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Abstract

Reinforcement learning (RL) algorithms can be used to provide personalized services, which
rely on users’ private and sensitive data. To protect the users’ privacy, privacy-preserving
RL algorithms are in demand. In this paper, we study RL with linear function approx-
imation and local differential privacy (LDP) guarantees. We propose a novel pε, δq-LDP
algorithm for learning a class of Markov decision processes (MDPs) dubbed linear mixture

MDPs, and obtains an rOpd5{4H7{4T 3{4 plogp1{δqq
1{4

a

1{εq regret, where d is the dimension
of feature mapping, H is the length of the episodes, and T is the number of interactions
with the environment. We also prove a lower bound ΩpdH

?
T { peεpeε ´ 1qqq for learning

linear mixture MDPs under ε-LDP constraint. Experiments on synthetic datasets verify
the effectiveness of our algorithm. To the best of our knowledge, this is the first provable
privacy-preserving RL algorithm with linear function approximation.

Keywords: Machine learning, Reinforcement learning, Differential privacy, Linear mixture
MDPs

1. Introduction

Reinforcement learning (RL) algorithms have been studied extensively in the past decade.
When the state and action spaces are large or even infinite, traditional tabular RL algo-
rithms (e.g., Watkins, 1989; Jaksch et al., 2010; Azar et al., 2017) become computationally
inefficient or even intractable. To overcome this limitation, modern RL algorithms with
function approximation are proposed, which often make use of feature mappings to map
states and actions to a low-dimensional space. This greatly expands the application scope of
RL. While RL can provide personalized service such as online recommendation and person-
alized advertisement, existing algorithms rely heavily on user’s sensitive data. Recently, how
to protect sensitive information has become a central research problem in machine learn-
ing. For example, in online recommendation systems, users want accurate recommendation
from the online shopping website to improve their shopping experience while preserving
their personal information such as demographic information and purchase history.
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Differential privacy (DP) is a solid and highly successful notion of algorithmic privacy
introduced by Dwork et al. (2006), which indicates that changing or removing a single
data point will have little influence on any observable output. However, DP is vulnerable
to membership inference attacks (Shokri et al., 2017) and has the risk of data leakage. To
overcome the limitation of DP, a stronger notion of privacy, local differential privacy (LDP),
was introduced by Kasiviswanathan et al. (2011); Duchi et al. (2013). Under LDP, users
will send privatized data to the server and each individual user maintains its own sensitive
data. The server, on the other hand, is totally agnostic about the sensitive data.

(Local) differential privacy has been extensively studied in multi-armed bandit prob-
lems, which can be seen as a special case of MDPs with unit episode length and without
state transition. Nevertheless, Shariff and Sheffet (2018) proved that the standard DP is
incompatible in the contextual bandit setting, which will yield a linear regret bound in
the worst case. Therefore, they studied a relaxed version of DP named joint differential
privacy (JDP), which basically requires that changing one data point in the collection of
information from previous users will not have too much influence on the decision of the
future users. Recently, LDP has attracted increasing attention in multi-armed bandits.
Gajane et al. (2018) are the first to study LDP in stochastic multi-armed bandits (MABs).
Chen et al. (2020) studied combinatorial bandits with LDP guarantees. Zheng et al. (2020)
studied both MABs and contextual bandits, and proposed a locally differentially private
algorithm for contextual linear bandits. However, differentially private RL is much less
studied compared with bandits, even though MDPs are more powerful since state transi-
tion is rather common in real applications. For example, a user may click a link provided
by the recommendation system to visit a related webpage, which can be viewed as state
transition. In tabular RL, Vietri et al. (2020) proposed a ε-JDP algorithm and proved an
rOp
?
H4SAT ` SAH3pS ` Hq{εq regret, where H is the episode length, S and A are the

number of states and actions respectively, K is the number of episodes, and T “ KH is the
number of interactions with the MDP. Recently, Garcelon et al. (2020) designed the first
LDP tabular RL algorithm with an rOpmax

 

H3{2S2A
?
T {ε,HS

?
AT

(

q regret. However, as
we mentioned before, tabular RL algorithms suffer from computational inefficiency when
applied to large state and action spaces. Therefore, a natural question arises:

Can we design a privacy-preserving RL algorithm with linear function approximation while
maintaining the statistical utility of data?

In this paper, we answer this question affirmatively. More specifically, we propose a
locally differentially private algorithm for learning linear mixture MDPs (Jia et al., 2020;
Ayoub et al., 2020; Zhou et al., 2021b) (See Definition 3.1 for more details.), where the tran-
sition probability kernel is a linear function of a predefined d-dimensional feature mapping
over state-action-next-state triple. The key idea is to inject Gaussian noises into the sen-
sitive information in the UCRL-VTR backbone, and the main challenge is how to balance
the tradeoff between the Gaussian perturbations for privacy preservation and the utility to
learn the optimal policy.

Our contributions are summarized as follows.

• We propose a novel algorithm named LDP-UCRL-VTR to learn the optimal value func-
tion while protecting the sensitive information. We show that our algorithm guarantees
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pε, δq-LDP and enjoys an rOpd5{4H7{4T 3{4 plogp1{δqq1{4
a

1{εq regret bound, where T is
the number of rounds and H is the length of episodes. To our knowledge, this is the first
locally differentially private algorithm for RL with linear function approximation.

• We prove a ΩpdH
?
T { peεpeε ´ 1qqq lower bound for learning linear mixture MDPs under

ε-LDP constraints. Our lower bound suggests that the aforementioned upper bound
might be improvable in some parameters (i.e., d,H, T ). As a byproduct, our lower bound
also implies Ωpd

?
T { peεpeε ´ 1qqq lower bound for ε-LDP contextual linear bandits. This

suggests that the algorithms proposed in Zheng et al. (2020) might be improvable as well.

Notation We use lower case letters to denote scalars, lower and upper case bold letters
to denote vectors and matrices. For a vector x P Rd , we denote by }x}1 the Manhattan
norm and denote by }x}2 the Euclidean norm. For a semi-positive definite matrix Σ and
any vector x, we define }x}Σ :“

›

›Σ1{2x
›

›

2
“
?

xJΣx. 1p¨q is used to denote the indicator
function. For any positive integer n, we denote by rns the set t1, . . . , nu. For any finite set
A, we denote by |A| the cardinality of A. We also use the standard O and Ω notations,
and the notation rO is used to hide logarithmic factors. We denote D1:h “ tD1, . . . , Dhu.
For two distributions p and p1, we define the Kullback–Leibler divergence (KL-divergence)
between p and p1 as follows: KLpp, p1q “

ş

ppzq log
`

ppzq{p1pzq
˘

dz.

2. Related Work

Reinforcement Learning with Linear Function Approximation Recently, there have
been many advances in RL with function approximation, especially in the linear case. Jin
et al. (2020) considered linear MDPs where the transition probability and the reward are
both linear functions with respect to a feature mapping φ : S ˆ A Ñ Rd, and proposed
an efficient algorithm for linear MDPs with rOp

?
d3H3T q regret. Yang and Wang (2019a)

assumed the probabilistic transition model has a linear structure. They also assumed that
the features of all state-action pairs can be written as a convex combination of the anchoring
features. Wang et al. (2019) designed a statistically and computationally efficient algorithm
with generalized linear function approximation, which attains an rOpH

?
d3T q regret bound.

Zanette et al. (2020) proposed RLSVI algorithm with rOpd2
?
H4T q regret bound under

the linear MDPs assumption. Jiang et al. (2017) studied a larger class of MDPs with
low Bellman rank and proposed an OLIVE algorithm with polynomial sample complexity.
Another line of work considered linear mixture MDPs (a.k.a., linear kernel MDPs) (Jia
et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b), which assumes the transition probability
function is parameterized as a linear function of a given feature mapping on a triplet ψ :
S ˆ A ˆ S Ñ Rd. Jia et al. (2020) proposed a model-based RL algorithm, UCRL-VTR,
which attains an rOpd

?
H3T q regret bound. Ayoub et al. (2020) considered the same model

but with general function approximation, and proved a regret bound depending on Eluder
dimension (Russo and Van Roy, 2013). Zhou et al. (2021a) proposed an improved algorithm
which achieves the nearly minimax optimal regret. He et al. (2021) showed that logarithmic
regret is attainable for learning both linear MDPs and linear mixture MDPs.
Differentially Private Bandits The notion of differential privacy (DP) was first intro-
duced in Dwork et al. (2006) and has been extensively studied in both MAB and contex-
tual linear bandits. Basu et al. (2019) unified different privacy definitions and proved an
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Ωp
?
KT { peεpeε ´ 1qqq regret lower bound for locally differentially private MAB algorithms,

where K is the number of arms. Shariff and Sheffet (2018) derived an impossibility result
for learning contextual bandits under DP constraint by showing an ΩpT q regret lower bound
for any pε, δq-DP algorithms. Hence, they considered the relaxed joint differential privacy
(JDP) and proposed an algorithm based on Lin-UCB (Abbasi-Yadkori et al., 2011) with
rOp
?
T {εq regret while preserving ε-JDP. Recently, a stronger definition of privacy, local

differential privacy (Duchi et al., 2013; Kasiviswanathan et al., 2011), gained increasing
interest in bandit problems. Intuitively, LDP ensures that each collected trajectory is dif-
ferentially private when observed by the agent, while DP requires the computation on the
entire set of trajectories to be DP. Zheng et al. (2020) proposed an LDP contextual linear
bandit algorithm with rOpd3{4T 3{4q regret.
Differentially Private RL In RL, Balle et al. (2016) is the first to propose a private
algorithm for policy evaluation with linear function approximation. In the tabular setting,
Vietri et al. (2020) designed a ε-JDP algorithm for regret minimization which attains an
rOp
?
H4SAT`SAH3pS`Hq{εq regret. Later, Garcelon et al. (2020) presented an optimistic

algorithm with LDP guarantees, which enjoys an rOpmax
 

H3{2S2A
?
T {ε,HS

?
AT

(

q regret

upper bound. They also provided a rΩp
?
HSAT {min texppεq ´ 1, 1uq regret lower bound.

