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Abstract

Neural network sparsification has received a lot of attention in recent years. A number
of dynamic sparse training methods have been developed that achieve significant sparsity
levels during training, ensuring comparable performance to their dense counterparts. How-
ever, most of these methods update all the model parameters using dense gradients. To this
end, gradient sparsification is achieved either by non-dynamic (fixed) schedule or compu-
tationally expensive dynamic pruning schedule. To alleviate these drawbacks, we propose
Dynamic Forward and Backward Sparse Training (DFBST), an algorithm which dynami-
cally sparsifies both the forward and backward passes using trainable masks, leading to a
completely sparse training schedule. In contrast to existing sparse training methods, we
propose separate learning for forward as well as backward masks. Our approach achieves
state of the art performance in terms of both accuracy and sparsity compared to exist-
ing dynamic pruning algorithms on benchmark datasets, namely MNIST, CIFAR-10 and
CIFAR-100.

Keywords: Sparse weight update, completely sparse training schedule.

1. Introduction

Modern deep neural networks have achieved phenomenal performance over a wide variety of
tasks in areas like computer vision, natural language processing, recommendation systems
and many more. Most of these networks involve training dense overparameterized models,
resulting in significantly large number of parameters and subsequently large computational
overhead. While overparameterization may enhance inference and generalization of the net-
work, the additional memory footprints and computational efforts are raising energy con-
cerns. This has motivated a plethora of works around model sparsification techniques that
drop the redundant model parameters. Sparse models have been able to deliver comparable
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performance with respect to their dense counterparts in a number of memory constrained
applications.

Much of the work in this domain has centered around finding a subset of weights in
numerous ways, for instance based on some saliency criterion (Lee et al. (2019)), low rank
approximation (Novikov et al. (2015)) for the weight matrices or sparsity inducing regu-
larization functions (Scardapane et al. (2017)). The Lottery Ticket Hypothesis (Frankle
and Carbin (2019)) proves the existence of subnetworks within dense, randomly initialized
networks which give comparable performance when trained in isolation. However, it uses
iterative pruning and fine-tuning to find the subnetworks, which turn out to be computa-
tionally expensive. To account for this, a number of methods have been proposed recently
wherein the sparse structure is determined during training without the requirement of re-
training. Many of these methods have been able to achieve dense accuracy levels with
sufficiently high sparsity.

Besides pruning of components used for inference (neurons/filters), there exist many
other sparsification methods that are aimed at sparsification of gradients. Most of these
gradient sparsification techniques use either computationally expensive operations like re-
taining top-K gradients (Sun et al. (2017)) or predefined fixed pruning schedules (Aji and
Heafield (2017)). meProp (Sun et al. (2017)) observes that a very small proportion of
gradient updates are sufficient to obtain performance comparable to dense baselines. It
would thus be desirable to have a technique which can assess gradient importance within
individual layers and prune them dynamically during the training.

In general, almost all the existing model sparsification techniques focus on pruning either
the components of forward pass or backward pass. Although a few methods try to achieve
completely sparse training schedules (i.e. sparse forward and backward pass), they use
the same sparse structure for both the forward and backward pass (Zhou et al. (2021)).
This would mean assuming that only those gradients corresponding to the most important
weights are significant or vice-versa; which need not be necessarily true.

We suggest a novel approach which dynamically sparsifies the weights as well as the
gradients between the training epochs. We use neuron/filter-wise trainable thresholds simi-
lar to Dynamic Sparse Training (Liu et al. (2020)) for masking both weights and gradients.
We include a variance penalty term in the loss function so that thresholds for gradients are
incorporated in the computational graph and updated during the backward pass. These
thresholds learn according to the changing gradient importance during training.

1.1. Our Contribution

Following are the key contributions of this article:

• We propose Dynamic Forward and Backward Sparse Training (DFBST), in which
both weights and gradients of the network are sparsified separately by binary masks
generated using trainable thresholds.

• The incorporation of variance of masked gradients in the loss function penalizes gra-
dients with high variance and facilitates updates for gradient thresholds.

• We conduct our experiments on three benchmark datasets namely MNIST, CIFAR-10
and CIFAR-100. We obtain state of the art performance with significant sparsity.
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Figure 1: Detailed Structure of a single layer in DFBST. Our forward pass works on magnitude
pruning with a trainable forward mask. Here, F returns the difference of absolute values of its
inputs, and U is the unit step function. The mask is generated using trainable forward thresholds
and the masked gradients are fed into the network. In the backward pass, we generate a trainable
backward mask for the gradients. We include the variance penalty term in the loss function. The
weights receive updates using the masked gradients.

