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Abstract

Session-based recommendation (SBR) is a challenging task, which aims at recommending
next items based on anonymous interaction sequences. Despite the superior performance
of existing methods for SBR, there are still several limitations: (i) Almost all existing
works concentrate on single interest extraction and fail to disentangle multiple interests of
user, which easily results in suboptimal representations for SBR. (ii) Furthermore, previous
methods also ignore the multi-form temporal information, which is significant signal to
obtain current intention for SBR. To address the limitations mentioned above, we propose
a novel method, called Temporal aware Multi-Interest Graph Neural Network (TMI-GNN)
to disentangle multi-interest and yield refined intention representations with the injection
of two level temporal information. Specifically, by appending multiple interest nodes, we
construct a multi-interest graph for current session, and adopt the GNNs to model the item-
item relation to capture adjacent item transitions, item-interest relation to disentangle the
multi-interests, and interest-item relation to refine the item representation. Meanwhile, we
incorporate item-level time interval signals to guide the item information propagation, and
interest-level time distribution information to assist the scattering of interest information.
Experiments on three benchmark datasets demonstrate that TMI-GNN outperforms other
state-of-the-art methods consistently.

Keywords: Session-based Recommendation, Graph Neural Network.

1. Introduction

Recommender system has become the basis to relieve the information overload problem.
Most recommendation methods capture users’ interest by modeling users’ long-term pref-
erence for predicting their future interactions, e.g., collaborative filtering (He et al. (2017);
Herlocker et al. (2004)) and neural network based models (Yu et al. (2016); Sedhain et al.
(2015)). Differ from traditional recommendation tasks, in many practical scenarios, there is
only a session available without access to user identification and historical interactions. This
kind of task called session-based recommendation (SBR), aims to extract useful information
as much as possible from limited data in current session.
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Figure 1: A toy example for two sessions with the same item sequence but different time
intervals, where the circles connected to items denote the user’s interests. Positions of
the circles reflected the distribution of interest in the timeline, and the size indicates the
importance of these interests.

Existing SBR methods mostly concentrate on modeling sequential information among
items of current session by using Recurrent Neural Networks (RNNs) (Hidasi et al. (2015);
Li et al. (2017)) or Graph Neural Networks (GNNs) (Wu et al. (2019); Pan et al. (2020)).
However, these works simply regard a session as a short sequence with single intention,
consider that the basic intention of user in a session usually remains the same, and try to
capture user’s current interest directly from the entire session. They overlook the fact that
even in a relatively short-term session, the user’s finer granular interests can be multiple in
various views, drift over time, or interweave with item overlaps. Some studies (Zhou et al.
(2018a); Li et al. (2019); Wang et al. (2020a); Lu et al. (2021); Cen et al. (2020); Chen et al.
(2021b)) in other recommendation areas have verified the effectiveness of modeling user’s
multi-interest, but in SBR, the multi-interest methods have not been fully explored. As
there is no interest disentangle mechanism in existing SBR methods, the mixture of major
interests and minor interests may mislead the session representation learning so that it’s
hard to confirm users’ true intentions and lacks of interpretability.

Moreover, the auxiliary temporal information is also ignored in session modeling. In-
tuitively, two typical temporal information of interaction sequences can be recognized for
multi-interest modeling: (i) item-level time interval signals are the intervals between item
transitions, which reflect the relatedness between adjacent items. Generally, the tight time
interval indicates the higher relevance of items, while loose time interval may mean the
drifting of interest. (ii) interest-level distribution information represents the interest distri-
bution through virtual location and coverage scope in timeline, which is helpful to model
the relation between item and interest from the time perspective. For the chunked interest
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distribution in the session, the closer distance between items and interest factors in the
timeline usually reveals the higher relatedness of them.