However, all these private RL algorithms are in the tabular setting, and private RL algo-
rithms with linear function approximation remain understudied. Recently, an independent
(concurrent) work by Luyo et al. (2021) also studied (locally) differentially private rein-
forcement learning and proposed an almost same algorithm as ours with slightly different
parameter choice. Later, Zhou (2022) studied the joint differential privacy guarantee for
linear mixture MDPs, and their result can be potentially extended to the locally differential
privacy. Nevertheless, neither Luyo et al. (2021) or Zhou (2022) provided a lower bound for
regret.

3. Preliminaries

In this paper, we study locally differentially private RL with linear function approximation
for episodic MDPs. In the following, we will introduce the necessary background and
definitions.

3.1. Markov Decision Processes

Episodic Markov Decision Processes We consider the setting of an episodic time-
inhomogeneous Markov decision process (Puterman, 2014), denoted by the following tuple
M “ MpS,A, H, trhuHh“1 , tPhu

H
h“1q, where S is the state space, A is the action space, H

is the length of each episode, rh : S ˆ A Ñ r0, 1s is the deterministic reward function and
Phps1|s, aq is the transition probability function which denotes the probability for state s
to transfer to state s1 given action a at stage h. A policy π “ tπhu

H
h“1 is a collection of

H functions, where πhpsq denote the action that the agent will take at stage h and state
s. Moreover, for each h P rHs, we define the value function V π

h : S Ñ R that maps state
s to the expected value of cumulative rewards received under policy π when starting from
state s at the h-th stage. We also define the action-value function Qπh : S ˆA Ñ R which
maps a state-action pair ps, aq to the expected value of cumulative rewards when the agent
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starts from state-action pair ps, aq at the h-th stage and follows policy π afterwards. More
specifically, for each state-action pair ps, aq P S ˆA, we have

Qπhps, aq “ rhps, aq ` E

«

H
ÿ

h1“h`1

rh1
`

sh1 , πh1ps
1
hq
˘

ff

, V π
h psq “ Qπh

`

s, πhpsq
˘

,

where sh “ s, ah “ a and sh1`1 „ Ph1p¨ | sh1 , ah1q.
For each function V : S Ñ R, we further denote rPhV s ps, aq “ Es1„Php¨ | s,aqV ps

1q. Using
this notation, the Bellman equation with policy π can be written as

Qπhps, aq “ rhps, aq `
“

PhV π
h`1

‰

ps, aq, V π
h psq “ Qπhps, πhpsqq, V π

H`1psq “ 0,

We define the optimal value function V ˚h as V ˚h psq “ maxπ V
π
h psq and the optimal action-

value function Q˚h as Q˚hps, aq “ maxπ Q
π
hps, aq. With this notation, the Bellman optimality

equation can be written as follows

Q˚hps, aq “ rhps, aq `
“

PhV ˚h`1
‰

ps, aq, V ˚h`1psq “ max
aPA

Q˚hps, aq,

where V ˚H`1psq “ 0. In the setting of an episodic MDP, an agent aims to learn the optimal
policy by interacting with the environment and observing the past information. At the
beginning of the k-th episode, the agent chooses the policy πk and the adversary picks the
initial state sk1. At each stage h P rHs, the agent observes the state skh, chooses an action
following the policy akh “ πkhps

k
hq and observes the next state with skh`1 „ Php¨|skh, akhq. The

difference between V ˚1 ps
k
1q and V πk

1 psk1q represents the expected regret in the k-th episode.
Thus, the total regret in first K episodes can be defined as

RegretpKq “
K
ÿ

k“1

´

V ˚1 ps
k
1q ´ V

πk
1 psk1q

¯

.

Linear Function Approximation In this work, we consider a class of MDPs called
linear mixture MDPs (Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021b), where the transition probability function can be represented as a linear function
of a given feature mapping φps1|s, aq : S ˆ A ˆ S Ñ Rd satisfying that for any bounded
function V : S Ñ r0, Hs and any tuple ps, aq P S ˆA, we have

}φV ps, aq}2 ď H, where φV ps, aq “
ÿ

s1PS
φps1 | s, aqV ps1q . (3.1)

Formally, we have the following definition:

Definition 3.1 (Jia et al. 2020; Ayoub et al. 2020; Zhou et al. 2021b). An Markov Decision
Processe pS,A, H, trhuHh“1 , tPhu

H
h“1q is an inhomogeneous, episodic bounded linear mixture

MDP if there exist vectors θh P Rd with }θ˚h}2 ď
?
d and a feature map φ : SˆAˆS Ñ Rd

satisfying (3.1) such that Phps1 | s, aq “ 〈φps1 | s, aq,θ˚h〉 for any state-action-next-state triplet
ps, a, s1q P S ˆAˆ S and stage h.

Therefore, learning the underlying θ˚h can be regarded as solving a “linear bandit”
problem (Part V, Lattimore and Szepesvári (2020)), where the context is φVk,h`1

pskh, a
k
hq P

Rd, and the noise is Vk,h`1ps
k
h`1q ´ rPhVk,h`1spskh, akhq.



Liao He Gu

Remark 3.2. Linear mixture MDPs have been widely studied in the literature (Modi
et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b; Cai et al., 2020; Zhou et al., 2021a; He
et al., 2021; Wu et al., 2022; He et al., 2022) for reinforcement learning with linear function
approximation, and it contains several important MDPs models such as tabular MDP and
feature embedding of transition model (Yang and Wang, 2019b).

Example 3.3 (Tabular MDPs). In particular, for any tabular Markov Decision Process
MpS,A, H, trhuHh“1, tPhuHh“1q with finite state space S and finite action space A, it can
be represented by a linear mixture MDP with dimension d “ |S|2|A|. More specifi-
cally, the transition probability function can be written as the inner product between
the one-hot feature mapping φps1|s, aq “ eps,a,s1q, and the unknown parameter vector
θh “ rPhps1|s, aqss1PS,sPS,aPA.

Example 3.4 (Feature embedding of transition model Yang and Wang 2019b). For any
feature embedding of transition model, it assumes that the transition probability function
can be denoted by Phps1|s, aq “ φps, aqJMhψps

1q, where φps, aq : S ˆ A Ñ Rd1 , ψps1q :
S Ñ Rd2 are feature mappings based on the state and action, and Mh is the unknown
parameter matrix. This model can be represented as a linear mixture MDP with the
dimension d “ d1d2. More precisely, the transition probability function can be written as
the inner product between the feature mapping φps1|s, aq “ vec

`

ψps1qφps, aqJ
˘

and the
unknown parameter vector θh “ vecpMhq.

3.2. (Local) Differential Privacy

In this subsection, we introduce the standard definition of differential privacy (Dwork et al.,
2006) and local differential privacy (Kasiviswanathan et al., 2011; Duchi et al., 2013). We
also present the definition of Gaussian mechanism.

Differential Privacy Differential privacy is a mathematically rigorous notion of data
privacy. In our setting, DP considers that the information collected from all the users can
be observed and aggregated by a server. It ensures that the algorithm’s output renders
neighboring inputs indistinguishable. Thus, we formalize the definition as follows:

Definition 3.5 (Differential Privacy). For any user k P rKs, let Dk be the information
sent to a privacy-preserving mechanism from user k and the collection of data from all the
users can be written as tDku1:K “ tD1, . . . , Dk, . . . , DKu. For any ε ě 0 and δ ě 0, a
randomized mechanism M preserves pε, δq-differential privacy if for any two neighboring
datasets tDku1:K , tD

1
ku1:K Ď Z which only differ at one entry, and for any measurable

subset U P Z, it satisfies

P pM ptDku1:Kq P Uq ď eεP
`

M
` 

D1k
(

1:K

˘

P U
˘

` δ ,

where tDku1:K “ tD1, . . . , Dk, . . . , DKu, tD
1
ku1:K “ tD1, . . . , D

1
k, . . . , DKu.

Local Differential Privacy In online RL, we view each episode k P rKs as a trajectory
associated to a specific user. A natural way to conceive LDP in RL setting is to guarantee
that for any user, the information sent to the server has been privatized. Thus, LDP
ensures that the server is totally agnostic to the sensitive data, and we are going to state
the following definition:
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Definition 3.6 (Local Differential Privacy). For any ε ě 0 and δ ě 0, a randomized
mechanism M preserves pε, δq-local differential privacy if for any two users u and u1 and
their corresponding data Du, Du1 P U , it satisfies:

P pM pDuq P Uq ď eεP pM pDu1q P Uq ` δ, U P U .

Remark 3.7. The dataset tDku1:K in DP is a collection of information from users 1, . . . ,K,
where the subscript indicates the k-th user. Post-processing theorem implies that LDP is a
more strict notion of privacy than DP.

Now we are going to introduce the Gaussian mechanism which is widely used as a
privacy-preserving mechanism to ensure DP/LDP property.

Lemma 3.8. (The Gaussian Mechanism, Dwork et al. 2014). Let f : X ÞÑ Rd be
an arbitrary d-dimensional function (a query), and define its `2 sensitivity as ∆2f “

maxadjacent(x,y) }fpxq ´ fpyq}2, where adjacentpx, yq indicates that x, y are different only
at one entry. For any 0 ă ε ă 1 and c2 ą 2 logp1.25{δq, the Gaussian Mechanism with
parameter σ ě c∆2f{ε is pε, δq-differentially private.

4. Algorithm

We propose LDP-UCRL-VTR algorithm as displayed in Algorithm 1, which can be re-
garded as a variant of UCRL-VTR algorithm proposed in Jia et al. (2020) with pε, δq-LDP
guarantee. Algorithm 1 takes the privacy parameters ε, δ as input (Line 1). For the first
user k “ 1, we simply have Λ1,h “ Σ1,h “ λI and pθ1,h “ 0 (Line 4). For local user k and
received information Λk

h,u
k
h, the optimistic estimator of the optimal action-value function

is constructed with an additional UCB bonus term (Line 6),

Qk,hp¨, ¨q Ð min
!