2. Related Work

The early phase of sparsification has predominantly been focused on dense-to-sparse train-
ing. (Thimm and Fiesler (1995)) suggested magnitude pruning to be an effective technique.
(Han et al. (2016)) proposed the method of training, fine-tuning and retraining using param-
eter magnitude as the pruning criterion. (Narang et al. (2017)) progressively grow network
sparsity by using monotonically increasing thresholds that are determined using a set of
hyperparameters. Apart from the magnitude of the weights, several other criteria have
been used for pruning. For instance, (Mozer and Smolensky (1989)) consider the sensitivity
of the loss with respect to the neurons, (LeCun et al. (1990)), (Hassibi et al. (1993)) use
the Hessian matrix of the model to prune the network.

Another class of methods utilize regularization methods for enforcing sparsity. (Louizos
et al. (2018)) use L0 regularization while (Scardapane et al. (2017)) use a modified form of
the lasso penalty, termed as sparse group lasso penalty. Apart from these weight pruning
techniques, there exist structured sparsification methods like (Li et al. (2017)), (Molchanov
et al. (2017)) that prune filters of the convolutional layers. (Novikov et al. (2015)) repre-
sent the dense weight matrices using tensor train decomposition having reduced number
of parameters. Apart from these, a number of sparsification methods focus on sparsifying
gradients, thereby resulting in partial weight updates. Gradient sparsification is one of the
gradient compression techniques along with quantization and low-rank approximation, that
are primarily used to reduce communication overheads in distributed data-parallel training.
(Wangni et al. (2018a)) propose a random-k sparsification approach to deal with high gradi-
ent variance. (Sun et al. (2017)) perform sparsification of the gradient vectors by retaining
the top-k elements. (Tsuzuku et al. (2018)) take into consideration the gradients with min-
imum variance. Although these methods achieve impressive results, they do not take into
account the fact that the significance of gradients may differ across layers. Also, many
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methods have been described in machine learning literature that reduce variance (Gower
et al. (2020)). (Flet-Berliac et al. (2020)) apply gradient variance regularization in order
to achieve more stable policy gradients in reinforcement learning. (Wangni et al. (2018b)),
(Hoefler et al. (2021)), (Johnson and Zhang (2013)) observe that gradient variance adversely
affects SGD convergence.

Recently, there has been an impetus to the development of sparse training methods.
(Dai et al. (2019)) propose a training schedule inspired by the biological brain consisting of
three stages viz random seed architecture, followed by growth of the network and then prun-
ing redundant connections and neurons based on magnitude. Sparse Evolutionary Training
(SET) (Mocanu et al. (2018)) adopts magnitude pruning and the regrowth of weights hap-
pens randomly. Dynamic Sparse Reparameterization (DSR) (Mostafa and Wang (2019))
improves upon SET by using an adaptive global threshold for magnitude pruning and re-
allocating parameters across layers during training. RigL (Evci et al. (2020)) maintains a
sparse structure throughout training which provides for pruning and regrowth of weights
after specified intervals.

Sparse Networks from Scratch (Dettmers and Zettlemoyer (2019)) uses exponentially
smoothed gradients (momentum) to identify layers and weights that significantly reduce
inference error. Top-KAST (Jayakumar et al. (2020)) maintains constant forward and
backward sparsity by keeping top D weights in the forward pass and additional top B
gradients along with those of non-zero weights in the backward pass. Though it promises
significant reduction in FLOPS, the top-K operation heavily increases computational cost.
Dynamic Sparse Training (DST) (Liu et al. (2020)) utilize trainable pruning thresholds to
dynamically obtain a sparse structure jointly during the optimization procedure.

3. DFBST

3.1. Notation

We denote the parameters of the fully-connected layers by θ. Let nl be the number of
neurons in the lth layer, then θl ∈ Rnl×nl−1 where 1 ≤ l ≤ L (L is the number of hidden
layers). In case of convolutional layers, the kernel is denoted by Kl ∈ Rco×ci×w×h for the
lth layer where co is the number of output channels, ci is the number of input channels
and w and h are the kernel sizes. The filters are then flattened into a vector and the new
parameters are obtained as θl ∈ Rco×z where z = ci×w×h. The gradients for the respective
layers are denoted by Gl. Our method generates two binary masks, one for forward pass
and the other for backward pass. We denote the forward and backward masks for the lth

layer as Mf l and Mbl respectively.