We illustrate this with an example in Figure 1, including two sessions with the same
item sequence under different interaction time distributions. For the first session with short
time intervals, as user’s intention tends to be continuous over a short period of time, we can
conclude that even item relatively far from current position may still represent user‘s strong
interest. So user may mostly be interested in Phone product and Apple brand. Under this
circumstance, previous methods without introducing auxiliary time information will regard
it as a session with evenly and moderate length time intervals. Therefore, a deviation from
the major interests may be caused by the latest items, which are laptops. While for the
second session with a relatively long time interval between iPhone and Macbook, we argue
that the interest drift may occurred during the interval. Thus the interests distributed in the
front portion of timeline such as Phone, ought to be a minor factor for recommendation,
while the interest Laptop in the latter portion should be taken into special consideration.
But for SBR methods ignoring time information, the multiple interests in two chunks of
the session cannot be effectively disentangled and rearranged. The minor interest Phone
is likely to be over weighted for user’s current intention, while the crucial interest Laptop
may be diluted. As discussed above, even sessions with exactly the same items and orders,
but for diverse time distributions, may have diverse interests intensity, leading to completely
different next items. In this case, the ignorance of time information makes existing methods
insufficient to distill effective intention signals from the active session.

To address these problems, we propose Temporal aware Multi-Interest Graph Neural
Network (TMI-GNN), a novel method to distill the disentangled interest and inject the
temporal information for better inferring the user intentions of the current session. To be
more specific, we firstly construct a multi-interest graph for current session by appending
multiple interest nodes into original item-item graphs, which builds the potential relations
between items and different interest factors. Then, to generate the item and interest rep-
resentations, we synchronously apply item information propagation with item-level time
interval signals, interest extraction in a soft clustering way, and interest attaching with the
interest-level distribution information. Finally, we integrate item embeddings and interest
embedding under the guide of temporal distance, to represent user’s preference for next
item prediction.

Our main contributions of this work are summarized below:

• We propose to construct a multi-interest graph with item and interest nodes for represent-
ing multi-interest session effectively, involving the explicit item transitions and potential
connections between different items and interests.

• For the constructed graph, we develop a novel TMI-GNN model for SBR to capture
adjacent item transitions, distill users’ current multi-interests from noisy interaction se-
quences and feedback related interest information to enhance session representations.
Moreover, it explicitly injects item-level and interest-level temporal information into the
above process to refine current intention representation.

• Extensive experiments on three datasets demonstrate that our model is superior compared
with state-of-the-art models.
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2. Related Works

Session-based Recommendation. Following the development of deep learning, many
neural network based approaches have been proposed for SBR. Due to well sequence mod-
eling capability of RNNs, RNN-based methods have been widely used for SBR (Hidasi et al.
(2015); Li et al. (2017); Liu et al. (2018); Ren et al. (2019); Song et al. (2019)). For in-
stance, GRU4Rec Hidasi et al. (2015) was firstly proposed to utilize GRU layer to capture
information in interaction sequences. Based on GRU4Rec, NARM Li et al. (2017) added an
attention mechanism after RNN, which refers to last interaction item, in order to capture
the global and local preference representation of user in current session. But in an ongoing
session, interaction patterns are always more complex than simple sequential signals, which
cannot be effectively captured by RNN-based models. More recently, motivated by the
superior performance of GNNs in extracting complex relationships between objects, quite a
few recommendation methods relying on GNNs were proposed to extract the item transition
patterns for SBR (Wu et al. (2019); Xu et al. (2019); Qiu et al. (2019); Pan et al. (2020);
Chen and Wong (2020); Wang et al. (2020b); Pang et al. (2021); Chen et al. (2021a)). For
example, SRGNN Wu et al. (2019) converted the interaction sequence into a directed graph
and employed the gated GNN (GGNN) on the graph to learn item embedding. LESSR Chen
and Wong (2020) formed better graph structure from the session by proposing a lossless
encoding scheme, and proposed a SGAT layer to model the long-range dependency, which
propagates information along shortcut graph. StarGNN Pan et al. (2020) put forward a
star graph neural network to model the complex transitions between items with additional
node to connect the long-range item relations. DATMDI Chen et al. (2021a) learned the
cross-session and local session representations via the GNN and GRU and combined them
by a soft-attention mechanism.
Temporal information in Recommendation. Meanwhile, temporal information is also
a key feature in many recommendation scenarios, such as e-commerce and video recommen-
dation. There are a few works to utilize the temporal information as contextual feature for
recommendation (Vassøy et al. (2019); Li et al. (2020); Wu et al. (2017); Gu et al. (2020)).
However, most existing methods simply reduce the temporal information to order relation-
ship, subsequently use RNN-based model to capture the sequential signal. For instance,
Yu et al. (2016) used RNN to learn a dynamic representation of a user which reveal user’s
dynamic interests at different time in next basket recommendation. Ye et al. (2020) discov-
ered absolute time patterns and relative time patterns based on insightful data analysis to
model users’ temporal behaviors for recommender systems. Zhou et al. (2018b) proposed a
framework called RIB, which takes dwell time into account.By using the time a user spends
on one item as a part of so called micro behavior, it can model more practical user intent.

