = Gy(CR(Gy,(2), G, ()

L —1o exp(zi-W-CR(z,%"))
content = 108 exp(zi- W-CR(2:,2"))+2 (j 24y exp(z;-W-CR(2;,2"))

ec = 90 - >\c ' Ves Lcontent

end

editions, because the content of the images is of most interest to the feature extractor does
not change:

;. . i
min Lagy, = log exp(zi - W - SR(z;, 7))

1
Gy W exp(zi - W SR(zi, 2')) + 30 exp(z - W - SR(z;, 7)) (13)

At the same time, it also has to get rid of the interference of the content transfer network
and make effective judgments on the output of the contrastive content transfer network.
Since InfoNCE lossl can be considered as a log loss function for k classification with label
k4. This part of the optimization goal is to out a uniform distribution prediction for images
that have undergone content transfer networks. We can obtain the optimization objective
as follows:

exp(z;W - CR(z;,2')) 1

Snin, Ladv, = log R K +1) (14
exp(zW - CR(%,2'))+ > exp(z;W - CR(zj,2"))
J(j#1)

Finally, the total optimization objective of the feature extractor can be expressed as:

GHfl}{r/[l/ Liotar = M+ Ladv, + A2 - Ladw, (15)
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A1 and Ao are adjustable coefficients to control the trade-off between the content and style
biases.

4.4. Implementation Details

Our Contrastive Inductive Bias Controlling(CIBC) Networks can be easily integrated with
existing RL algorithms. In this paper we integrate it with SAC. The input images are fed
into the contrastive style transfer network and contrastive content transfer network respec-
tively. These two networks are updated alternately with the subsequent feature extractor.
The features obtained after the feature extractor are input to subsequent policy and value
networks for the update of RL algorithms. The gradients updated by RL algorithms are
also back-propagated to the feature extractor to guide the update of the feature extractor
together. Algorithm 1 summarizes the whole process of CIBC Networks training. Algorithm
2 summarizes the optimization process of two transfer networks. Considering the training
time of the algorithm, we found that T of 100 can also be used to guide RL algorithms well
and does not have a significant impact on the clock time.

5. Experimental Study

In this section, we evaluated our algorithm on visual continuous control tasks from DMC
(Tassa et al., 2018), which is a widely used benchmark for sample efficiency. We compare
our method with the previous model-free methods and model-based methods in terms of
sample efficiency and perform the ablation experiment of the algorithm afterwards.

5.1. Setup
5.1.1. ENVIRONMENT

The experimental results were evaluated mainly on the Mujoco(Todorov et al., 2012) task
provided by DMControl suite. DMC offers a wide variety of tasks with different levels of
difficulty. Lots of model-free approaches proposed to improve sampling efficiency have been
experimented on this benchmark, giving us sufficient baseline for comparison.

5.1.2. TRAINING DETAILS

In the experiments, the input is a stack of 3 consecutive RGB images of size 84 x 84, stacked
along the channel dimensions. Each evaluation query was averaged over last 10 episodes
returns. In all graphs, we draw the average of the 10 seeds’ performance, as well as the
shaded area representing the 95% confidence interval. The complete training details and
hyperparameter settings are recorded in Appendix A.

5.2. DMC Experiments Compared to Model-Free Methods

According to common practice, we use real environment steps to compare the performance
of different algorithms on the task and thus are not affected by the action-repeat hyperpa-
rameter. Some tasks that included sparse rewards are excluded (e.g. acrobot and tetrapods)
because they require modifying the SAC algorithm to incorporate multi-step returns, which
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Figure 2: The DMC benchmark consists of 15 selected control tasks that offer various chal-
lenges, compared to other model-free methods. Our framework combined with
SAC algorithm outperforms the previous state-of-the-art algorithm DrQ-v2 in
most experimental environments.
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Figure 3: The DMC benchmark consists of 6 selected control tasks that offer various chal-
lenges, compared to Dreamer-v2, a model-based method

is beyond the scope of this work. In figure 2, We compare our approach to several state-
of-the-art model-free RL algorithms for visual RL, including CURL (Srinivas et al., 2020),
DrQ-v2 (Yarats et al., 2021a), and vanilla SAC (Haarnoja et al., 2018) augmented with
the convolutional encoder of SAC-AE (Yarats et al., 2019). The experimental result shows
that our algorithm achieves the best performance on most experiments environments. In
Appendix B, we also evaluate our algorithm on the commonly used benchmarks based on
the DeepMind control suite, namely the PlaNet (Hafner et al., 2019).

5.3. DMC Experiments Compared to Model-based Methods

We also compare our algorithm with a model-based approach Dreamer-v2 (Hafner et al.,
2020), which is a very advanced model-based approach. It tends to obtain better sample
complexity through a larger computational footprint. Due to hardware constraints, we
perform a performance comparison between Dreamer-v2 and our algorithm on a limited
number of tasks. In figure 3, although our algorithm is a model-free approach, it still
exhibits a performance on some tasks that can compete with the advanced model-based
algorithm Dreamer-v2 in terms of sample efficiency.

5.4. Ablation Studies

In figure 4, we show the results of the ablation experiments. The two transfer networks in
the structure are masked separately. The result shows that the final effect of our algorithm
is boosted by the synergy of the two transform networks, and any structure that keeps only
a single transform network significantly reduces the experiments result in terms of sample
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Figure 4: Ablation experiments: The results of the experiments without the style transfer
network, without the content transfer network and the full version of the algo-
rithm on the same task were tested separately. The experimental results show
that the elimination of any of the structures significantly reduces the sampling
efficiency.

efficiency. (The result of removing all of the two transform networks can be considered as
the result of SAC+AE in figure 2).

6. Conclusion

In this work, we propose a migration-friendly framework: Contrastive Inductive Bias Con-
trolling Networks for RL algorithms. It combines with SAC algorithm achieving state-of-
the-art performance in terms of sample efficiency on most tasks on DMC. It demonstrates
excellent performance on a continuous control environment by controlling the inductive
bias with minimal changes to the RL algorithms. Besides, outstanding experimental results
demonstrate that inductive bias in visual RL algorithms severely affects sample efficiency.
It is a noteworthy direction for future study in visual RL. Due to its good portability, we
believe that this antecedent framework can help RL algorithms achieve real deployments of
RL in areas where sample efficiency is important, such as the real world.
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