3.2. Forward Pass

The dynamic forward masks for each layer are generated by comparing the absolute value of
the weights with neuron/filter wise absolute thresholds. We denote the difference between
the absolute value of the weight matrix and its corresponding threshold vector as df l.

dfl(i, j) = |θl(i, j)| − |tfl(i)|, 1 ≤ l ≤ L, 1 ≤ i ≤ nl

Mfl(i, j) = U (dfl(i, j)) , 1 ≤ j ≤ nl−1
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Here U(·) is the Unit Step function defined as follows.

U(x) =

{
1, x ≥ 0

0, otherwise

Similar to DST, tf ∈ Rnl is a neuron-wise threshold vector, which will receive updates in
the same training schedule. tfl(i) is the i

th element of the threshold vector for the lth layer.
If the absolute magnitude of the parameter exceeds the absolute value of its threshold, it
is retained for inference, else it is dropped. This is accomplished by taking the Hadamard
product θl ⊙ Mf l where Mf l is the mask generated by the unit step function. Steps 1-
4 in Fig.1 illustrate this sparse forward pass. The difference between our method and
DST’s forward pass is that we consider the absolute value of the threshold in the difference.
During the update of the thresholds, the signs of the respective parameters play a crucial
role in deciding the sign of the threshold. In case of low magnitude negative weights, if
the thresholds have negative values, the weights might still not be pruned since the step
function always receives a positive input. To avoid this, we consider the absolute value of
the thresholds. We also add the regularization term of DST Ls to the final loss function
given by,

Ls =
L∑
l=1

nl∑
i=1

exp(−tf l(i))

3.3. Dynamic Gradient Sparsification

Even though DST’s foward pass ends up giving us a sparse network, it still uses dense
gradients to update the weights at each training step. We try to overcome this by performing
gradient sparsification via a dynamic backward mask, which retains the most significant
gradients. We hereby present the formulation of the dynamic backward mask.

3.3.1. Contribution Scores

In the backward pass, for 1 ≤ l ≤ L, we have the gradient matrix for the lth layer as,

Gl =

 g11 . . . g1nl−1

...
. . .

...
gnl1 . . . gnlnl−1


We define the ‘Contribution Score’ matrix (CS) of a particular gradient as its value nor-
malized by the sum of the absolute values of all the gradients of the corresponding output
neuron. Thus, the CS matrix is obtained as,

CSl =


g11∑nl−1

i=1 |g1i|
. . .

g1nl−1∑nl−1
i=1 |g1i|

...
. . .

...
gnl1∑nl−1

i=1 |gnli
|

. . .
gnlnl−1∑nl−1
i=1 |gnli

|


We use this contribution score to account for neuron-wise significance of the gradients. For a
particular layer, the gradients obtained through backpropagation may be on different scales.
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Also, as the training proceeds, the scale of a particular gradient may change drastically.
These scaling issues can create problems for the training of dynamic backward mask. When
these gradients are normalized, the resulting contribution scores are on the same scale.
Hence, the relative importance of the gradients can be assessed using these contribution
scores.

3.3.2. Backward Mask

We now extend the concept of trainable thresholds used in the forward sparsification to
mask the gradients by comparing the magnitudes of their contribution scores with backward
thresholds (tb ∈ Rnl). We thereby generate and apply the backward mask as follows,

dbl(i, j) = |CSl(i, j)| − |tbl(i)|, 1 ≤ l ≤ L, 1 ≤ i ≤ nl

Mbl(i, j) = U (dbl(i, j)) , 1 ≤ j ≤ nl−1

Mbl is the binary mask which is applied on the gradient matrix during backpropogation.
This can be seen from steps 5-8 in Fig. 1. In case of the convolutional layers, the gradient
tensor is flattened into a 2-D matrix and then the same steps are followed. The only
difference is that instead of neuron-wise thresholds, we have channel-wise thresholds i.e,
tb ∈ Rco where co is the output channels. In backpropagation, we consider the derivative
approximation of the unit step function as suggested by DST (Liu et al. (2020)), which is
given as follows.

d

dx
U(x) ≈ D(x) =


2− 4|x|, −0.4 ≤ x ≤ 0.4

0.4, 0.4 < |x| ≤ 1

0, otherwise

These backward thresholds receive updates through the Variance Penalty term included in
the loss expression. Details about this are presented in Section 3.4.

