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1. Complete Proofs
1.1. Proof of Theorem 1

Suppose the virtual sequence of global models W™ for 7 = 1,2, ...,T is computed by
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=’ =Y P> mVF(w, &) 9)
=1 i=0
We define ¢" = ZﬂilkaFk(wg,fg) and g7 = 224:1 pPVF,(w]), and we have E[g"] = g".
Consequently, based on Equation 2, we have @™ ! = @™ — 1,¢7. Then it holds that
[@™ = ] = |0 = nrg” — W
= HwT - 77ng —w* — 777'?7- + 777§TH2
= |[@0" —w* = 09" +n:(9" — .gT)HQ
= l&" —w* =G P+ 02llg — GNP+ 20 <O —w' =g, G — g >.
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To bound Equation (10), we separately bound A;, Ay and As.
A = [[@" =P+ 2|77 |) =20, <@T -G > (11)
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Given Assumption 1, for any w and w , we have
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and

IVE(Wi)I? < 2L(EFy(wf) — Fi(w")). (13)
Thus, B is bounded by
By <7} ZP IV E(wWi)* < 2Ln? Zp (Fr(wp) — Fr(w")). (14)
k=1

By can be reformulated by

M
By = —QWTZpk <w —w' gL >
k=1
w u (15)
=2, Y pr <@ —wigp > =2, > pF <wf—wgf >,
k=1 k=1
and we have
—2E[<@w" —wi,g; > = -2 <@ —wj, VF,(wf) >
< 20" - W IV E (D) )

1
< FHET = WEl? + e [V Er(w]) |12

The first inequality holds for Cauchy-Schwarz inequality and the second holds for AM-GM
inequality. According to Equations (13) and (16), we have

1 *
—2E[<W" —wf, g7 >] < ;IW — Wil P + 2L (Fr(wf) — Fe(w")), (17)

and
—2B[< wf —w*, g >] < —2(Fi(wf) — Fr(w")) — pllwf — w*| . (18)

Thus, By can be bounded by

M M
E[B2] < ) " (|07 —wf P +2LnZ (Fi(Wi) = Fi(w"))) =nr Y 9" (2(Ek(wh) —Fi(w*)+pullwf —w*[?).
k=1 k=1

(19)
According to the convexity property of quadratic function, we have
M
— ey pPl|wf — W] < —nepllo” — w0t (20)
k=1

Substituting Equation (20) into Equation (19), we bound Bs by

M
E[By] < ) pP(|Iw” —wi I[P +2Lnf (Fio(wp) = Fi(w"))) =200 Y 9" (F(wh) = Fi (")) =nrpl @ —w* [
k=1
(21)
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Based on Equations (14) and (21), A; can be reformulated as
M
E[A1] < (1 = nrp)|l@” — oI + ZP'“HUT — wilf?

+4L77¢Zp (F(w]) 2%219 (Fi(wf) — Fr(w")).
k=1
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Let v = 2n,(1 — 2Ln;) for 7 =1,2,...,T. C can be reformulated as

M M
C=—7 > " (Fr(wi) = F(w) + (20, — ) Y p"(
k]\:41
— —'yTZpk(Fk(wk,) F*)—|—4L’I’] F
k=1
D
where
M M
D =Y p*(Fuwp) - F@) + > _p"(F@) - F*

k=1 k=1

P < VE@),uf —w" >+F@)— F*.
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Given Assumption 1, we have

D1>—72p (1| |V F @) + TTHW —@|?).
k=1

Substituting Equations (25) and (24) into (23), we have

M
C = (Lnr = 1) Y p"(Fr(w”) = Fr(w")) + (4Ln? 4 7r0-L)T + - Zp’“llw
k=1
M
<6LNT + > pl” — will®.
k=1

According to Equations (22) and (26), A; can be bounded by

M
E[A1] < (1= pne)||@" —w*|? +2 ) p*llw” — wf|* +6Ln7T

Do
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To bound D5, we define the auxiliary inequality as

g = lgi ™ = gp + gill < llgi ™ — gill + gl

= ||VFx(wk — nrgr) — VEF(wi) || + [zl
< Ll|lwk — 1795 — wi|| + |9zl
= (1+ Ln.)llgll = (1 + Lu-)" gl

T4+1

and 7y, as the last time step when k-th client upload its model to the server.

fixed 1, we have

& — W] = [[(wf —w™) — (@ —w™ H<Zun zp?g]