H, rhp¨, ¨q `
〈
pθk,h,φVk,h`1

p¨, ¨q
〉
` β

›

›

›
Σ
´1{2
k,h φVk,h`1

p¨, ¨q
›

›

›

2

)

,

and β is specified as cd3{4pH´h`1q3{2k1{4 logpdT {αq plogppH ´ h` 1q{δq1{4
a

1{ε, where c is
an absolute constant. From the previous sections, we know that learning the underlying θ˚h
can be regarded as solving a “linear bandit” problem, where the context is φVk,h`1

pskh, a
k
hq P

Rd, and the noise is Vk,h`1ps
k
h`1q ´ rPhVk,h`1spskh, akhq. Therefore, to estimate Q˚h, it suf-

fices to estimate the vector θ˚h by ridge regression with input φVk,h`1
pskh, a

k
hq and output

Vk,h`1ps
k
h`1q. In order to implement the ridge regression, the server should collect the in-

formation of φVk,h`1
pskh, a

k
hqφVk,h`1

pskh, a
k
hq
J and Vk,h`1ps

k
h`1q from each user k (Line 15).

Thus, we need to add noises to privatize the data before sending these information to the
server in order to kept user’s information private. In LDP-UCRL-VTR, we attain LDP
by adding independent Gaussian noises: symmetric Gaussian matrix and d-dimensional
Gaussian noise (Line 12 and Line 13). For simplicity, we denote the original information
(without noise) ∆rΛk

h “ φVk,h`1
psh, ahqφVk,h`1

psh, ahq
J,∆rukh “ φVk,h`1

pskh, a
k
hqVk,h`1ps

k
h`1q,

where k indicates the user and h indicates the stage. Since the input information to the
server is kept private by the user, it is easy to show that LDP-UCRL-VTR algorithm satis-
fies pε, δq-LDP. After receiving the information from user 1 to user k, the server aggregates
information Λk,h,uk,h, and maintains them for H stages separately (Line 18). Besides, since
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Algorithm 1 LDP-UCRL-VTR

Require: privacy parameters ε, δ, failure probability α, parameter λ
1: Set σ “ 4H3

a

2 logp2.5H{δq{ε
2: for user k “ 1, . . . ,K do
3: For the local user k:
4: Receive tΣk,1, . . . ,Σk,H , pθk,1, . . . , pθk,Hu from the server
5: for h “ H, . . . , 1 do

6: Qk,hp¨, ¨q Ð min tH ´ h` 1, rhp¨, ¨q`
〈
pθk,h,φVk,h`1

p¨, ¨q
〉
` βh

›

›

›
Σ
´1{2
k,h φVk,h`1

p¨, ¨q
›

›

›

2

)

7: Vk,hp¨q Ð maxaQk,hp¨, aq.
8: end for
9: Receive the initial state sk1

10: for h “ 1, . . . ,H do
11: Take action akh Ð argmaxaPAQk,hps

k
hq, and observe skh`1

12: Set ∆Λh Ð φVk,h`1
psh, ahqφVk,h`1

psh, ahq
J `Wk,h, where Wk,hpi, jq “ Wk,hpj, iq

and Wk,hpi, jq
i.i.d
„ N p0, σ2q,@i ď j

13: Set ∆uh Ð φVk,h`1
pskh, a

k
hqVk,h`1ps

k
h`1q ` ξh, where ξh „ N p0d, σ2Idˆdq

14: end for
15: Send Dk “ t∆Λ1, . . . ,∆ΛH ,∆u1, . . . ,∆uHu to the server
16: For the server:
17: for h “ 1, . . . ,H do
18: Λk`1,h Ð Λk,h `∆Λh,uk`1,h Ð uk,h `∆uh
19: Σk`1,h Ð Λk`1,h ` rI

20: pθk`1,h Ð pΣk`1,hq
´1 uk`1,h

21: end for
22: Send tΣk`1,1, . . . ,Σk`1,H , pθk`1,1, . . . , pθk`1,Hu to user k ` 1
23: end for

the Gaussian matrix may not preserve the PSD (Positive semi-definite) property, we adapt
the idea of shifted regularizer in Shariff and Sheffet (2018) and shift this matrix Λk,h by

rI to guarantee PSD (Line 19). We then calculate pθk`1,h and send Σk`1,h, pθk`1,h back to
k ` 1-th user in order to get a more precise estimation of θ˚h for better exploration.

Comparison with related algorithms. We would like to comment on the difference
between our LDP-UCRL-VTR and other related algorithm. The key difference between our
LDP-UCRL-VTR and UCRL-VTR (Jia et al., 2020), which is the most related algorithm,
is that we add additive noises to the contextual vectors and the optimistic value functions
in order to guarantee privacy. Then the server collects privatized information from different
users and update Λ,u for ridge regression. A shifted regularizer designed in Shariff and
Sheffet (2018) is used to guarantee PSD property of the matrix. It is easy to show that
if we add no noise to user’s information, our LDP-UCRL-VTR algorithm degenerates to
inhomogeneous UCRL-VTR. Another related algorithm is the Contextual Linear Bandits
with LDP in Zheng et al. (2020), which is an algorithm designed for contextual linear
bandits. Setting H “ 1, our LDP-UCRL-VTR will degenerate to Contextual Linear Bandits
with LDP in Zheng et al. (2020).



Locally Differentially Private Reinforcement Learning for Linear Mixture MDPs

5. Main Results

In this section, we provide both privacy and regret guarantees for Algorithm 1. The detailed
proofs of the main results are deferred to the appendix.

5.1. Privacy Guarantees

Recall that in Algorithm 1, we use Gaussian mechanism to protect the private information
of the contextual vectors and the optimistic value functions. Based on the property of
Gaussian mechanism, we can show that our algorithm is pε, δq-LDP.

Theorem 5.1. Algorithm 1 preserves pε, δq-LDP.

The privacy analysis relies on the fact that if the information from each user satisfies
pε, δq-DP, then the whole algorithm is pε, δq-LDP.

5.2. Regret Upper Bound

The following theorem states the regret upper bound of Algorithm 1.

Theorem 5.2. For any fixed α P p0, 1q, for any privacy parameters ε ą 0 and δ ą 0, if we set

the parameters λ “ 1 and βh “ rOpd3{4pH´h`1q3{2k1{4 logpdT {αq plogppH ´ h` 1q{δqq1{4
a

1{εq
for user k, with probability at least 1´α, the total regret of Algorithm 1 in the first T steps
is at most rOpd5{4H7{4T 3{4 logpdT {αq plogpH{δqq1{4

a

1{εq, where T “ KH is the number of
interactions with the MDP.

Remark 5.3. By setting the failure probability α “ δ, our regret bound can be written as
rOpd5{4H7{4T 3{4 plogpH{δqq1{4

a

1{εq. Compared with UCRL-VTR, which enjoys an upper

bound of rOpd
?
H3T q, our bound suggests that learning the linear mixture MDP under the

LDP constraint is inherently no easier than learning it non-privately.

5.3. Regret Lower Bounds

In this subsection, we present a lower bound for learning linear mixture MDPs under the ε-
LDP constraint. We follow the idea firstly developed in Zhou et al. (2021a), which basically
shows that learning a linear mixture MDP is no harder than learning H{2 linear bandit
problems. As a byproduct, we also derived the regret lower bound for learning ε-LDP
contextual linear bandits.

In detail, in order to prove the regret lower bound for MDPs under ε-LDP constraint,
we first prove the lower bound for learning ε-LDP linear bandit problems. We adapted
the proof techniques in Lattimore and Szepesvári (2020, Theorem 24.1) and Basu et al.
(2019). In the non-private setting, the observed history of a contextual bandit algorithm in
the first T rounds can be written as HT “ txt, ytu

T
t“1. Given history Ht´1, the contextual

linear bandit algorithm chooses action xt, and the reward is generated from a distribution
fθp¨|xtq, which is conditionally independent of the previously observed history. We use PTπ,θ
to denote the distribution of observed history up to time T , which is induced by π and fθ.
Hence, we have

PTπ,θ “ Pπ,θpHT q “

T
ź

t“1

πpxt |Ht´1qfθpyt |xtq ,
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where π is the stochastic policy (the distribution over an action set induced by a bandit
algorithm) and fθp¨ |xtq is the reward distribution given action xt, which is conditionally
independent of the previously observed history Ht´1.

In the LDP setting, the privacy-preserving mechanism M generates the privatized ver-
sion of the context xt, denoted by rxt “Mpxtq, to the contextual linear bandit algorithm.
For simplicity, we denote Mπ as the distribution (stochastic policy) by imposing a locally
differentially private mechanism M on the distribution (policy) π. Also, we use fMθ to de-
note the conditional distribution of ryt parameterized by θ, where ryt is the privatized version
of yt obtained by the privacy-preserving mechanism M. We denote the observed history
by rHT :“ tprxt, rytqu

T
t“1, where rxt, ryt are the privatized version of contexts and rewards.

Similarly, we have

rPTπ,θ :“ Pπ,θp rHT q “

T
ź

t“1

Mπprxt | rHt´1qf
M
θ pryt |xtq . (5.1)

With the formulation above, we proved the following key lemma for ε-LDP contextual linear
bandits.

Lemma 5.4. (Locally Differentially Private KL-divergence Decomposition) We denote the
reward generated by user t for action xt as yt “ xJt θ ` ηt, where ηt is a zero-mean noise.
If the reward generation process is ε-locally differentially private for both the bandits with
parameters θ1 and θ2, we have,

KLprPTπ,θ1 , rP
T
π,θ2q ď 2 min

 

4, e2ε
(

peε ´ 1q2 ¨
T
ÿ

t“1

Eπ,θ1
“

KLpfMθ1 pryt |xtq, f
M
θ2 pryt |xtqq

‰

,

where rxt, ryt are the privatized version of contexts and rewards.

Lemma 5.4 can be seen as an extension of Lemma 3 in Basu et al. (2019) from multi-
armed bandits to contextual linear bandits.