3.4. Variance Penalty

We introduce a penalty term in the loss function which calculates standard deviation of
masked gradient vector of the entire model (step 9 in Fig.1). Minimizing this loss function
would inherently lead to reducing variance of the gradients. Since the gradients are masked
based on the backward threshold values, the updates received by the backward thresholds
result in penalizing gradients with high variance. We denote G̃ as the masked gradient vector
of the entire model. This vector is obtained by flattening the masked gradient matrices of
the individual layers into vectors and then concatenating these vectors into a single vector.
The variance loss is given by,

Lv =

√
V ar(G̃)

where V ar(·) gives the variance of the input vector.

3.5. Dynamic Forward and Backward Sparse Training

Given our training dataset D = {(xi, yi) ∀ i ∈ [1, N ]} where N is the total number of
training examples. We put together all the components discussed above and present a uni-
fied optimization process which dynamically sparsifies both forward and backward passes.
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The forward mask is generated by magnitude pruning using dynamic forward thresholds.
The loss function is given by,

J (θ, tf , tb) =
1

N

(
N∑
i=1

L ((xi, yi) ; θ))

)
+ αLs + βLv

Lv is the variance penalty term explained in section 3.4 and Ls is the regularization term
explained in section 3.2. The factor β controls the rate of increase of backward sparsity.
As the backward thresholds try to reduce the variance of the masked gradients, it leads to
better convergence. The coefficient α can be thought of as a scaling factor used to control
the level of sparsity generated in the forward pass. If the value of α is increased, the network
tries to reduce the loss function by decreasing the exponential term. Thus, the thresholds
will increase resulting in higher sparsity levels. Hence, the optimization procedure would
be aimed at finding θ∗, t∗f and t∗b such that,

θ∗, t∗f , t
∗
b = argmin

θ,tf ,tb

J (θ, tf , tb)

4. Experiments

We assess DFBST on a variety of deep neural network architectures and show that our
method has consistent performance on different datasets. We also compare DFBST with
similar methods and show that our approach demonstrates state of the art results.

4.1. Datasets

4.1.1. MNIST

MNIST (LeCun et al. (1998)) is a dataset of handwitten digits with 10 classes. It has a
training set of 60,000 examples, and a test set of 10,000 examples. The images are 28× 28
pixels with a single channel.

4.1.2. CIFAR-10 and CIFAR-100

CIFAR-10 (Krizhevsky et al. (2009)) consists of a training set of 50,000 examples and a test
set of 10,000 examples with 10 target classes. Each example is a three channel image of 32
× 32 pixels. CIFAR-100 (Krizhevsky et al. (2009)) is similar to CIFAR-10 except that it
consists of 100 target classes.

4.2. Models

We follow the same experimental setting as DST (Liu et al. (2020)). DFBST is evaluated
on Lenet-300-100, Lenet-5 Caffe (LeCun et al. (1990)), VGG-16 (Simonyan and Zisserman
(2015)) and Resnet-18 (He et al. (2015)) architectures. LeNet-300-100 is a two hidden
layer perceptron while LeNet-5 Caffe is a CNN with two convolutional layers and two fully
connected layers. VGG-16 is a standard deep CNN having 16 layers including fourteen
convolutions and two fully connected layers. ResNet-18 is a CNN which uses residual
connections. These connections allow very deep models to be trained efficiently without
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facing the issue of vanishing gradients. ResNet-18 has seventeen convolution layers with
eight residual connections and one fully connected layer.

4.3. Baselines

We consider state-of-the-art sparse training methods like DST, Sparse Momentum, Sparse
Evolutionary Training(SET) and Rigging the Lottery(RigL) as our baselines. DST utilizes
dynamic masks obtained via trainable thresholds in the forward pass to induce sparsity.
Sparse Momentum uses exponentially smoothed gradients (momentum) as a criterion to
assess which layers are most efficient at reducing error. SET prunes fraction of weights
closest to zero and randomly adds new weights at the end of every training epoch. RigL
removes a fraction of connections at regular intervals based on their magnitude and activates
new ones using instantaneous gradient information.

4.4. Results

We define the forward model remaining ratio as the ratio of total number of non-zero
elements in all the forward masks to the total number of model parameters. Similarly,
the backward model remaining ratio would be the ratio of number of non-zero elements in
all the backward masks to the total number of model parameters. Few baselines, that we
compare our method with, train the network for a greater number of epochs than we do.
Since these methods maintain constant sparsity throughout training, we linearly scale down
the FLOPs corresponding to the number of epochs for which we train the network. We use
PyTorch for implementing and obtaining the results on an Nvidia Tesla P100 GPU. Each
experiment is run 5 times and the corresponding confidence intervals are reported in Tables
1, 2, 3 and 4.