As outlined above, previous works on SBR have some limitations. First, temporal
information is rarely or crudely exploited in these works. What’s more, none of these
methods explicitly disentangle the multiple interests of user in a session. These limitations
may lead to suboptimal performance.

3. Preliminary

In this work, we aim to explore the effectiveness of abundant temporal information and mul-
tiple disentangled interest for SBR. Given the entire item set V, we first define a timestamp-



TMI-GNN for Session-based Recommendation

1

2

3

4

5

1
2

3
4

1 2 4 5 3

1

2

4

5

3
U

ser Intention

Prediction

𝑦"

Item Set

𝐿𝑜𝑠𝑠!"##

Item-level Information 
Propagation

Interest Extraction

Interest Attaching

+𝑦
𝐿𝑜𝑠𝑠$#%&

Multi-interest Graph

Interaction Session

Multi-interest Session Graph 
Construction

Disentangle Graph 
Modeling Layer

Session Representation Learning 
Layer and Prediction 

1 2 4 5 3

𝑣! ,𝑣" , 𝑣# ,𝑣! ,𝑣$ , 𝑣%

Figure 2: The overview of TMI-GNN.

augmented item session sequence as s = {(v1, t1), (v2, t2), ..., (vL, tL)}, where (vi, ti) repre-
sents the user interacted item vi ∈ V at time ti and ti < ti+1, and L is the session length.
Given session s, the goal of SBR is to predict a probability score for any item v ∈ V such
that an item with higher score is more likely to be interacted next.

4. Methodology

4.1. Overview

In this section, we detail the design of our model. As shown in Figure 2, it contains four
main components: Multi-interest Session Graph Construction, Disentangle Graph Modeling
Layer, Session Representation Learning Layer and Prediction Layer. By constructing item-
transition sequences as multi-interest graphs with additional interest nodes, we explicitly
build the potential connection between latent user preference and explicit items sequence.
Furthermore, at the Disentangle Graph Modeling Layer, we extract item transition infor-
mation, distill multi-interest representations and feedback disentangled interests to related
item embeddings, respectively. With the guidance of item-level and interest-level temporal
information, the refined attention is better estimated for disentangling user’s multi-interest.
Then, Session Representation Learning Layer adaptively generates the final intention rep-
resentations with the injection of last-item based time interval information. Finally, the
predictor estimates the probability of candidate items based on the each disentangled ses-
sion representations.

4.2. Multi-interest Session Graph Construction

As mentioned above, the extraction of multi-interest is meaningful for obtaining user in-
tention representation from the interaction sequence. Therefore, we propose multi-interest
session graph for effectively organizing the interactions in the session and modeling user’s
multi-interest.

For given session s, we construct the multi-interest session graph Gs = (Vs, Es) ,where
Vs = ({v1, v2, v3, . . . , vN}, {u1, u2, . . . , uH}) indicates the node set of the constructed graph
which contains N item nodes and H interest nodes. Besides the basic transition between
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items in the session, we additionally introduce the interest nodes to represent each in-
dependent interest, which can be explained as different distributions of items’ contribution
to user’s intention. For j-th interest node, it fully connects to all items in the session
with edges {(uj , vi)|1 ≤ i ≤ N}. For each session, each item node vi has corresponding
item-interest edges {(vi, uj)|1 ≤ j ≤ H} to each interest node, and item-item transition
edge to contextual item nodes. Through the full connection between the explicit item and
interest node, the soft assignment of each item to corresponding interest can be estimated
by subsequent GNN as edge attribute.

4.2.1. Temporal Information.

Furthermore, we attach auxiliary multi-form temporal information to the multi-interest
graph for distilling more precise interest representations. For the original timestamp se-
quence (t1, t2, . . . , tL) of session s, item-level transition interval ti,j is attached to the edge
of item i and j:

ti,j =
|ti − tj |
tbucket

, (1)

where tbucket denotes the pre-defined length of time bucket. Moreover, the relative time-step
ti,1 is attached to the interaction position i, compared to the start time at the first position.

For the constructed multi-interest session graph, there are three types of relation, i.e.,
item-item, item-interest and interest-item relation, and we represent them by superscript
v −→ v, v −→ u and u −→ v respectively.

