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Abstract

Most existing trackers based on spatial-temporal regularized correlation filters exploit re-
sponse map variation to adapt regularization terms to object appearance changes automat-
ically. However, these trackers ignore the high uncertainty of the response map when the
object is occluded or similar objects around, making them unable to learn reliable filters
accurately. Furthermore, most correlation filters use linear interpolation directly to up-
date the filter model at each frame, which may cause model degradation once the tracking
result is inaccurate or missing. In this work, we propose a novel probabilistic adaptive
spatial-temporal regularized correlation filters (PASTRCF) to solve the two issues men-
tioned above. A probabilistic model constructing the reliability of the response map is
introduced to accurately utilize the information in the response map to learn regulariza-
tion coefficients adaptively. The adaptive threshold mechanism provides an appropriate
strategy to update the filter model to alleviate model degradation. Extensive experiments
on UAV benchmarks have proven the favorable performance of our method compared to
the state-of-art trackers, with robust tracking while ensuring real-time performance.
Keywords: UAV Tracking, Spatio-temporal regularization, Correlation filters.

1. Introduction

Visual tracking is a fundamental and challenging computer vision problem (Yilmaz et al.,
2006), and it has been widely applied in numerous fields, especially in unmanned aerial vehi-
cle (UAV) applications, where it has been used for aerial cinematography, people following,
traffic patrolling, and wildlife rescue. However, robust and accurate tracking has remained
a challenging task (Fu et al., 2022) due to fast camera motion, small objects, background
clutter, large occlusion, and similar objects around et al.

There are currently two main research focuses in the object tracking field: correlation
filter-based methods and deep learning-based algorithms. The power capacity and compu-
tational resources of UAVs are limited. Deep learning-based tracking methods (Li et al.,
2018a; Danelljan et al., 2019; Dai et al., 2020) require a high computational load due to
complex deep features, which reduces the tracking speed and makes it hard to meet the
real-time demands of UAV tracking. Correlation filters (Bolme et al., 2010; Henriques
et al., 2012) use handcrafted features and convert the complicated correlation operations
to element-wise multiplications in the frequency domain, which reduces the computational
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complexity and significantly improves the tracking speed. Therefore, correlation filters can
meet the real-time demands of UAV tracking.

Although the early correlation filters are effective, two major imperfections exist bound-
ary effect and filter degradation. Danelljan et al. (2015), Galoogahi et al. (2017) and Li
et al. (2018b) exploited predefined spatial regularization constraints to alleviate the bound-
ary effect, but these constraints are fixed and cannot adapt to various changes. To solve
this issue, Huang et al. (2019), Pu et al. (2020) and Li et al. (2020) utilized response maps
to adapt regularization coefficients. However, the high uncertainty of response maps is ig-
nored, which cannot accurately describe the similarity between the object and appearance
model when encountering occlusion and similar objects around (see Fig. 1). Temporal reg-
ularization (Li et al., 2018b; Dai et al., 2019; Li et al., 2020; Zhang et al., 2021) is applied to
mitigate model degradation, but these trackers use a linear interpolation update strategy,
which still leads to model degradation due to occlusion or inaccurate tracking results.

In this work, we develop a novel tracking approach that resolves the abovementioned
problems,i.e., the PASTRCF tracker. A probabilistic model and an adaptive threshold
mechanism are introduced respectively for measuring the reliability of response maps to
adapt regularization terms and for providing appropriate update strategies to mitigate
model degradation. PASTRCF performs favorably compared with the state-of-the-art track-
ers while meeting the real-time demands of UAV tracking. The contributions of this work
can be summarized as follows:

e A new probabilistic model describing the reliability of response maps is proposed,
which could accurately exploit the information in response maps to efficiently learn
adaptive regularization terms and obtain more reliable filter coefficients.

e An adaptive threshold mechanism is introduced to assist model update, which alle-
viates the model degradation caused by inappropriate model update strategy in the
case of occlusion or inaccurate tracking results.

e QOur tracker is evaluated on the UAV benchmarks UAVDT and DTB70. Extensive
experiments show that PASTRCF, which achieves very remarkable performance with
a real-time speed, can effectively solve the challenging problems of fast camera motion,
small objects, similar objects around, and large occlusion in UAV scenes.