4.4.1. MNIST

We perform experiments on LeNet-300-100 and LeNet-5-Caffe architectures on the MNIST
dataset. We use the SGD optimizer with a momentum of 0.9 and a batch size of 64. The
model is trained for 20 Epochs with a learning rate of 0.01. We choose α equal to 0.0005
as suggested by DST for sparse regularization in both models. The scaling factor for the
variance penalty term is set to 0.01. Table 1 and Table 2 present the pruning results of our
method for Lenet-300-100 and Lenet-5-Caffe, respectively.

DFBST prunes ∼ 98% parameters with little loss of performance on Lenet-300-100 and
Lenet-5-Caffe. Fig.2 shows the epoch-wise comparison of DFBST with DST as well as
dense network for LeNet-300-100. Our approach achieves better accuracy than all the other
models. The forward model remaining ratio of our model is lower than DST which implies
our model has higher sparsity than DST.

4.4.2. CIFAR-10

We evaluate the performance of DFBST on CIFAR-10 with the VGG architecture. Table 3
shows a comparison between different sparse learning algorithms and DFBST. We use SGD
with momentum 0.9 and batch size of 64 with 160 training epochs. The learning rate is
0.1 and decayed by 0.1 at 80th and 120th epoch. α for sparse regularization term is set to
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Table 1: Results of Lenet-300-100 on MNIST for various methods

Models
Accuracy

(%)

Adjusted
FLOPS

Reduction

Parameter
Count
(∼103)

Dense 98.08 ± 0.07 - 31
Sparse
Momentum

99.70 ± 0.23 2.1× 3.1

SET 98.19 ± 0.35 1.48× 1.55
RigL 98.12 ± 0.16 3.9× 1.55
DST 97.6 ± 0.74 1.59× 0.93
DFBST 98.06 ± 0.09 4.83× 0.774

Table 2: Results of Lenet-5 Caffe on MNIST for various methods

Models
Accuracy

(%)

Adjusted
FLOPS

Reduction

Parameter
Count
(∼103)

Dense 99.18 ± 0.03 - 60
Sparse
Momentum

99.30 ± 0.19 3.1× 5.4

SET 98.96 ± 0.06 2.42× 3
RigL 99.12 ± 0.04 3.47× 3
DST 99.08 ± 0.66 5.47× 2.28
DFBST 99.06 ± 0.09 5.56× 1.38

5× 10−6 as suggested by DST and the scaling factor β for the variance penalty term is set
to 0.1.

Table 3: Results of VGG-16 on Cifar-10 for various methods

Models
Accuracy

(%)

Adjusted
FLOPS

Reduction

Parameter
Count
(∼106)

Dense 93.48 ± 0.12 - 138
Sparse
Momentum

93.10 ± 0.21 3.51× 13.8

SET 93.32 ± 0.03 2.15× 6.9
RigL 93.43 ± 0.11 6.4× 6.9
DST 93.52 ± 0.14 9.09× 11.04
DFBST 93.75 ± 0.05 10.99× 7.45

Fig.3a shows comparison of DFBST with DST. The accuracy of our model is marginally
higher than DST. But we obtain a significantly lower forward keep ratio. Fig.3b demon-
strates backward model sparsity induced in VGG-16. As evident from the plot, the initial
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Figure 2: Model remaining ratio and Test accuracy v/s Epochs for Lenet-300-100 in comparison
with dense and DST models. For all models α = 5× 10−4.

(a) (b)
Figure 3: (a) Model remaining ratio and Test accuracy v/s Epochs for VGG-16 in comparison with
dense and DST models. For all models α = 5× 10−6. (b) Backward Model Keep Ratio v/s Epochs
for β = 0.1 at α = 5× 10−6.

backward keep ratio is high and decreases gradually with training. Towards the end of
training, very few gradients are retained.