Equipped with Lemma 5.4, the KL-divergence of privatized history distributions can
be decomposed into the distributions of rewards. We construct a contextual linear bandit
with Bernoulli reward. In detail, for an action xt P A Ď Rd, the reward follows a Bernoulli
distribution yt „ Bp〈θ,xt〉` δq, where 0 ď δ ď 1{3. We first derive a regret lower bound of
learning contextual bandits under the LDP constraint in the following lemma.

Lemma 5.5 (Regret Lower Bound for LDP Contextual Linear Bandits). Given an ε-locally
differentially private reward generation mechanism with ε and a time horizon T , for any envi-
ronment with finite variance, if then time horizon T satisfies that T ě 4d2{

`

mint4, e2εupeε´
1q2

˘

, then the pseudo regret of any algorithm π satisfies

RegretpT q ě
c

min t2, eεu peε ´ 1q
d
?
T .

Since the distribution of rewards will only influence the KL-divergence by an absolute
constant, the lower bound we obtained is similar to that in Lattimore and Szepesvári (2020,
Theorem 24.1), which assumes that the reward follows a normal distribution.
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According to the proof of Lemma 5.5, the only difference between our hard-to-learn
MDP instance and that in Zhou et al. (2021a) is that we need to specify the parameter ∆
as ∆ “

?
δ{

`

min t2, eεu peε ´ 1q
?
T
˘

. We then utilize the hard-to-learn MDPs constructed
in Zhou et al. (2021a) and obtain the following lower bound for learning linear mixture
MDPs with ε-LDP guarantee:

Theorem 5.6. For any ε-LDP algorithm, if the number of interactions with the environ-
ment T satisfies that T ě 4d2H{

`

mint4, e2εupeε ´ 1q2
˘

, then there exists a linear mixture
MDP parameterized by Θ “ pθ1, . . . ,θHq such that the expected regret is lower bounded
as follows:

EΘRegretpMΘ,Kq ě Ω

ˆ

1

min t2, eεu peε ´ 1q
dH
?
T

˙

,

where T “ KH and EΘ denotes the expectation over the probability distribution generated
by the interaction of the algorithm and the MDP.

Remark 5.7. Compared with the upper bound rOpd5{4H7{4T 3{4 plogpH{δqq1{4
a

1{εq in
Theorem 5.2, it can be seen that there is a d1{4T 1{4H3{4 gap between our upper bound
and lower bound if treating ε as a constant. It is unclear if the upper bound and/or the
lower bound are not tight.

S1 S2 . . . SS´1 SS

aph

1´ aph

p1´ aphq{2

aph

p1´ aphq{2

p1´ aphq{2

aph

p1´ aphq{2

aph

p1´ aphq{2

p1´ aphq{2

1´ aph

Figure 1: The transition kernel Ph of inhomogeneous “RiverSwim” MDP instance.

6. Experiments

In this section, we carry out experiments to evaluate the performance of LDP-UCRL-VTR,
and compare with its non-private counterpart UCRL-VTR (Jia et al., 2020).

6.1. Experimental Setting

We tested LDP-UCRL-VTR on a benchmark MDP instance named “RiverSwim” (Strehl
and Littman, 2008; Ayoub et al., 2020), where we model this instance as a linear mixture
model by defining the feature mapping as φps1 | s, aq “ es,a,s1 , which is a one-hot vector with
value 1 in the ps, a, s1q-th entry. The purpose of this MDP is to tempt the agent to go left
while it is hard for a short sighted agent to go right since rp0, 0q ‰ 0, rps, 1q “ 0, 0 ď s ď |S|´
1. Therefore, it is hard for the agent to decide which direction to choose. In our experiment,
the reward in each stage is normalized by H, e.g., rp0, 0q “ 5{p1000Hq, rpS, 1q “ 1{H. Our
LDP-UCRL-VTR is also tested on the time-inhomogeneous “RiverSwim”, where for each



Liao He Gu

0.0 0.2 0.4 0.6 0.8 1.0
Episode(K) ×104

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Re
gr

et
(K

)
×103

UCRL-VTR
LDP-UCRL-VTR, = 10
LDP-UCRL-VTR, = 1
LDP-UCRL-VTR, = 0.1

(a) S “ 3, A “ 2, H “ 6, d “ 18, homogeneous

0.0 0.2 0.4 0.6 0.8 1.0
Episode(K) ×104

0

1

2

3

4

5

Cu
m

ul
at

iv
e 

Re
gr

et
(K

)

×102

UCRL-VTR
LDP-UCRL-VTR, = 10
LDP-UCRL-VTR, = 1
LDP-UCRL-VTR, = 0.1

(b) S “ 5, A “ 2, H “ 10, d “ 50, homogeneous
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(c) S “ 3, A “ 2, H “ 6, d “ 18, inhomogeneous
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Figure 2: Evaluation of the algorithms in two “RiverSwim” MDPs. Results are averaged
over 10 runs and the standard deviations are calculated to plot the confidence
band. These results show that the cumulative regret of LDP-UCRL-VTR is
sublinear in K, and its performance is getting closer to that of UCRL-VTR while
the privacy guarantee becomes weaker, i.e., choosing a larger ε.

h P rHs, the transition probability ph is sampled from a uniform distribution Up0.8, 1q. We
also choose H “ 2S. Figure 1 shows the state transition graph of this MDP.

6.2. Results and Discussion

We evaluate LDP-UCRL-VTR with different privacy budget ε and compare it with UCRL-
VTR on both homogeneous and inhomogeneous “RiverSwim”. For UCRL-VTR, we set
?
β “ c

?
d1`pH´h`1q

a

2 logp1{Kq ` log det M, where d1 “ SA with S being the number
of states and A being the number of actions, M is the covariance matrix in Algorithm 3
(Jia et al., 2020). We fine tune the hyper parameter c for different experiments. For LDP-
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UCRL-VTR, we choose δ “ 0.1, α “ 0.01. Since δ and α are prefixed for all experiments,
they can be treated as constants. Thus, we can choose β in the form cd3{4pH´h`1q3{2k1{4

and only fine tune c. The results for each ε are averaged over 10 runs.
In our experiments, since the reward is normalized by H, we need to recompute σ for

the Gaussian mechanism. Recall that σ “ 2∆fH
a

2 logp2.5H{δq{ε, where ∆f represents
the `2 sensitivity of ∆u in Algorithm 1. In our setting, |Q| ď 1 and therefore ∆f ď 1.
Thus, we set σ “ 4H

a

2 logp2.5H{δq{ε. In addition, we set K “ 10000 for all experiments.
To fine tune the hyper parameter c, we use grid search and select the one which attains the
best result. The experiment results are shown in Figure 2.

From Figure 2, we can see that the cumulative regret of LDP-UCRL-VTR is indeed
subliear in K. In addition, it is not surprising to see that LDP-UCRL-VTR incurs a larger
regret than UCRL-VTR. The performance of LDP-UCRL-VTR with larger ε is closer to
that of UCRL-VTR as the privacy guarantee becomes weaker. Our results are also greatly
impacted by H and d, as the convergence (learning speed) slows down as we choose larger
H and smaller ε. The experiments are consistent with our theoretical results.

7. Conclusion and Future Work

In this paper, we studied RL with linear function approximation and LDP guarantee. To the
best of our knowledge, our designed algorithm is the first provable privacy-preserving RL
algorithm with linear function approximation. We proved that LDP-UCRL-VTR satisfies
pε, δq-LDP. We also show that LDP-UCRL-VTR enjoys an rOpd5{4H7{4T 3{4 plogp1{δqq1{4

a

1{εq
regret. Besides, we proved a lower bound ΩpdH

?
T { peεpeε ´ 1qqq for ε-LDP linear mixture

MDPs. We also provide experiments on synthetic datasets to corroborate our theoretical
findings. In our current results, there is still a gap between the regret upper bound and the
lower bound. We conjecture the gap to be a fundamental difference between learning linear
mixture MDPs and tabular MDPs. In the future, it remains to study if this gap could be
eliminated.
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Appendix A. Proof of the Privacy Guarantee

In this section, we provide the proof of Theorem 5.1 with the help of the Gaussian mecha-
nism, which is introduced in Lemma 3.8. We start with the following definition.

Definition A.1. (Privacy Loss, Dwork et al. 2014; Abadi et al. 2016). For neighboring
databases d, d1 P Dn, a mechanism M, auxiliary input aux, and an outcome o P R, we
define the privacy loss at outcome o as

cpo;M,aux, d, d1q :“ log
P rMpaux, dq “ os

P rMpaux, d1q “ os

With the definition of Privacy Loss c, the following theorem can provide a guarantee of
the pε, δq-DP property.

Theorem A.2. If the privacy loss c satisfies that Po„Mpdq rcpo;M,aux, d, d1q ą εs ď δ
for all auxiliary input aux and neighboring databases d, d1 P Dn, then the mechanism M
satisfies pε, δq-DP property.

Proof of Theorem A.2. This proof share the similar structure as that in Abadi et al. (2016).
For simplicity, we denote the set B as

B “
 

o : cpo;M,aux, d, d1q ą ε
(

,

which contain all “bad” outcome. With this notation, for each set S, we have

P rMpDq P Ss “ P rMpDq P pS X Bqs ` P rMpDq P pSzBqs
ď P rMpDq P Bs ` P rMpDq P pSzBqs
ď P rMpDq P Bs ` eεP

“

MpD1q P pSzBq
‰

ď P rMpDq P Bs ` eεP
“

MpD1q P S
‰

,

where the first inequality holds due to the monotone property of probability measure with
pSXBq Ď B, the second inequality holds due to the definition of set B and the last inequality
holds due to the monotone property of probability measure with pSzBq Ď S. In addition,
since Po„Mpdq rcpo;M,aux, d, d1q ą εs ď δ, we have

P rMpDq P Ss ď δ ` eεP
“

MpD1q P S
‰

,

and it implies that the mechanism M satisfies pε, δq-DP property.

Now we prove Theorem 5.1.