2. Related Work

Correlation filters (CF) have been widely used in UAV tracking recently. MOSSE (Bolme
et al., 2010) is the earliest CF-based tracker, which used only grayscale samples to train the
filter. Henriques et al. (2012) exploited cyclic shift samples and introduced kernel functions
to optimize the filter coefficients in the frequency domain efficiently. Henriques et al. (2015)
extended CSK to multi-channel HOG features to enhance the feature representation ability.
Similarly, Danelljan et al. (2014) introduced the color naming features to achieve robust
tracking. To cope with scale variation, Danelljan et al. (2017b) and Li and Zhu (2015)
utilized multi-scale searching strategies to adapt scale estimation.

The boundary effect caused by cyclic shift samples reduces the recognition ability of fil-
ters. To address this issue, Danelljan et al. (2015) used spatial regularization weights, and
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Galoogahi et al. (2017) extracted more realistic training samples from the background to
alleviate the boundary effect effectively. Both spatial constraints have been extensively stud-
ied (Lukezic et al., 2017; Galoogahi et al., 2017; Mueller et al., 2017). Li et al. (2018b) intro-
duced a temporal regularization term to alleviate model degradation. However, these track-
ers used constant regularization terms, which cannot adapt to object appearance changes.

Since 2019, most researchers have focused on adaptive spatial-temporal regularization
coefficients to adapt object appearance automatically. Dai et al. (2019) learned reliable
spatial weights for specific object appearance variations. Li et al. (2020) fully exploited
response map variation to learn automatic spatial-temporal regularization terms. Chu et al.
(2021) proposed a re-detection strategy and anti-occlusion method based on AutoTrack to
achieve better performance. However, the high uncertainty of response maps is ignored,
and they all use linear interpolation strategies to update the filter model. Unlike the above
studies, we propose a probabilistic model, which measures the reliability of response maps, to
learn more reliable spatial-temporal regularization terms and develop an adaptive threshold
mechanism to provide an appropriate model update strategy, improving tracking robustness.

3. Proposed Method

In this section, the probabilistic model describing the reliability of response maps is intro-
duced in section 3.1, which fully exploits the foreground and background information of
response maps to adapt regularization coefficients accurately. A dynamic threshold mech-
anism is proposed as an update strategy to assist model update in section 3.2.

AutoTrack PASTRCF

PASTRCF —— AutoTrack

Image

Figure 1: The Visualization of the high uncertainty of response maps.

3.1. Probabilistic Model

Response maps contain information regarding the resemblance of the current object and
the appearance model. However, the response map will become highly uncertain when the
object is occluded or similar objects around. As shown in Fig. 1, the first row depicts a
challenging sequence with multiple distractors. Due to their similarity and proximity, the
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response map generated by AutoTrack has many high response locations, which causes it
briefly fail by jumping to a distractor object. In the second row, due to occlusion, the
response map of AutoTrack is highly uncertain, providing an ambiguous and inaccurate
choice to localize the object. Unlike AutoTrack, we proposed a probabilistic model to
accurately capture the uncertainty in ambiguous cases and provide a strong secondary
mode in the object center with a high response in the actual object position.

We learn the reliability of response maps using a Bayesian classifier from color distribu-
tions of the object and background region of the response map. Let Rg denote the object
region of the response map, and Rp denotes the background region of the response map.
Given a search region O, the probability of pixel 8 in the object region of the response map
is computed as follows:

_ P(i|0€Re)P(0€Ra)
S ocrorm P10€0)P(0€0)

where i denotes the bin of color histograms, H; (X) denotes the bin i in the color his-
togram H (X) of response map, | C | is the cardinality of region C. To improve computational
efficiency, we approximate the likelihood terms based on the distribution of color histogram
(Possegger et al., 2015):

P (0 € Ra | 1) (1)

P(0 € Rg) ~ |[Rcl/(IRc| + |RsI)
P(i]| 6 € Rg)~ H;i (Ra)/[Ra| (2)
P(i| 0 € Rp) = H; (Rp)/|Rs]

Therefore, the reliability of pixel 6 in the response map can be simplified as:

P (0 € Rg | i) = H; (Re)/(H; (Re) + H; (Rp)) (3)

Finally, by solving (3), we can get a probabilistic matrix that describes the reliability
of each pixel in the response map, which can be used to learn effective regularization terms
and obtain more robust filter coefficients in the training phase.