4.3. Disentangle Graph Modeling Layer

Next, we present how to obtain item representations and disentangle interest representations
on the constructed heterogeneous multi-interest graph. Based on the message propagation
of GNNs, the item and interest node embeddings are updated based on the previous results
with neighbor information. The disentanglement of multi-interest can be considered as the
process of iteratively refining interest node embedding, and the explainable assignments for
each interest factor can be estimated as the weight of item-interest edges based on the full
connection of each independent interest node and the item nodes, i.e., each interest factor
is generated by item information pooling with different assignment scores. For the adjacent
item transition, previous GNN-based model, like SRGNN (Wu et al. (2019)), has achieved
superior performance for SBR. Therefore, for each GNN layer, we firstly aggregate the
neighbor messages in each relation respectively. Then we gather the semantic information
to update the item and interest representations.

Let u
(k)
i ,v

(k)
j denote the embedding of interest ui and item vj after k layers GNN

propagation. The item IDs are embedded into d-dimensional space and are used as initial

node features in our model, v
(0)
j ∈ Rd. For the multiple temporal information, we embed

them by a learnable temporal matrix T = [T0,T1,T2, . . . ,Tm] for the rounded time value
0 ≤ t ≤ m, where m is the max time-step intervals.

Moreover, for each interest factor as related interest node, we adopt average operation

on the item nodes to initialize the interest representation, i.e., u
(0)
i = 1

L

∑L
j=1 v

(0)
j . For the

interest-side temporal information, we utilize the the center timestamp tcent,i to indicate the
location of i-th interest factor on the timeline, and the temporal compactness value tcomp,i
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to indicate the coverage of interest factors in the item sequence. Here we initialize these

two characteristics of each interest factor with average pooing, i.e., t
(0)
cent,i = 1

L

∑L
j=1 tj,1,

and t
(0)
comp,i = 1

L

∑L
j=1 |tj,1 − t

(k)
cent,i|.

Then, we will detail the modeling for item-item, item-interest and interest-item relations,
respectively.

4.3.1. Item-level Information Propagation Layer

For the item-item relation, we adopt SRGNN with detail time interval information to prop-
agate adjacent node information. It assembles neighbor node information with the normal-
ized coefficient ev−→v

ij under the guide of time interval signal tij :

ev−→v
ij = softmax

j∈Nv−→v(i)

(
MLP

(
Tti,j

))
, (2)

m
(k)
i =

∑
j∈Nv−→v(i)

ev−→v
ij v

(k)
j , (3)

where MLP represents a simple multilayer perceptron for time interval embedding Tti,j ,
and shares with different GNN layers. Similar to GGNN, we feed the neighbor information

m
(k)
i and the previous layer item v

(k)
i into GRU to update the item-item relation node

representations:

v
v−→v,(k+1)
i = GRU

(
v
(k)
i ,m

(k)
i

)
, (4)

where the GRU unit is parameters-shared for all item nodes updating at current layer.
With the combination of contextual interaction items representations and previous cross-
semantic item presentations, we integrate the chronological item transition information into
node embedding in the item-item relation.

4.3.2. Interest Extraction Layer.

For the item-interest relation at layer k, a graph attention neural network is utilized for
updating interest node embedding, as the process of distilling interest representation. In

particular, we compute the corresponding correlation weight α
(k)
ij between target interest

node ui and neighbor item vj , as the explainable assignment scores for disentangled interest.
And interest node representation is updated via the sum pooling as following:

α
(k)
ij = softmax

j∈Nv−→u(i)

(
LeakyReLU

(
Wv−→u,(k)

u u
(k)
i + Wv−→u,(k)

v v
(k)
j

))
, (5)

u
v−→u,(k+1)
i =

∑
j∈Nv−→u(i)

α
(k)
ij W

v−→u,(k)
trans v

(k)
j . (6)

where W
v−→u,(k)
trans ∈ Rd×d represents the information transformation matrix of neighbor

nodes, W
v−→u,(k)
u ,W

v−→u,(k)
v ∈ R1×d are the parameters of linear transformation for the

target interest and the source item, respectively.
Meanwhile, we also update the center timestamp and temporal compactness of each

interest node based on the normalized correlation coefficient:

t
(k+1)
cent,i =

∑
j∈Nv−→u(i)

α
(k)
ij tj,1 ; t

(k+1)
comp,i =

∑
j∈Nv−→u(i)

αk
ij |tj,1 − t

(k)
cent,i|. (7)
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Through the assignment score α
(k)
ij , we not only distill the latent representations of

multi-view interests from the sessions with overlapped and interwove interests, but also
offer an explanations parameter for each interest factor.