Proof of Theorem 5.1. To prove the Theorem 5.1, it suffices to prove that for each episode
k P K, Algorithm 1 satisfies the pε, δq-LDP property. In the following proof, to avoid
cluttered notation, we omit the superscript k for simplicity. For the Gaussian mecha-
nism, we first compute the sensitivity coefficient `2 for Algorithm 1. We denote ∆ruh “
φVk,h`1

pskh, a
k
hqVk,h`1ps

k
h`1q and ∆rΛh “ φVk,h`1

pskh, a
k
hqφVk,h`1

pskh, a
k
hq
J, where Vk,h`1ps

k
h`1q

is a scalar. Therefore, for the vector ∆ruh, the sensitivity coefficient is upper bound by

›

›∆ruh ´ p∆ruhq
1
›

›

2
ď

›

›φVk,h`1

›

›

2
|Vk,h`1| `

›

›

›
φ1Vk,h`1

›

›

›

2

ˇ

ˇV 1k,h`1
ˇ

ˇ ď 2H2 ,
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where the first inequality holds due to that fact that }x ` y}2 ď }x}2 ` }y}2 and the last
inequality holds due to (3.1). Similar, for the matrix ∆rΛh “ φV ps

k
h, a

k
hqφV ps

k
h, a

k
hq
J, the

sensitivity coefficient is upper bound by

›

›φV φ
J
V ´ φ

1
V φ

1J
V

›

›

F
ď

›

›φV φ
J
V

›

›

F
`
›

›φ1V φ
1J
V

›

›

F

“

b

tr
“

φV φJV φV φ
J
V

‰

`

b

tr
“

φ1V φ
1J
V φ

1
V φ

1J
V

‰

“ φJV φV ` φ
1J
V φ

1
V

ď 2H2 ,

where the first inequality holds due to triangle inequality and the last inequality holds due
to (3.1). According to the Algorithm 1 (Lines 12 and 13), we have ∆Λh “ ∆rΛh ` Wh

and ∆uh “ ∆ruh` ξh, where Wh are independent symmetric Gaussian matrices and ξh are
independent Gaussian vector defined in the Algorithm 1. Now, We use D1:h to denote the
collected information from stage 1 to stage h. Considering two different datasets Dh, pDhq

1

collected by the server and any possible outcome pM,αq of the Algorithm 1, then we have

P
´

@h P rHs, p∆Λh,∆uhq “ pM,αq | tDhu
H
h“1

¯

P
´

@h P rHs, pp∆Λhq
1, p∆uhq1q “ pM,αq |

 

D1h
(H

h“1

¯

“

H
ź

h“1

P
´

`

Wk
h, ξ

k
h

˘

“

´

M´∆rΛh,α´∆ruh

¯

|D1:h´1

¯

P
´

ppWhq
1, pξhq1q “

´

M´ p∆rΛhq
1,α´ p∆ruhq1

¯

|D11:h´1

¯ ,

where the equation holds due to Markov property. With the help of the Markov property,
we can further decompose the probability as

H
ź

h“1

P
´

pWh, ξhq “ pM´∆rΛh,α´∆ruhq |Dh´1

¯

P
´

ppWhq
1, pξhq1q “

´

M´ p∆rΛhq
1,α´ p∆ruhq1

¯

|D1h´1

¯

“

H
ź

h“1

P
´

Wh “ M´∆rΛh |Dh´1

¯

P pξh “ α´∆ruh |Dh´1q

P
´

pWhq
1 “ M´ p∆rΛhq

1 |D1h´1

¯

P
`

pξhq1q “ α´ p∆ruhq1 |D
1
h´1

˘

.

According to Lemma 3.8 and the sensitivity coefficient of ∆rΛh, if we set the paremeter
σ “ 4H3

a

2 logp2.5H{δq{ε, then with probability at least 1´ δ{p2Hq, for the Wh term, we
have

P
`

Wh “ M´ φV φ
J
V |Dh´1

˘

ď exp
´ ε

2H

¯

P
`

pWhq
1 “ M´ φ1V φ

1J
V |D

1
h´1

˘

.

For the ξ term, the probability density function (PDF) can be written as

P pξh “ α´∆ruh |Dh´1q

P
`

pξhq1 “ α´ p∆ruhq1 |D
1
h´1

˘ “
exp

´

´}α´∆ruh}
2
2 {p2σ

2q

¯

exp
´

´}α´∆ruh ` p∆ruh ´ p∆ruhq1q}
2
2 {p2σ

2q

¯ ,
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Therefore, applying Lemma 3.8, with probability at least 1´ δ{p2Hq, we have the following
inequality

P
´

ξkh “ α´∆ruh | tDhu
H
h“1

¯

ď exp
´ ε

2H

¯

P
´

pξkhq
1 “ α´ p∆ruhq

1 |
 

D1h
(H

h“1

¯

.

Finally, taking a union bound for Wh,ξh terms and all stage h P rHs, with probability at
least 1´ 2H ˆ δ{p2Hq “ 1´ δ, we have

log

»

–

P
´

@h P rHs, p∆Λh,∆uhq “ pM,αq | tDhu
H
h“1

¯

P
´

@h P rHs, pp∆Λhq
1, p∆uhq1q “ pM,αq |

 

D1h
(H

h“1

¯

fi

fl ď ε .

Therefore, according to Theorem A.2, we can conclude that our algorithm protects pε, δq-
LDP property. According to the post-processing property, one can also prove that our
algorithm satisfies DP property.

Appendix B. Proofs of Regret Upper Bound

In this section, we provide the proof of Theorem 5.2. We first propose the following lemmas.

Lemma B.1. If we choose parameter β “ c1d3{4H3{2k1{4 logpdT {αq
`

logpH{δq
˘1{4a

1{ε and
λ “ 1 for a large enough constant c1 in Algorithm 1, then for any fixed policy π and all
pairs ps, a, h, kq P S ˆAˆ rHs ˆ rKs, with probability at least 1´ α{2, we have

›

›

›
pΣk,hq

1{2
´

pθk,h ´ θ
˚
h

¯›

›

›

2
ď β .

Proof of Lemma B.1. According to the definition of pθk,h in Algorithm 1 (Line 19), the

difference between our estimator pθk,h and underlying vector θ˚h can be decomposed as

pθk,h ´ θ
˚
h “ pΣk,hq

´1
k´1
ÿ

τ“1

 

φVτ,h`1
psτh, a

τ
hqVτ,h`1ps

τ
h`1q ` ξ

τ
h

(

´ θ˚h

“ pΣk,hq
´1

#

´λθ˚h ´
k´1
ÿ

τ“1

φVτ,h`1
φJVτ,h`1

θ˚h ´Wk´1θ˚h `
k´1
ÿ

τ“1

φVτ,h`1
Vτ,h`1 `

k´1
ÿ

τ“1

ξτh

+

“ pΣk,hq
´1

$

’

’

’

’

&

’

’

’

’

%

´

´λI´Wk´1
¯

θ˚h
looooooooooomooooooooooon

q1

`

k´1
ÿ

τ“1

φVτ,h`1
rVτ,h`1 ´ PhVτ,h`1s

looooooooooooooooooomooooooooooooooooooon

q2

`

k´1
ÿ

τ“1

ξτh
loomoon

q3

,

/

/

/

/

.

/

/

/

/

-

,

where the matrix Wk´1 “
řk´1
i“1 Wi,h. Simply rewriting the above equation, we have

›

›

›
pΣk,hq

1{2
´

pθk,h ´ θ
˚
h

¯›

›

›

2
“

›

›

›
pΣk,hq

´1{2pq1 ` q2 ` q3q

›

›

›

2
. (B.1)
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Now, we first give a upper and lower bounds for the eigenvalues of the symmetric Gaussian
matrix Wk´1. According to the Algorithm 1 (Line 12), all entries of Wi,h are sampled from
N p0, σ2q and known concentration results (Tao, 2012) on the top singular value shows that

P

˜›

›

›

›

›

k´1
ÿ

τ“1

Wh

›

›

›

›

›

2

ě
?
k ´ 1σ

´?
4d` 2 logp6H{αq

¯

¸

ď
α

6H
.

For simplicity, we denote Γ “
?
k ´ 1σp

?
4d` 2 logp6H{αqq. Since the symmetric Gaussian

matrix Wk´1 may not preserve PSD property, we use the shifted regularizer. More specif-
ically, after adding a basic matrix 2ΓI to the matrix Wk´1 “

řk´1
i“1 Wi,h, for each stage

h P rHs, the eigenvalues can be bounded by the interval rΓ, 3Γs with probability at least
1´ α{6. We use the notation E1 to denote the event that

@h P rHs, @j P rds,Γ ď σj ď 3Γ ,

where σ1, .., σd are eigenvalue of the matrix Wk´1 and we have PpE1q ě 1´ α{6.
Now, we assume the event E1 holds and we further denote ρmax “ 3Γ` λ, ρmin “ Γ` λ.

Then for the term q1, we have

›

›

›
pΣk,hq

´1{2q1

›

›

›

2
ď

›

›

›
pWk´1 ` λIq´1{2q1

›

›

›

2

“

›

›

›
pWk´1 ` λIq1{2θ˚h

›

›

›

2

ď
?
ρmax }θ

˚
h}2

ď

b

12d
?
k ´ 1H3

a

2 logp2.5H{δqp4
?
d` 2 logp6H{dqq{ε` λd , (B.2)

where the first inequality holds due to Σk,h ľ Wk´1 ` λI, the second inequality holds due
to the definition of event E1 and the last inequality holds due to the choice of σ in Algorithm
(Line 1).