3.2. Adaptive Threshold Mechanism

Most existing trackers update filter models at each frame without considering whether
tracking results are accurate or not, which causes model degradation once severe occlusion or
inaccurate tracking results exist. Wang et al. (2017) introduced Average Peak-to Correlation
Energy (APCE) to solve this problem, which indicates the fluctuated degree of response
maps and the confidence level of detected objects. It is defined as follows:

’Fmax - Fmin’2

APCE = mean (Zw,h (Fyn— Fmin)2>

(4)

Where Frax, Fmin and Fy ;, denote the maximum, minimum and the w-th row h-th
column elements of the response map. The historical average response values are generally
chosen as the APCE threshold. The filter will be updated when APCE is greater than the
threshold, which indicates the tracking result is accurate and the object is not occluded,
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otherwise, the update is stopped. Although this method is effective, the variation tendency
between adjacent frames is neglected and the single threshold cannot update the filter
model adaptively. For this, the APCE of the last three frames is used to design a dynamic
threshold mechanism in our work for updating model adaptively. The dynamic threshold
of the i-th frame is designed as follows:

6
—a 1
Fihreshold = < (Oé —|—e) X ) X 105, (M = g Z APCE(I)) (5)
i=t—2
When objects are occluded continuously, or inaccurate tracking results exist, M will
decrease and the threshold will increase to avoid updating model, which prevents the filter
model from being polluted and alleviates model degradation.

4. Tracking Approach

In this section, we introduce the overall tracking process of the proposed method. The main
structure can be seen in Fig. 2. We will introduce the objective function used to train the
filter model in section 4.1 and its optimization step is shown in section 4.2. Then, the object
localization and model update will be shown in section 4.3 and section 4.4 respectively.
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Figure 2: The flowchart of our proposed PASTRCF tracker. Our proposed probabilistic
model combined with response map variations is used in the filter training phase
to learn a robust filter. The trained filter is exploited in the detection phase to
obtain the tracking response map and localize the object. The response maps of
the last three frames are exploited to design the adaptive threshold mechanism,
which is used in the model update phase to update the filter effectively.
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4.1. Objective Function of Our PASTRCF Model

Our baseline AutoTrack: Li et al. (2020) fully exploits the hidden local or global infor-
mation in response maps to adapt the spatio-temporal regularization term and learns the
correlation filter by minimizing the following objective function:

E (Htaut

th * hk

Where y € RTX! is the desired response output, xf € RT™!(k = 1,2,3,...K) is the
extracted feature with length T in frame t, and K denotes number of channel. h¥, h¥ | €
R™T*1 denote the filter of the k-th channel trained in frame t and frame t-1 respectively, H; =
[htl, hf, hg’, . ,hlt‘], it is temporal regularization coefficient, @, i denote automatic spatial
regularization parameter and reference temporal regularization parameter respectively, *
represents correlation operation, o is element-wise multiplications operation.

Although AutoTrack has achieved advanced performance on UAV benchmarks, there are
still two limitations: 1) the high uncertainty of response maps is not taken into account when
occlusion or similar objects around, and 2) there exists model degradation due to updating
the model at each frame without considering whether the tracking result is accurate.

Our Objective Function: Motivated by AutoTrack and combined with the proba-
bilistic model that we introduced in section 3.1, our objective function is defined by:

+5 ZHwoh“H +’““2Hh“ g s — 1 (6)

E(Hta/J“t) =z

> (7)

2
1, + 2 e — fll5

Where P is the probability matrix obtained by our probability model, which describes
the reliability of each pixel in the response map. By exploiting the response probability of
the previous frame, we can obtain a more efficient filter model at the current frame.

4.2. Model Optimization with ADMM
For effective optimization, we introduce an auxiliary variable gk by ordering g = v/ TFPTh¥
((} = [g%7 82,83, ,gf] ), where F € CT*T represents the orthogonal matrix to convert any

T-dimensional vectorized signal into the Fourier domain, X represents the discrete Fourier
transform form of X. Then we can express the objective function (7) in frequency domain:

K 1 K
_Zf(};ogt —|—52Hwoth
k=1

k=

1
+ & ||o/TEPT) (A ) g e 3

2
N 1
E (Hth, Gt) = 5

(8)
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(8) can be solved by alternating direction method of multipliers (ADMM). The Aug-
mented Lagrangian form of (8) can be formulated as:

K

~ ~ ~ 2

Lt (HtautaGtth) =E (HtautaGt> +% § g‘}c{ -V TFPTh};H2
k=1

) i )
+> (8 = VTFPTHE) il
k=1

Where M; = [y, Mo, ..., 1] € RTXK is Fourier transform of Lagrange multiplier, ~y is
the step size of regularization parameter. By introducing vi = m¥ /v (Vk = [vtl, V2, ... ,VF] ),
the optimization of (9) is equivalent to solving (10).