4.3.3. Interest Attaching Layer

To refine the item representation via the disentangled interest, we adopt a graph attention
network to update the item representation under the interest-item semantic. At first, we
estimate the attention coefficient between target item and source interest node. Here, we
consider both the similarity and temporal continuity of each item and interest node pair:

β
(k)
ij = softmax

j∈Nu−→v(i)

(
σ

((
Wu−→v,(k)

v v
(k)
i

)T
Wu−→v,(k)

u u
(k)
j + wT

t T
t
u−→v,(k)
i,j

+ bt

))
, (8)

where W
u−→v,(k)
v ,W

u−→v,(k)
u ∈ Rd×d are the transforming matrices for the item and interest,

σ is an activate function. t
u−→v,(k)
i,j =

∣∣∣t(k)cent,j−ti,1
∣∣∣

t
(k)
comp,j

denotes the distance between item and

interest in timeline, and wt ∈ Rd, bt are the linear transformation of it. Here, we utilize
the residual between the center timestep of interest and timestep of items regularized by
the interest compactness value, to measure the similarity of interest and item pair in the
temporal view. Then, gathered interest factors are scattered to item nodes for generating

the intention-augmented item representations via parameters W
u−→v,(k)
trans ∈ Rd×d:

v
u−→v,(k+1)
i =

∑
j∈Nu−→v(i)

β
(k)
ij W

u−→v,(k)
trans u

(k)
j , (9)

The edges between interests and items indirectly connect each item to all other items
through the intermediate interest node. Compare to the original sparse item-item graph,
the additional interest nodes and edges help GNNs to effectively capture long-range depen-
dencies in sessions with any length because it propagates information along intermediate
interest paths within two-hop.

4.3.4. Layer Combination

By updating the node representation based on diverse semantic relations synchronously,
we obtain the item representations from adjacent items and related interest, and the in-
terest embeddings based on item-level soft clustering. Then, we gather cross-semantic in-

formation through average operation like RGCN (Schlichtkrull et al. (2018)), i.e., v
(k+1)
j =

σ(v
u−→v,(k+1)
j + v

v−→v,(k+1)
j )/2, u

(k+1)
i = σ(u

v−→u,(k+1)
i ), and consider v

(k+1)
j and u

(k+1)
i as

the output of item node vj and interest node ui after k-th GNN layers. Moreover, in order
to mine deeper items transition relations, multi-layers of GNN are stacked to propagate
high-order information. And we utilize the gated mechanism to balance the item node
representations between initial embedding and K layers output, as follows:

g = σ(Wgated

[
v
(0)
j ‖ v

(K+1)
j

]
) , (10)

vj = gv
(0)
j + (1− g)v

(K+1)
j . (11)

where ‖ is the concatenate operation, Wgated ∈ R2d and sigmoid function σ(·) generate
the balance factor g to alleviate over-smooth problems of deep GNN. As for the interest
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node, we simply adopt the multi-layers’ output as the final latent interest representation,

i.e., ui = u
(K+1)
i .

4.4. Session Representation Learning Layer

After the Disentangle Graph Modeling, we obtain the final item and interest node embed-
dings. Then we aggregate the representation of items in the session based on each abstract
interest factor to generate the session representations. Moreover, the items clicked later in
the session usually reveal the user’s current intentions better, which draws greater attention
for SBR. Therefore, we incorporate additional last-item based time interval information into
interest-based attention to capture user activate intention dynamically.