For the term q2, we have

›

›

›
pΣk,hq

´1{2q2

›

›

›

2
“

›

›

›

›

›

k´1
ÿ

τ“1

φVτ,h`1
rVτ,h`1 ´ PhVτ,h`1s

›

›

›

›

›

pΣk,hq
´1

ď

›

›

›

›

›

k´1
ÿ

τ“1

φVτ,h`1
rVτ,h`1 ´ PhVτ,h`1s

›

›

›

›

›

pZq´1

,

where Z “ λI `
řk´1
τ“1φVτ,h`1

φJVτ,h`1
and the inequality holds due to the tact that Σk,h ľ

Z “ λI`
řk´1
τ“1φVτ,h`1

φJVτ,h`1
. According to the Definition 3.1, we have Vτ,h`1 “ PhVτ,h`1`

ητ,h`1 “ φ
J
Vτ,h`1

θ˚h ` ητ,h`1. Let tGtu8t“1 be a filtration,
 

φVτ,t , ητ,t
(

tě1
a stochastic process

so that φVτ,t is Gt-measurable and ητ,t is Gt`1-measurable. With this notation, we further
have

|ηt| ď |Vτ,t ´ PhVτ,h`1| ď H, Erη2t |Gts ď ErV 2
τ,t |Gts ď H2 .
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Now we introduce the following event E2:

E2 “
"

@h P rHs, }q2}Z´1 ď 8H

d

d log

ˆ

1`
pk ´ 1qH2

dλ

˙

log

ˆ

24pk ´ 1q2H

α

˙

` 4H log

ˆ

24pk ´ 1q2H

α

˙*

,

then from Theorem 4.1 in Zhou et al. (2021a), we have E2 holds with probability 1´ α{6.
For the term q3, it can be upper bounded by

›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

pΣk,hq
´1

ď

›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

pWk´1`λIq´1

ď
1

?
ρmin

›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

2

,

where the first inequality holds due to Σk,h ľ Wk´1 ` λI and the second inequality holds
due to the definition of event E1. Furthermore, by Lemma E.1, with probability at least
1´ α{6H, there is

›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

2

ď σ

c

pk ´ 1qd log
12dH

α
.

We also let E3 be the event that:

E3 “

#

@h P rHs :

›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

2

ď σ

c

pk ´ 1qd log
12dH

α

+

.

By taking a union bound for all stage h P rHs, we have PpE3q ě 1´ α{6. Therefore,
›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

pΣk,hq
´1

ď
1

?
ρmin

›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

2

ď
σ
a

pk ´ 1qd logp12dH{αq
?
ρmin

“
σ
a

pk ´ 1qd logp12dH{αq
b

σ
a

pk ´ 1qp
?

4d` 2 logp6H{αqq ` λ

ď

?
σpk ´ 1q1{4

a

d logp12dH{αq
b?

4d` 2 logp6H{αq

ď d1{4pk ´ 1q1{4H3{2
b

2
a

2 logp2.5H{δq{ε
a

logp12dH{αq , (B.3)

where the second inequality holds due to the definition of event E3, the third inequality
holds due to λ ě 0 and the last inequality holds by the fact that 2 logp6H{αq ě 0. Finally,
substituting the (B.2), (B.3) with the definition of event E2 into (B.1), with probability at
least 1´ α{2, we have for each h P rHs,

›

›

›
pΣk,hq

1{2
´

pθk,h ´ θ
˚
h

¯›

›

›

2
ď β ,

where β “ C 1d3{4H3{2k1{4 logpdT {αq
`

logpH{δq
˘1{4a

1{ε and C 1 is an absolute constant.
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Lemma B.2. Let Qk,h, Vk,h be the value functions defined in Algorithm 1. Then, on the
event E1, E2, E3, defined in Lemma B.1, for any pairs ps, a, k, hq P S ˆ A ˆ rKs ˆ rHs, we
have Q˚hps, aq ď Qk,hps, aq and V ˚h psq ď Vk,hpsq.

Proof of Lemma B.2. We prove this lemma by induction. First, we consider for that basic
case. The statement holds for H ` 1 since Qk,H`1p¨, ¨q “ 0 “ Q˚H`1p¨, ¨q and Vk,H`1p¨q “
0 “ V ˚H`1p¨q. Now, suppose that this statement also holds for h` 1, we have Qk,h`1p¨, ¨q ě
Q˚h`1p¨, ¨q, Vk,h`1p¨q ě V ˚h`1p¨q. For stage h and state-action pair ps, aq, if Qk,hps, aq ě H,
obviously, we have Qk,hps, aq ě H ě Q˚hps, aq. Otherwise, we have

Qk,hps, aq ´Q
˚
hps, aq “ rhps, aq `

〈
pθk,h,φVk,h`1

ps, aq
〉
` βk

›

›

›
Σ
´1{2
k,h φVk,h`1

ps, aq
›

›

›

2

´ rhps, aq ´
“

PhV ˚h`1
‰

ps, aq

“

〈
pθk,h,φVk,h`1

ps, aq
〉
´
〈
θ˚h,φVk,h`1

ps, aq
〉
`
〈
θ˚h,φVk,h`1

ps, aq
〉

` βk

›

›

›
Σ
´1{2
k,h φVk,h`1

ps, aq
›

›

›

2
´
“

PhV ˚h`1
‰

ps, aq

“ βk

›

›

›
Σ
´1{2
k,h φVk,h`1

ps, aq
›

›

›

2
´

〈
θ˚h ´

pθk,h,φVk,h`1
ps, aq

〉
` PVk,h`1ps, aq ´ PV ˚h`1ps, aq

ě βk

›

›

›
Σ
´1{2
k,h φVk,h`1

ps, aq
›

›

›

2
´

›

›

›
Σ

1{2
k,h

´

pθk,h ´ θ
˚
h

¯›

›

›

2

›

›

›
Σ
´1{2
k,h φVk,h`1

ps, aq
›

›

›

2

` PVk,h`1ps, aq ´ PV ˚h`1ps, aq
ě PVk,h`1ps, aq ´ PV ˚h`1ps, aq
ě 0 ,

where the first inequality is because of Cauchy-Schwarz inequality, the second inequality
holds due to Lemma B.1, and the last inequality holds by the induction assumption with
the fact that Ph is a monotone operator with respect to the partial ordering of functions.
Moreover, since we have Qk,hp¨, ¨q ě Q˚hp¨, ¨q for any state-action pair ps, aq, we directly
obtains that Vk,hp¨q ě V ˚h p¨q. Therefore, we conclude the proof of this lemma.

Now we begin to prove our main Theorem.

B.1. Proof of Theorem 5.2

Proof of Theorem 5.2. We give the proof of our main theorem on the events E1, E2, E3 defined
in Lemma B.1. According to Lemma B.2, we have that Q˚hps, aq ď Qk,hps, aq, V

˚
h psq ď
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Vk,hpsq. Thus, we have

V ˚h

´

skh

¯

´ V πk

h

´

skh

¯

ďVk,h

´

skh

¯

´ V πk

h

´

skh

¯

“max
a

Qk,hps
k
h, aq ´max

a
Qπ

k

h ps
k
h, aq

ďQk,hps
k
h, a

k
hq ´Q

πk

h ps
k
h, a

k
hq

ďrhps
k
h, a

k
hq `

〈
pθk,h,φVk,h`1

´

skh, a
k
h

¯〉
` βk

›

›

›
Σ
´1{2
k,h φVk,h`1

´

skh, a
k
h

¯›

›

›

2

´ rhps
k
h, a

k
hq ´

”

PhV πk

h`1

ı ´

skh, a
k
h

¯

ď

›

›

›
Σ

1{2
k,h pθk,h ´ θ

˚
hq

›

›

›

2

›

›

›
Σ
´1{2
k,h φVk,h`1

´

skh, a
k
h

¯›

›

›

2

` rPhVk,h`1s
´

skh, a
k
h

¯

´

”

PhV πk

h`1

ı ´

skh, a
k
h

¯

` βk

›

›

›
Σ
´1{2
k,h φVk,h`1

´

skh, a
k
h

¯›

›

›

2

ďrPhVk,h`1s
´

skh, a
k
h

¯

´

”

PhV πk

h`1

ı ´

skh, a
k
h

¯

` 2βk

›

›

›
Σ

1{2
k,hφVk,h`1

´

skh, a
k
h

¯›

›

›

2
,

where the first inequality holds due to Lemma B.2, the second inequality holds due to
the choice of action akh in the Algorithm (Line 11), the third inequality holds due to the

definition of Vk,h with the Bellman equation for V πk

h , the fourth inequality holds due to
Cauchy-Schwartz inequality and the last inequality holds by Lemma B.1. We also note that
Vk,h

`

skh
˘

´ V πk

h

`

skh
˘

ď Vk,h
`

skh
˘

ď H and it implies that

Vk,h

´

skh

¯

´ V πk

h

´

skh

¯

ď min
!

H, 2βk

›

›

›
Σ

1{2
k,hφVk,h`1

´

skh, a
k
h

¯›

›

›

2
` rPhVk,h`1s

´

skh, a
k
h

¯

´

”

PhV πk

h`1

ı ´

skh, a
k
h

¯)

ď min
!

H, 2βk

›

›

›
Σ

1{2
k,hφVk,h`1

´

skh, a
k
h

¯›

›

›

2

)

` rPhVk,h`1s
´

skh, a
k
h

¯

´

”

PhV πk

h`1

ı ´

skh, a
k
h

¯

,

where the second inequality holds since Vk,h`1 ě V ˚h`1 ě V πk

h`1 and we further have

Vk,h

´

skh

¯

´ V πk

h

´

skh

¯

´

”

Vk,h`1

´

skh`1

¯

´ V πk

h`1

´

skh`1

¯ı

ď min
!

H, 2βk

›

›

›
Σ

1{2
k,hφVk,h`1

´

skh, a
k
h

¯›

›

›

2

)

` rPhVk,h`1s
´

skh, a
k
h

¯

´

”

PhV πk

h`1

ı ´

skh, a
k
h

¯

´

”

Vk,h`1

´

skh`1

¯

´ V πk

h`1

´

skh`1

¯ı

.

Summing up these inequalities for k P rKs and stage h “ h1, . . . ,H

K
ÿ

k“1

”

Vk,h1
´

skh1
¯

´ V πk

h1

´

skh1
¯ı

ď 2
K
ÿ

k“1

H
ÿ

h“h1

βk min
!