4.4.3. CIFAR-100

Experimentation on CIFAR-100 is done using ResNet-18. With our method we achieve
88% forward sparsity and comparable performance against the dense model. As shown in
Table 4, DFBST surpasses all the sparse training methods in terms of model sparsity. The
optimizer used was SGD with momentum 0.9 and batch size of 64 with 100 training epochs.
The learning rate is 0.1 and decayed by 0.1 at the 80th epoch. α for sparse regularization
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Table 4: Results of ResNet-18 on CIFAR-100 for various methods

Models
Accuracy

(%)

Adjusted
FLOPS

Reduction

Parameter
Count
(∼106)

Dense 63.8 ± 0.088 - 11
Sparse
Momentum

62.14 ± 0.035 4.59× 2.75

SET 62.28 ± 0.028 2.0× 2.2
RigL 62.09 ± 0.059 3.2× 2.2
DST 62.62 ± 0.04 2.34× 6.82
DFBST 63.66 ± 0.07 4.97× 1.32

term is 5 × 10−6 as suggested by DST (Liu et al. (2020)) and the scaling factor β for the
variance penalty term is 0.01.

5. Discussion

5.1. Improved fine grained step pruning

The forward pass of our method uses a trainable dynamic mask obtained using train-
able thresholds. These trainable thresholds ensure that the layer remaining ratios change
smoothly and continuously at each training step. This was demonstrated by DST as well.
However, considering the absolute values of forward thresholds and addition of a backward
trainable mask decreases the layer keep ratios and in essence, the overall model keep ratio
resulting in a more sparse architecture. This forward trainable mask is controlled by α for
which we have provided an ablation study in Fig.4.

5.2. Ablation Study

5.2.1. Forward Sparsity

α is used as a scaling coefficient for the regularization term Ls. It controls the level of
forward sparsity induced in the parameters. Fig.4 shows the variation in test accuracy and
forward model remaining ratio with training epochs. We observe that for higher values of
α, the forward sparsity increases almost linearly while the performance also drops in an
approximate linear fashion. This is desirable as one can expect good correlation between
sparsity and accuracy.

5.2.2. Backward Sparsity

β is used as a scaling coefficient for the variance penalty term. It controls the level of
backward sparsity induced in the gradients. Fig.5 shows the variation in test accuracy and
backward model remaining ratio with training epochs. We observe that for higher values
of β, the backward sparsity quickly reaches a large value. This is not desirable, as shutting
off a large number of gradients early in the training does not allow the model to learn. For
very small values of β, no backward sparsity is achieved. This implies that most of the
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Figure 4: Forward Sparsity and Test accuracy for VGG-16 model trained on CIFAR-10 dataset at
different values of α and at constant β = 0.01.

high variance, low magnitude gradients are not sparsified, which again does not satisfy our
purpose. We therefore use a moderate value of β which allows the model to learn sufficiently

Figure 5: Backward Sparsity and Test accuracy for VGG-16 model trained on CIFAR-10 dataset at
different values of β and at constant α = 5× 10−6.

well during the initial phase of training and then gradually sparsifies more gradients towards
the end of training. To understand the β parameter, one can draw parallel with the learning
rate of a neural network. A large learning rate may lead to oscillation of weights about the
global minima, while a very small value might never result in convergence. Thus, we choose
an optimal value of learning rate which tackles both the issues.
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5.3. Gradient Variance Regularization

Gradient sparsification increases variance while it is well known that an increase in gradient
variance hurts convergence rates of SGD (Wangni et al. (2018b), Hoefler et al. (2021),
Johnson and Zhang (2013)). Thus, we introduce a variance regularization term into the loss
which is used to update the backward mask thresholds. This ensures removal of only those
gradient values that contribute to an increase in the overall variance of model gradient.
This is why increasing the β parameter leads to pruning of most gradients except those
that are exceedingly similar which subsequently leads to higher sparsification but reduced
performance as shown in the ablation study in Fig. 5.

5.4. Layer-wise Pruning Ratios

We demonstrate layer-wise pruning using DFBST with a VGG-16 model trained on the
CIFAR-10 dataset. As can be seen from the graph, the deeper layers are subject to stronger
pruning than the initial layers except for the final output layer.

Figure 6: The layer-wise pruned ratios for a VGG-16 model trained on CIFAR-10 dataset when
trained with DFBST

Conclusion

In this paper, we proposed DFBST a method which ensures Completely Sparse Training.
DFBST starts with a completely dense architecture and sparsifies the parameters using
magnitude pruning with trainable thresholds. During back propagation it sparsifies the
gradients using backward trainable thresholds. This is achieved by penalizing high variance
gradients. The backward thresholds prune the low magnitude gradients. Consequently, we
obtain a sparse network with state of the art accuracy and high sparsity during inference.
DFBST has the capability of being conceptualized with various types of neural network
layers and then into architectures. Thus, as our future work, we would like to extend our
method to language and sequential models.
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