K
~ ~ ~ 2
Lt (Hta Ht, Gtavt> == E (Htalu‘ta Gt) + l A‘]E{ - \/TFPTh%:( + ‘Af‘];( ’2 (10)

2

Then, the ADMM algorithm is adopted by alternately solving the following subproblems.
Subproblem G: if H¢, ¢y and Vy are given, the optimal G* can be obtained as:

“ >3 — VTFPTRY + ¢k

(11)
It is difficult to solve (11) directly due to its high complexity. So we consider processing
on all channels of each pixel and reformulate our formulation as

th Ogt

G*—argmm{ A 1” +

\
<
IS
——

1 () =smmmind i1 ()1 (60) [ ovmimy= (o ) - (60)
el (@)« () - (vreetn)

(12)
Where II; ( ) € CKX1 denotes the vector of all K channels values on pixel j (j=1,2,3,...
,T). The derlvatlon of (11) can use Sherman Morrison formula to obtain analytical solution:

A~ ~\T
T+ (Gt> _ b 1 (Xt> 1 (Xt) (13)

P
B ~\T A
T I, (Xt) I, (Xt)+v+B

Where p = I (Xt) $; + I, (\FFPTHt) — AT, (Vt) + BII (Gt 1). Note that (13)
only contains vector multlply add operation and thus can be computed efficiently.
Subproblem H: if u, Gy, Vi are fixed, the optimal solution of h* can be efficiently
calculated and solution is presented below:
2
.} (1)

hK = arg min { HJJ o hf
hk 2 2

sk — VTFPThX +
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We introduce a diagonal matrix W = diag(ji) € R**T, and then the closed-form solution
of h¥ can be computed by:

« - ~TP (gi‘ + v}f)
W = [WTW 9 TP] TP (gf + vi) = 2t 15
[ TP ATP (884 V0) = Zr o5 T orp (15)
Subproblem y: the solution to subproblem puy can be easily obtained as follows:
* . Ht TY ' (ak sk 21 ~12
pi = argmin § T H(\EFP ) (gt —gt_1> + 5 e = 2ll3
e , 2 (16)
K
o 2k TP (gt — &i_1)ll,
Lagrangian Multiplier Update: We update Lagrangian multipliers as:
P =V (G ) (5 = i (s, 57) )

Where i and i 4+ 1 denote the iteration index, it is worth mentioning that our objective
function has a better convergence speed and only needs three iterations to get the optimal
solution. The regularization constant v represents step size, G+ and H'™! are solutions of
two subproblems above at iteration i4+-1. By iteratively solving the four subproblems above,
our objective function can be solved efficiently. The optimized filter Gy and spatial-temporal
regularization terms can be obtained in frame t, which will be used in frame t+1.

4.3. Object Localization

The tracking object is localized by searching for the maximum value of the response map,
which is determined by:

K
Ro=T"1)" (*ogl ) (18)
k=1

Where Ry is the response map at frame t, I'~! represents the inverse Fourier transform
operator and %{ denotes the Fourier transform of the feature vector extracted from the
frame t. Through (18), the optimal object location can be obtained.

4.4. Model Update

Different from other CF-based trackers, our dynamic threshold mechanism can update the
tracking model adaptively. Our tracker is not updated when the object is occluded or the
tracking result is inaccurate (APCE < Fthreshold). Otherwise, the update method of the
filter model is as follows:

he = (1 — A)he_1 + Abg (19)

Where A represents the online learning rate, hy and hy_; denote the filter in frame t and
frame t-1 respectively. The model update strategy we proposed does not require updating
every frame, which not only reduces the effect of occlusion but also improves tracking speed.
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5. Experiments

In this section, we firstly evaluate our tracker with 15 current state-of-the-art trackers
including AutoTrack (Li et al., 2020), BACF (Galoogahi et al., 2017), C—COT (Danelljan
et al., 2016b), CF2 (Ma et al., 2015), CFNet (Shen et al., 2021), CSK (Henriques et al.,
2012), ECO (Danelljan et al., 2017a), KCF (Henriques et al., 2015), CN (Danelljan et al.,
2014), SRDCF (Danelljan et al., 2015), SRDCFdecon (Danelljan et al., 2016a), Staple
(Bertinetto et al., 2016), STRCF (Li et al., 2018b), STCT (Wang et al., 2016) and SAMF
(Li and Zhu, 2015) on UAV and DTB70 benchmarks. Then, we conduct the ablation study

to verify the effectiveness of each module. We use the same evaluation criteria in two

benchmarks and all details can be found in Dawei et al. (2018) and Li and Yeung (2017).