1,
›

›

›
Σ
´1{2
k,h φVk,h`1

´

skh, a
k
h

¯›

›

›

2

)

`

K
ÿ

k“1

H
ÿ

h“h1

””

Ph
´

Vk,h`1 ´ V
πk

h`1

¯ı´

skh, a
k
h

¯

´

”

Vk,h`1 ´ V
πk

h`1

ı ´

skh`1

¯ı

.
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Now, we define the event E4 as follows

E4 “
" K
ÿ

k“1

H
ÿ

h“h1

”

rPhpVk,h`1 ´ V πk

h`1qs

´

skh, a
k
h

¯

´ rVk,h`1 ´ V
πk

h`1sps
k
h`1q

ı

ď 4H
a

2T logp2H{αq,

@h P rHs

*

.

Thus, since rPhpVk,h`1´V πk

h`1qsps
k
h, a

k
hq´rVk,h`1´V

πk

h`1sps
k
h`1q forms a martingale difference

sequence and
ˇ

ˇ

ˇ
rPhpVk,h`1 ´ V πk

h`1qsps
k
h, a

k
hq ´ rVk,h`1 ´ V

πk

h`1sps
k
h`1q

ˇ

ˇ

ˇ
ď 4H, applying Azuma-

Hoeffding inequality, we have E4 holds with probability PpE4q ě 1´ α{2.
Now, note that Σ ľ λI and choosing the stage h1 “ 1, by the Cauchy-Schwartz inequal-

ity, we have

K
ÿ

k“1

H
ÿ

h“1

βk min
!

1,
›

›

›
Σ
´1{2
k,h φVk,h`1

´

skh, a
k
h

¯›

›

›

2

)

ď βK

H
ÿ

h“1

K
ÿ

k“1

min
!

1,
›

›

›
Σ
´1{2
k,h φVk,h`1

´

skh, a
k
h

¯›

›

›

2

)

(B.4)

ď HβK
a

2dK logp1`K{λq ,

where the first inequality holds due to βk ď βK and the last inequality holds due to
Lemma E.2.

Finally, on the events E1, E2, E3, E4, we conclude with probability at least 1´ α:

RegretpKq ď 4H
a

2T logp2H{αq

` cd3{4H3{2K1{4 log
dT

α

ˆ

log
H

δ

˙1{4
c

1

ε
H
a

2dK logp1`K{λq

ď rO

˜

d5{4H5{2K3{4

ˆ

log
1

δ

˙1{4
c

1

ε

¸

.

Appendix C. Proofs of Regret Lower Bound

In this section, we provide the proof of lower bound for learning ε-LDP linear mixture MDPs,
using the hard-to-learn MDP instance constructed in Zhou et al. (2021a). More specifically,
there exist H ` 2 different states s1, .., sH`2, where sH`1 and sH`2 are absorbing states.
The action space A “ t´1, 1ud´1 consists of 2d´1 different actions. The reward function
rh satisfies that rhpsh,aq “ 0p1 ď h ď H ` 1q and rhpsH`2,aq “ 1. For the transition
probability function Ph, sH`1 and sH`2 are absorbing states, which will always stay at the
same state, and for other state shp1 ď h ď Hq, we have

Phpsh`1|sh,aq “ 1´ δ ´ xµh,ay,

PhpsH`2|sh,aq “ δ ` xµh,ay,

where each µh P t´∆,∆ud and δ “ 1{H. Furthermore, these hard-to-learn MDPs can be
represented as linear mixture MDPs with the following feature mapping φ : SˆSˆAÑ Rd
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and vector θh:

φpsh`1|sh,aq “
`

αp1´ δq,´βa
˘

, h P rHs,

φpsH`2|sh,aq “
`

αδ, βa
˘

, h P rHs,

φpsh`1|sh,aq “
`

α,0
˘

, h P rHs,

φpsh`1|sh,aq “ p0,0q, h P rHs,

θh “ p1{α,µh{βq, h P rHs,

where 0 “ t0ud´1 is a pd´ 1q-dimensional vector of all zeros, α “
b

1{
`

1` pd´ 1q∆
˘

and

β “
b

∆{
`

1` pd´ 1q∆
˘

. According to previous analysis on these hard-to-learn MDPs in

Zhou et al. (2021a), we know that the regret of this MDP instance can be lower bounded
by the regret of H{2 bandit instances. Thus, we will give a privatized version of Lemma
C.7 in Zhou et al. (2021a).

Lemma C.1. (KL-divergence Decomposition for Linear Bandits) We denote the reward
generated by a linear bandits at the t-th episode as yt “ xJt θ` ηt where xt is the action at
t-th episode and ηt is the random noise at the t-th episode. We have

KLpPTπ,θ1 ,P
T
π,θ2q “

T
ÿ

t“1

Eπ,θ1 rKLpfθ1pyt |xtq, fθ2pyt |xtqqs ,

where we use PTπ,θ to denote the distribution of observed history HT “ txt, ytu
T
t“1 up to

time T .

Proof. The proof adapts the chain rule of KL divergence in Exercise 14.12, Lattimore and
Szepesvári (2020). For two measures P,Q on pRn,BpRnqq, and let Pt, Qt be regular versions
of Xt given X1, . . . ,Xt´1 under P and Q, respectively. The chain rule of KL divergence
shows that

KLpP,Qq “ EP

«

T
ÿ

t“1

KL pPtp¨ |X1, . . . ,Xt´1q, Qtp¨ |X1, . . . ,Xt´1qq

ff

.

Therefore, by substituting yt,xt into the chain rule, we have

KLpPTπ,θ1 ,P
T
π,θ2q

“ Eπ,θ1

„ T
ÿ

t“1

KL pPπ,θ1pyt |xt,Ht´1q,Pπ,θ2pyt |xt,Ht´1qq

`KL pPπ,θ1pxt |Ht´1q,Pπ,θ2pxt |Ht´1qq



“ Eπ,θ1

„ T
ÿ

t“1

KL pfθ1pyt |xtq, fθ2pyt |xtqq `KL pPπ,θ1pxt |Ht´1q,Pπ,θ2pxt |Ht´1qq



“

T
ÿ

t“1

Eπ,θ1 rKLpfθ1pyt |xtq, fθ2pyt |xtqqs ,
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where the second equality is from the fact that yt only dependents on xt, and the third
equality is from the fact that the distribution of xt only depends on the algorithm and
Ht´1.

We now present the following locally differentially private KL-divergence decomposition
lemma for ε-LDP contextual linear bandits.

Proof of Lemma 5.4. Instead of only protecting the output rewards in MAB algorithms with
LDP guarantee, LDP contextual linear bandit algorithms requires the input information
xt, yt to the server to be protected by the privacy-preserving mechanism M. We denote
by fθ1M, fθ2M the privatized conditional distribution of reward given xt, and rxt, ryt are the
privatized version of xt, yt, respectively. Combining the definition of “the distribution of
observed history” rPTπ,θ in (5.1), we have

KLprPTπ,θ1 , rP
T
π,θ2q “

T
ÿ

t“1

Eπ,θ1
“

KLpfMθ1 pryt |xtq, f
M
θ2 pryt |xtqq

‰

ď

T
ÿ

t“1

Eπ,θ1
“

KLpfMθ1 pryt |xtq, f
M
θ2 pryt |xtqq

‰

`

T
ÿ

t“1

Eπ,θ1
“

KLpfMθ2 pryt |xtq, f
M
θ1 pryt |xtqq

‰

ď min
 

4, e2ε
(

peε ´ 1q2
T
ÿ

t“1

Eπ,θ1 }fθ1pryt |xtq ´ fθ2pryt |xtq}
2
TV

ď 2 min
 

4, e2ε
(

peε ´ 1q2
T
ÿ

t“1

Eπ,θ1 rKLpfθ1pryt |xtq, fθ2pryt |xtqqs ,

where the first equality is directly obtained from Lemma C.1, the first inequality is from the
fact that KL divergence is non-negative. The second is obtained from Theorem 1 in Duchi
et al. (2018) and the last inequality is due to Pinsker’s inequality (Cover, 1999). Therefore,
we complete the proof of Lemma 5.4 and obtain a result that is similar to Lemma 4 in Basu
et al. (2019).

C.1. Proof of Corollary 5.5

Now, we begin the proof of Corollary 5.5, which give a lower bound for the regret of ε-LDP
contextual linear bandits.

Proof of Corollary 5.5. In this proof, we adapted the hypercube action set in Lattimore and
Szepesvári (2020) (Theorem 24.1). Let the action set A “ t´1, 1ud and Θ “ t´∆,∆ud.
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Let’s define xt P A to be the action chosen at step t. Given θ P Θ, we have

RegretpT q “ ∆Eπ,θ

«

T
ÿ

t“1

d
ÿ

i“1

psignpθiq ´ signpxtiqq signpθiq

ff

ě ∆
d
ÿ

i“1

Eπ,θ

«

T
ÿ

t“1

1 tsignpxtiq ‰ signpθiqu

ff

ě ∆
T

2

d
ÿ

i“1

rPπ,θ

˜

T
ÿ

t“1

1 tsignpxtiq ‰ signpθiqu ě T {2

¸

,

where the first inequality holds due to psignpθiq´signpxtiqq signpθiq ě 1 tsignpxtiq ‰ signpθiqu
and the last inequality holds due to the Markov’s inequality. For any vector θ P Θ and
i P rds, we consider the vector θ1 P Θ such that θ1j “ θj for j ‰ i and θ1i ‰ θi. We

denote the event Eθ as Eθ “
!