In detail, inspired by the reverse position embedding in GCE-GNN (Wang et al. (2020b)),
we integrated the last-item based time interval information with the obtained item repre-
sentations, which extends the position information to a more fine-grained time domain to
make a better prediction:

zi = tanh
(
W0

[
vi ‖ TtL,i

]
+ b0

)
, (12)

where W0 ∈ Rd×2d and b0 ∈ Rd are trainable parameters, TtL,i is the embedding for
last-time based interval tL,i. Then, the intentions of user are learnt by a shared attention
mechanism, which dynamically weights item representation based on each interest uh:

γi,h = qTσ(W1zi + W2uh + b) , sG,h =

N∑
i=1

γi,hvi , (13)

where σ is an activate function, W1 ,W2 ∈ Rd×d and q ,b ∈ Rd are trainable parameters.
Then we combine the h-th coarse-level intention and refined item-augment representations
to generate the session representation for each interest:

Sh = σ (W3 [sG,h ‖ uh]) , (14)

where W3 ∈ Rd×2d is the trainable parameter.
With the incorporation of auxiliary last-item based interval information, we capture

session representations involved in both the disentangled interest factors and interaction
session items in relative chronological temporal-aware patterns.

4.5. Prediction and Training

Based on each disentangled interest representation Sh learnt above and the normalized
initial embeddings v′i of candidate items, we then estimate the interaction probability ŷ of
candidate items for current session:

ŷi = max
1≤h≤H

softmax
(
ST
hv′i
)
, v′i = v

(0)
i /‖ v

(0)
i ‖2 (15)

where ŷi ∈ ŷ denotes the probability that the user will click on item vi in the current session,
and H is the pre-defined parameter of the interest node number.

As mentioned above, flexible number of interest nodes encourages the chunked inter-
est representations conditioned on different behavior patterns. However, the difference
constraint drove by multiple interest extractions is insufficient: there might be redundancy
among latent interests representation, which conflicts with the target of disentangling multi-
view user interest. We hence introduce interest independents loss, which hires distance
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correlation measures as a regularizer, with the target of encouraging the multi-interest rep-
resentations to be diverse. We formulate this as follows:

Lcorr =
H∑
i=1

H∑
j=i+1

cos (ui,uj) , (16)

where cos (·) indicates the similarity distance between two inner-session interest represen-
tation pair. The final optimization process is to minimize the cross entropy loss function
together and the interest-independence loss jointly:

L = −
|V|∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi) + λLcorr , (17)

where yi ∈ R|V| is a one-hot vector of ground truth, and λ is the coefficient controlling
interest-independence term.

5. Experiments

In this section, we conduct experiments on SBR to evaluate the performance of our method
compared with other state-of-the-art models. Our purpose is to answer the following re-
search questions: RQ1: How does our model perform compared with state-of-the-art SBR
methods? RQ2: How does the temporal information of the sequence affect the rec-
ommendation results? RQ3: Is the design of our model reasonable and effective? How
do the key modules of TMI-GNN influence the model performance? RQ4: How do the
hyper-parameters affect the effectiveness of our model?

5.1. Experimental Setup

5.1.1. Dataset.

We conduct extensive experiments on three public datasets: RetailRocket, Yoochoose and
Jdata, which are widely used in the SBR research (Chen and Wong (2020); Wang et al.
(2020b); Meng et al. (2020)) and can support our work with seconds-level timestamp in-
formation. RetailRocket contains behavior data and item properties that collected from a
real-world e-commerce website. Yoochoose is a RecSys Challenge dataset, which consists
of click-streams from an E-commerce website. Different from Liu et al. (2018); Li et al.
(2017), we use the most recent fractions 1/16 sequences of Yoochoose as the total dataset
Yoochoose 1/16. Jdata records the historical interactions from the JD.com. It contains a
stream of user actions within two month. We extract the session data with the setting of
the duration time threshold 1 hour.

To filter poorly informative sessions and items, following Li et al. (2017); Wu et al.
(2019), we first filtered out all sessions of length ≤ 2 and items appearing less than 5 times
in all datasets. Then we applied a data augmentation technique described in Li et al. (2017).
The statistics of all datasets after prepossessing are summarized in Table 1.

5.1.2. Baseline Models.

To demonstrate TMI-GNN’s superiority performance, we compare it with several repre-
sentative competitors, including the state-of-the-art SBR models and several temporal-
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Table 1: Statistics of datasets used in experiments.