Implementation details: ADMM iteration and the index of dynamic threshold « are
both set to 3. The other hyperparameters are the same as our baseline AutoTrack. All
experiments are conducted using MATLAB R2019b on a PC with AMD Ryzen 7 5800H

CPU, 32GB RAM, and NVIDIA RTX 3060Ti (6GB RAM) GPU.
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Figure 3: Overall performance on UAVDT and DTB70.
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5.1. Quantitative Evaluation

Overall performance evaluation: The overall performance evaluation of PASTRCF with
other state-of-the-art trackers on UAVDT and DTB70 benchmarks is illustrated in Fig. 3.
The proposed PASTRCEF tracker has outperformed all other trackers on both datasets.
More specially, on UAVDT benchmark, PASTRCF has an advantage of 1.4 % and 2.6 %
in precision and success rate over the second tracker (AutoTrack) respectively. On DTB70
benchmark, PASTRCF also achieves the best performance and obtains 2.6 % and 2.8 % gain
in precision and success rate respectively than AutoTrack. Overall, the proposed PASTRCF
tracker achieves superiority and effectiveness against other state-of-the-art trackers.
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Figure 4: Attribute-based comparison on UAVDT.
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Figure 5: Attribute-based comparison on DTB70.

There may be two reasons why PASTRCF outperforms on both benchmarks: 1) Our
probabilistic model can successfully describe the reliability of response maps to alleviate the
ambiguous cases of response maps caused by occlusion or similar objects around, further
improving the tracking performance. 2) Our adaptive threshold mechanism can provide an
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appropriate model update strategy to prevent the filter from being polluted by inaccurate
tracking results and mitigate model drift, thereby increasing tracking robustness.

Attribute-based evaluation: The success plots of different attributes on UAVDT
benchmark and DTB70 benchmark are demonstrated in Fig. 4 and Fig. 5 respectively, and
the precision results on UAVDT benchmark are demonstrated in Table 1. We can see that
PASTRCEF achieves almost the best performance in these attributes. It performs well under
large occlusion (LO), camera rotation (CR), small object (SO), and background clutter
(BC) on UAVDT, which obtains 5.3 %, 3.0 %, 2.4 %, 3.3 % gain respectively in success
rate and gains advancement of 5.9 %, 1.6 %, 2.9 %, 3.9 % respectively in precision than
AutoTrack. On DTB70 benchmark, the success rate of PASTRCF in fast camera motion
(FCM) and similar objects around (SOA) attributes obtain 4.0 % and 4.3 % gain respectively
than AutoTrack. In other attributes, PASTRCF has also shown great improvement from
AutoTrack and achieved performance with a high ranking.

Table 1: Precision comparision results of 8 attributes on UAVDT benchmark. Red,
and blue respectively mean the first, second and third place.

Attribute ALL | BC |CR |1V LO OB | OR | SV SO
PASTRCF 0.742 | 0.668 | 0.695 | 0.801 | 0.553 | 0.779 | 0.682 | 0.658 | 0.857
AutoTrack 0.629 0.805 | 0.494 0.828
BACF 0.706 0.648 | 0.775 | 0.487 | 0.743 | 0.635 | 0.604 | 0.815
C-COT 0.659 | 0.557 | 0.623 | 0.720 | 0.460 | 0.662 | 0.561 | 0.559 | 0.792
CF2 0.602 | 0.486 | 0.569 | 0.679 | 0.381 | 0.651 | 0.482 | 0.453 | 0.695
CFNet 0.680 | 0.567 | 0.643 | 0.727 | 0.447 | 0.717 | 0.599 | 0.611 | 0.775
CSK 0.517 | 0.452 | 0.427 | 0.566 | 0.344 | 0.541 | 0.437 | 0.439 | 0.587
ECO 0.702 | 0.611 | 0.644 | 0.769 0.710 | 0.627 | 0.632 | 0.791
KCF 0.570 | 0.458 | 0.534 | 0.657 | 0.344 | 0.652 | 0.454 | 0.490 | 0.581
SRDCF 0.668 | 0.583 | 0.634 | 0.728 | 0.451 | 0.692 | 0.589 | 0.588 | 0.747
SRDCFdecon | 0.650 | 0.574 | 0.610 | 0.723 | 0.425 | 0.695 | 0.578 | 0.549 | 0.738
Staple 0.698 | 0.607 | 0.673 | 0.787 | 0.474 | 0.752 | 0.625 | 0.589
STRCF 0.636 | 0.530 | 0.565 | 0.672 | 0.420 | 0.657 | 0.528 | 0.543 | 0.764
STCT 0.651 | 0.560 | 0.613 | 0.699 | 0.466 | 0.633 | 0.575 | 0.599 | 0.710
SAMF 0.342 | 0.312 | 0.338 | 0.367 | 0.265 | 0.302 | 0.259 | 0.287 | 0.330