řT
t“1 1 tsignpxtiq ‰ signpθiqu ě T {2

)

. Then, according to

the Bretagnolle-Huber inequality (Bretagnolle and Huber, 1979) with the notation pθi “
rPπ,θpEθq and pθ1i “

rPπ,θ1pEθ1q, we have

pθi ` pθ1i ě
1

2
expp´KLprPπ,θ, rPπ,θ1qq . (C.1)

Suppose that δ ď 1{3, d∆ ď δ{2, by Lemma 5.4, we further have

KLpPθ,Pθ1q ď 2 min
 

4, e2ε
(

peε ´ 1q2
T
ÿ

t“1

Eθ rKLpfθpryt |xtq, fθ1pryt |xtqqs

“ 2 min
 

4, e2ε
(

peε ´ 1q2
T
ÿ

t“1

Eθ

“

KL
`

Bp〈xt,θ〉` δq, B
`〈

xt,θ
1
〉
` δ

˘˘‰

ď 2 min
 

4, e2ε
(

peε ´ 1q2
T
ÿ

t“1

Eθ

«

〈xt,θ ´ θ1〉2

〈xt,θ〉` δ

ff

ď 32 min
 

4, e2ε
(

peε ´ 1q2
T∆2

δ
, (C.2)

where the first inequality holds due to Lemma 5.4, the second equality holds since for any
two Bernoulli Bpaq and Bpbq, we have KLpBpaq, Bpbqq ď 2pa´bq2{a when a ď 1{2, a`b ď 1,
and the last inequality holds due to the definition of vector θ1 with the fact that 〈xt,θ〉 ě
´d∆ ě ´δ{2. Therefore, combining (C.1) and (C.2), we further derive that

pθi ` pθ1i ě
1

2
exp

ˆ

´32 min
 

4, e2ε
(

peε ´ 1q2
T∆2

δ

˙

.

Taking average over all θ P Θ, we get

1

|Θ|

ÿ

θPΘ

d
ÿ

i“1

pθi ě
d

4
exp

ˆ

´32 min
 

4, e2ε
(

peε ´ 1q2
T∆2

δ

˙

.
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Thus, there exists a θ P Θ such that
řd
i“1 pθi ě d exp

`

´32 min
 

4, e2ε
(

peε ´ 1q2T∆2{δ
˘

{4.

By choosing ∆ “
?
δ{

`

min t2, eεu peε ´ 1q
?
T
˘

, we obtain:

RegretpT q ě
expp´32q

8 min t2, eεu peε ´ 1q
d
?
Tδ .

C.2. Proof of Theorem 5.6

Proof of Theorem 5.6. Our proof is based on the hard-to-learn instanceMpS,A, H, trhu , tPhuq
constructed in Zhou et al. (2021a), where A “ t´1, 1ud´1 , δ “ 1{H and µh P t´∆,∆ud´1.
The only difference is that we set ∆ “

?
δ{

`

min t2, eεu peε ´ 1q
?
K
˘

. According to Defini-
tion 3.1, we choose φps1 | s,aq,θh P Rd`1 as follows:

φ
`

s1 | s,a
˘

“

$

’

’

&

’

’

%

pαp1´ δq,´βaJqJ, s “ xh, s
1 “ xh`1, h P rHs

pαδ, βaJqJ, s “ xh, s
1 “ xH`2, h P rHs;

pα,0JqJ, s P txH`1, xH`2u , s
1 “ s;

0, otherwise .

,θh “
`

1{α,µJh {β
˘J
, h P rHs .

where α “
a

1{p1`∆pd´ 1qq and β “
a

∆{p1`∆pd´ 1qq. Therefore, from Lemma C.7
in Zhou et al. (2021a), we directly obtain

sup
µ

EµRegret pMµ,Kq ě
H

10

H{2
ÿ

h“1

BanditRegretpKq

ě
c

min t2, eεu peε ´ 1q
dH2

?
Kδ

“
c

min t2, eεu peε ´ 1q
dH
?
T ,

where c is an absolute constant, the first inequality holds due to Lemma C.7 in Zhou et al.
(2021a) and the last inequality follows by Corollary 5.5. Thus, we complete the proof of
Theorem 5.6.

Appendix D. More Discussions on the Gap between Upper and Lower
Bounds

We have mentioned before that there exists a gap between our current upper bound in
Theorem 5.2 and lower bound in Theorem 5.6. Roughly speaking, from the proof of Theorem
5.2, we have shown in (B.4) that the cumulative regret can be upper bounded by

RegretpKq ď βK

H
ÿ

h“1

K
ÿ

k“1

!

1,
›

›

›
Σ
´1{2
k,h φVk,h`1

´

skh, a
k
h

¯›

›

›

2

)

` 4H
a

2T logp2H{αq

ď
?
KH

g

f

f

e

H
ÿ

h“1

K
ÿ

k“1

!

1,
›

›

›
Σ
´1{2
k,h φVk,h`1

`

skh, a
k
h

˘

›

›

›

2

)

` 4H
a

2T logp2H{αq

ď βKH
a

2dK log p1`K{λq ` 4H
a

2T logp2H{αq ,
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where the second inequality is due to Cauchy-Schwarz inequality, and the third inequality
is by Lemma E.2. Therefore, we only need to calculate the confidence radius βk, which
satisfies the following property in Lemma B.1:

›

›

›
pΣk,hq

1{2
´

pθk,h ´ θ
˚
h

¯›

›

›

2
ď βk ,

where the covariance matrix Σk,h and estimated vector pθk,h are defined in Algorithm 1. In
Lemma B.1, we have shown in (B.1) that

›

›

›
pΣk,hq

1{2
´

pθk,h ´ θ
˚
h

¯›

›

›

2
“

›

›

›
pΣk,hq

´1{2pq1 ` q2 ` q3q

›

›

›

2

ď

›

›

›
pΣk,hq

´1{2q1

›

›

›

2
loooooooomoooooooon

(i)

`

›

›

›
pΣk,hq

´1{2q2

›

›

›

2
loooooooomoooooooon

(ii)

`

›

›

›
pΣk,hq

´1{2q3

›

›

›

2
loooooooomoooooooon

(iii)

,

where vectors q1,q2,q3 are defined as

q1 “

´

´λI´Wk´1
¯

θ˚h, q2 “

k´1
ÿ

τ“1

φVτ,h`1
rVτ,h`1 ´ PhVτ,h`1s , q3 “

k´1
ÿ

τ“1

ξτh ,

and the inequality holds due to the triangle inequality.
To see the reason of this gap, we not only analyze the proof in the private setting, but

also consider the non-private setting, i.e., Wk´1 “ 0,q3 “ 0 for comparison. For the first
term (i) in the private setting, it can be bounded by

›

›

›
pΣk,hq

´1{2q1

›

›

›

2
“

›

›

›

´

λI`Wk´1
¯

θ˚h

›

›

›

pΣk,hq
´1

ď
1

?
σmin

›

›

›

´

λI`Wk´1
¯

θ˚h

›

›

›

2

ď
3Γ

?
σmin

}θ˚h}2

“ rOpk1{4q, (D.1)

where we use σmin to denote the smallest eigenvalue of Σk,h, and

Γ “
?
k ´ 1σ

´?
4d` 2 log p6H{αq

¯

“
?
k ´ 14H3

a

2 logp2.5H{δq
´?

4d` 2 log p6H{αq
¯

{ε

is defined in the proof of Lemma B.1. The first inequality in (D.1) holds due the fact that
Σk,h ľ σminI, and the second inequality is due to the definition of high probability event
E1 in Lemma B.1.

In the non-private version, the first term (i) can be written as

›

›

›
pΣk,hq

´1{2q1

›

›

›

2
“ }λθ˚h}pΣk,hq

´1 ď
1
?
λ
}λθ˚h}2 “ Op1q,

where the inequality holds due to Σk,h ľ λI in the non-private setting. Compared with

non-private bound, the random noise introduces an additional factor of rOpK1{4q in the
upper bound of the first term.
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For the second term (ii)
›

›pΣk,hq
´1{2q2

›

›

2
, according to the proof of Lemma B.1, under

the event E2, it is in the order rOp1q. This upper bound is unaffected by the noise matrix
Wk´1 since we simply drop the noise term Wk´1 to get the lower bound Σk,h ľ λI `
řk´1
τ“1φVτ,h`1

φJVτ,h`1
, and this inequality trivially holds in the non-private setting. Therefore,

the order of term (ii) should be rOp1q for both the private and the non-private settings.
For the last term in the private setting, similar to the analysis of term (i), it can be

upper bounded by

›

›

›
pΣk,hq

´1{2q3

›

›

›

2
“

›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

Σ´1
k,h

ď
1

?
σmin

›

›

›

›

›

k´1
ÿ

τ“1

ξτh

›

›

›

›

›

2

ď
1

?
σmin

σ

c

pk ´ 1qd log
12dH

α

“
1

?
σmin

4H3
a

2 logp2.5H{δq

c

pk ´ 1qd log
12dH

α
{ε

“ rOpk1{4q.

In comparison, the third term (iii) does not exist in the non-private setting. Combining
these three terms together, we come to the conclusion that the confidence radius βK is of
rOpK1{4q in the private setting, and rOp1q in the non-private setting. In a word, our current
gap between the regret upper and lower bounds is caused by the additional noises used in
Gaussian mechanism.

Appendix E. Auxiliary Lemmas

Lemma E.1. (Corollary 7, Jin et al. 2019). There exists an absolute constant c, such that
if random vectors X1, . . . ,Xn P Rd, and corresponding filtrations Fi “ σpX1, . . . ,Xiq for
i P rns satisfy that Xi |Fi´1 is zero-mean σi-sub-Gaussian with fixed tσiu, then for any
δ ą 0, with probability at least 1´ δ

›

›

›

›

›

n
ÿ

i“1

Xi

›

›

›

›

›

2

ď c ¨

g

f

f

e

n
ÿ

i“1

σ2i log
2d

δ
.

Lemma E.2. (Lemma 11, Abbasi-Yadkori et al. 2011). Let tφtutě0 be a bounded sequence
in Rd satisfying suptě0 }φt} ď 1. Let Λ0 P Rdˆd be a positive definite matrix. For any t ě 0,
we define Λt “ Λ0`

řt
j“0φ

J
j φj . Then, if the smallest eigenvalue of Λ0 satisfies λminpΛq ě 1,

we have

log

„

detpΛtq

detpΛ0q



ď

t
ÿ

j“1

φJj Λ´1j´1φj ď 2 log

„

detpΛtq

detpΛ0q



.
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