Statistic RetailRocket Yoochoose Jdata

No. of items 45,630 19,589 92,792
No. of sessions 341,831 975,060 3,397,208
Avg. of session length 4.91 6.87 6.68
Avg. of time interval (seconds) 65.8 51.3 52.6
No. of train sessions 314,924 777,025 2,862,842
No. of test sessions 26,907 198,035 534,366

concerned methods. (1).GRU4RecHidasi et al. (2015) employs the GRU to capture
the representation of the item sequence simply. (2).NARM Li et al. (2017) is a RNN-
based model which combines with attention mechanism to generate the session embedding.
(3).RIB Zhou et al. (2018b) is a framework using RNN and attention layer to model user
micro behavior including behavior and dwell time. Here we consider the time intervals as
the dwell time and ignore the behavior types. (4).SRGNN Wu et al. (2019) converts ses-
sion sequences into directed unweighted graphs and utilizes a GGNN layer Li et al. (2015)
to learn the patterns of item transitions. (5).LESSR Chen and Wong (2020) adds shortcut
connections between items in the session and considers the sequence information in graph
convolution by using GRU. (6).DATMDI Chen et al. (2021a) combines the GNN and
GRU to learn the cross-session enhanced session representation.

Besides, we combine the time interval embdding with ID embedding as input follow-
ing Zhou et al. (2018b), and inject additional time information into the graph by adding
learnable time interval weights like section 4.3.1 for SRGNN, LESSR and DATMDI method
separately, named SRGNN†, LESSR†, DATMDI†.

5.1.3. Evaluation Metrics.

To evaluate the recommendation performance, we employ two widely used metrics: Hit
ratio (H@k) and Normalized discounted cumulative gain (N@k) following Wu et al. (2019),
where k is 10 or 20. The average results over all test session are reported.

5.1.4. Implementation Details.

We implement the proposed model based on Pytorch and DGL. The embedding dimension
is set to 128. All parameters are initialized through a Gaussian distribution with a mean of
0 and a standard deviation of 0.1. We employ the Adam optimizer to train the models with
the mini-batch size of 512. We conduct the grid search over hyper-parameters as follows:
learning rate in {0.001, 0.01, 0.1}, learning rate decay in {0.01, 0.05, 0.1, 0.5}, learning rate
decay step in {2, 3, 4}, controlling factor λ in {1, 3, 10, 30}. The maximal time-step m is set
to 300, which is large enough for all sessions. To make the comparison fairer, we range the
hyper-parameters of baseline methods with the same tuning scopes of our experiments.
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Table 2: Experimental results (%) of different models in H@{10, 20}, and N@{10, 20} on
three datasets. Improv.means improvement over the state-of-art methods.The bold number
indicates the improvements over the best baseline (underlined) are statistically significant
(p<0.01) with paired t-tests.

Models
RetailRocket Yoochoose 1/16 Jdata

H@10 H@20 N@10 N@20 H@10 H@20 N@10 N@20 H@10 H@20 N@10 N@20

GRU4Rec 29.40 37.32 18.64 20.73 44.91 54.12 28.16 30.29 28.62 39.05 15.67 18.58
NARM 32.16 41.09 20.23 21.89 52.86 63.12 32.03 34.64 31.47 43.32 16.41 19.40
SRGNN 32.32 40.60 20.13 22.10 54.87 64.63 33.90 36.38 33.01 44.27 18.88 21.73
LESSR 31.82 40.48 19.90 22.09 55.51 65.28 34.51 36.99 33.13 44.01 18.99 21.74
DATMDI 32.26 40.51 20.06 22.15 55.77 65.58 34.61 37.12 33.24 44.39 19.05 21.82