Our tracker achieves excellent performance in UAV scenarios, where CR causes object
appearance variation, FCM and BC reflect boundary effect, and LO, SOA, and SO are
also observable challenges. We mainly attribute this to our proposed tracking approach.
The probabilistic model exploits the reliability of response maps to resolve an ambiguous
case of response maps caused by SOA and LO, which learns effective spatial-temporal
regularization terms to alleviate the boundary effect caused by FCM and BC, and obtains
a more robust filter to adapt the appearance variation caused by CR. Then, the adaptive
threshold mechanism will set a dynamic threshold to avoid updating the filter when the
object is severely occluded and prevent the filter from being polluted, achieving a more
stable filter model and significantly improving the tracking robustness.
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5.2. Qualitative Evaluation

Some qualitative tracking results of PASTRCF and other advanced trackers are shown in
Fig. 6. The videos (from top to bottom) are S0310, S0601, and S0801 on UAVDT bench-
mark, SnowBoarding4, Basketball, and RcCar4d on DTB70 benchmark. The qualitative
results can prove that PASTRCF achieves robust tracking and it is competent in deal-
ing with different challenging attributes, especially in large occlusion, background clutter,
camera motion, similar objects around, and small object.

o &5 3
mmmmmms PASTRCF o AutoTrack eosssssss BACF oassssms STRCF

Figure 6: Qualitative evaluation of our proposed method with comparison to three trackers
(AutoTrack, BACF and STRCF).

5.3. Ablation Study

To verify the effectiveness of different components in our tracker, an ablation study of
PASTRCEF is performed in this section. The overall evaluation is shown in Table 2. 1)
AutoTrack is the baseline tracker without our probabilistic model as well as the adaptive
threshold update strategy, 2) AutoTrack_PM is the baseline with our probabilistic model,
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3) AutoTrack_-MU is the baseline with the adaptive threshold mechanism, 4) PASTRCF is
our proposed tracker with probability model as well as the adaptive threshold mechanism.

Table 2: Ablation study of PASTRCF on UAVDT.

Tracker | AutoTrack | AutoTrack_ PM | AutoTrack MU | PASTRCF
Precision | 0.728 0.740 0.738 0.742
Success 0.498 0.521 0.516 0.524

Speed 38.272 37.580 40.963 40.824

It can be seen from Table 2 that our probabilistic model and adaptive threshold mecha-
nism have contributed to the substantial improvement over our baseline method. Compared
with our probabilistic model, our adaptive threshold mechanism increases the tracking speed
because we only update the filter model when the tracking result is accurate and the object
is not occluded, which decreases the update time and improves the execution speed.

6. Conclusions

In this work, a novel probabilistic adaptive spatial-temporal regularization correlation filters
(PASTRCF) is proposed for robust UAV tracking. Compared with other trackers that use
response variation to adapt regularization terms, we first introduce a probabilistic model to
solve the uncertainty of response maps when objects encounter occlusion or similar objects
around, and accurately exploit the reliable information in response maps for adaptively
learning regularization terms. Then we design an adaptive model update mechanism to
effectively mitigate model degradation and it also improves the tracking speed. In addition,
our PASTRCEF tracker is effectively optimized using the ADMM algorithm. Comprehensive
experiments have validated that PASTRCF outperforms some state-of-the-art trackers on
both UAVDT benchmark and DTB70 benchmark, not only achieving advanced performance
but also meeting the real-time demands in UAV scenarios.
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