= TkO
T M
i T T
< Y+ L) ™olIn(g® =Y g5l
— j=1
Z:ﬁ-—Tk (1 + Ln)i_ﬂco -1 ) M
L) k, Tk
<|| 7 <gk°—Zlgj0>\|-
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Equation (29) can be reformulated as

T E-1
Zizmo (1 + Ln)ﬂk Tk

I ’ Zgg

07 = will < i

Given Assumption 4, we have
Z;Tk (1+ Ln)i*T’Vo — 1 T
™ = will < ] — . Zg, B
and according to Taylor expansion,
[&7 — Wil < (mE = 1)°x° < P E(r B — m)x>.
Thus, D2 can be bounded by

D2<27]E2p E—ka.

Substituting Equation (33) into (27), A; can be counded by

E[A)] < (1= pmy)|[@” — w*|]* + 202 E Zp (ThE — m)X* + 6Ln2T

k=1

Then, As = 72|[g” — ¢7||? in Equation (10) can be bounded by

Elllg” -3 Hzp (VE(wh) = g0)I?]
k=1
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and Az =29, <W" —w* —n,g",9" — g" > can be bounded by E[A3] =0 for E[¢g"] =§".
Let Ary1 = E[||w™ ™! — w*||?] and combining the obtained bounds of A;, Ay and As, we
have

Arpr < (1—pnr)Ar + 77314/7 (36)

where A" = Z,ﬂilp%az + 6LT + 2F leg\/; p*(72E — m1)x?. Equation (36) can be further
reformulated as

I I

A A

Arpr = 75 < (1= ) (A, - T2, (37)
Thus we have ) ,
A A

Argy =55 < (L )™ (B0 = 5. (38)

Given Assumption 1, the convergence bound of AsyPFL with fixed learning rate is

E[F@)] - F* < §AT. (39)

1.2. Proof of Theorem 2

The proof of Theorem 2 follows from the proof of Theorem 1. Starting from inequality (28),
using the decayed learning rate in D2, we have

- M
& = wfl] = [I(wf = &™) = @ = W)l < 3 llne(gh = gl
j=1

ko (40)
(1 + LnT )ﬂkE_l —1 T, M T,
< = (gkkofzgjko)ll-
j=1
Given Assumption 4, we have
B (1+ Lo, )™E-1 -1
&7 — wi? < ( o )X (41)
According to the Taylor expansion, Equation (41) can be reformulated as
[@7 = Wil|? < 4nZ(mE — 1)°x° < 4nfE(miE — m) x> (42)
Thus Ds can be bounded by
M
Dy <8p2E Y pM(miE — m)x’. (43)

k=1

Substituting the bound of Dj into Equation (34), we have

Arir < (1= ) Ar +2A . (44)



1.3. Proof of Theorem 3
Suppose the error bound of AsyPFL satisfies

2L A
Elwhmn)] - F* < —— (= 4+ 20|’ —w*||) < e 45
[wmim)] o Tmm)2/3( | 1) (45)
Equation (45) can be reformulated as
2L A .
Tmin+’YZ*(*+2LHWO—W ||)7 (46)
i€

which is equivalent to

2L S0 p*o? + 6LT
Tmin = 7(
e w

16L
2L — ') +—E§j (F2E = mx? — 7. (47)

Thus, the required communication rounds are

16L
+2L||w° - *HH_F PH(TEE —m)x® — 1.

k=1

: M 2k 2
Runin(E) = Trnin > 2L (Zk:1p .+ 6LT
E Eue
(48)
According to Equation (48), we define the required communication rounds as a function
of local epochs E by

M 4L211,.,0 *
16L 257 ) V+ o llw? = W] 16L
— 4
R(E) Z z " p mx’+7),  (49)
which is in the form of .
R(E)=aFE + B¢ (50)
Taking the derivative w.r.t. E and let the resulting function equal to zero, we have
dR(E) b
—qg— — =0 51
B =0 (51)

and F— \/g.

1.4. Proof of Theorem 4

AT is minimized if C, achieves its minimum. Thus, according to the definition of Cy, and
equation (47), we have

Z 16L

Cr, _ATQZk+£A I\ p* (Emy)? +ATkEk — ATEXPpR (52)
ep? Tk

Taking the derivative w.r.t. m; and let the resulting equation equal to zero, we have

AT? 16L .
ok T2 2k, — TR 53
ATE ep? X P Tk En? (53)

Rearranging Equation (53) to obtain the result in Theorem 4.
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