RIB 32.36 40.96 20.17 21.78 52.80 63.08 31.97 34.59 31.36 43.24 16.31 19.33

SRGNN† 32.41 40.63 20.11 22.12 54.85 64.64 33.87 36.39 33.10 44.37 18.93 21.79

LESSR† 31.90 40.56 19.94 22.15 55.59 65.35 34.60 37.09 33.23 44.12 19.03 21.76

DATMDI† 32.46 40.64 20.12 22.13 55.86 65.62 34.67 37.25 33.29 44.46 19.09 21.88

Ours 33.20 42.68 21.04 22.97 56.81 66.58 35.72 38.31 33.94 45.43 19.49 22.35

Improv. 2.23% 3.72% 3.84% 1.22% 1.70% 1.46% 2.97% 2.84% 1.95% 2.18% 2.09% 2.14%

5.2. Overall Comparison (RQ1)

To demonstrate the overall performance of the proposed model, we compared it with the
state-of-the-art methods for SBR. We can obtain the following significant observations from
the comparison results shown in Table 2.
Comparison of Different Baselines. The NARM performs significantly better than
GRU4Rec, which indicates the effectiveness of attention mechanism to capture the user’s
main motivation. In the comparison between RNN-based models and GNN-based models for
Yoochoose and Jdata, the GNN-based models generally outperform the RNN-based models,
which verified the certain advantage of GNN for SBR. Moreover, we notice that LESSR can
outperform SRGNN in most cases. This may be due to the special design in LESSR for
capturing long-range dependency between items in a session, which contributes to better
performance on some long sessions. Meanwhile, for dataset RetailRocket, the simple model
NARM outperforms other complex models because of the insufficient training caused by
the small amount of data.
Significance of Temporal Information. Then we turn to the temporal information at-
tached methods. The RNN-based model RIB achieves superior performance to GRU4Rec
but performs slightly inferior than NARM, because RIB employs a relatively simple atten-
tion instead of last-item based attention. Compared to the original models, the temporal-
enhanced methods all achieve better performance in some degrees, which indicates the
significance of temporal information in SBR. Moreover, the adapted methods perform bet-
ter on small dataset RetailRocket, which indicates that the auxiliary temporal information
is more helpful for sparse interaction data.
Model Effectiveness. We find that our model comprehensively outperforms all other
baselines substantially on almost all metrics, which justifies the effectiveness of our model.
The performance improvement can be explained in two aspects. One is that TMI-GNN
can disentangle user intention via extracting multi-interests from the multi-interests session
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graph, so it can portray more profound representation of user interests. This strategy
break the limitation of expression ability of only one interest. Another one is that we
introduce multi-form temporal information to the process of disentangle graph modeling
and session representation learning. Compare with other time-aware models, TMI-GNN
models diversified temporal information adequately effectively.

Table 3: The performance comparison w.r.t different temporal information and module
design.

Model setting -V2V -U2V -Last First -Interest -Loss Ours

Yoochoose
H@20 66.32 66.25 66.28 66.37 65.86 66.35 66.58
N@20 37.54 37.63 37.53 37.79 37.23 37.71 38.31

Jdata
H@20 44.89 44.75 44.82 45.14 44.25 45.21 45.43
N@20 21.98 21.94 21.97 22.02 21.80 22.03 22.35

5.3. Ablation Study (RQ2&RQ3)

Impact of temporal information. In this part, we compare our model with partially
temporal information masked versions in Table 3 to test whether considering the multi-
form temporal information can boost model performance. The method with ”-V2V” means
skipping the time intervals in item-level message propagation, ”-U2V” indicates ignoring
the temporal factors in interest-item relation, ”-Last” represents removing the last-item
based time-interval signals, and ”First” means utilizing the first-item based time-interval
embedding in session representation learning module. By comparing methods mentioned
above, we find that the loss of any type of temporal information will cause the decline of
model performance. Besides, compare to ”First” time embedding, the last-item based time-
interval information is more helpful for SBR. Moreover, the loss of interest-item temporal
continuity factors is more significant in our model compared with other temporal infor-
mation types. Based on the above illustrations, we demonstrate that injecting multi-form
temporal information in our framework is indeed meaningful.
Impact of different Designs. In this part, we compare our method with different variants
to verify the effectiveness of the critical components of TMI-GNN. Specifically, we remove
the additional interest node in session graph (denote as ”-Interest”), and mask the interest
independent loss (denote as ”-Loss”), respectively. The experimental results are presented
in Table 3. It can be observed that the abstract interest nodes is pivotal for the model
capability of intention capturing. Meanwhile, for the diverse intention modeling, the removal
of interest independent loss leads to great impact on model results, which demonstrates that
the forced cross-interest separation is helpful for disentangling multiple interest of user. In
summary, we can infer that the key components of TMI-GNN are effective through the
comparison and analysis above.

5.4. Hyper-parameters Study (RQ4)

Impact of time bucket widths. As discussed in section 4, we divide the time interval into
buckets to utilize time signals. So we conduct tests by ranging the time bucket width within
{2, 4, 8, 16, 32} to explore how does the bucketing setting affect the model’s performance.
As shown in Figure 3, we can see that the performance does not fluctuate dramatically as
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Figure 3: Performance comparison w.r.t. different time bucket width and max interest node
number.

the time bucket width changes, which indicates that our model is not sensitive to the time
bucket width.
Impact of interest node num. To investigate the impact of the interest node number, we
range this parameter in {1, 2, 3, 4}. According to the results in Figure 3, we can see that for
both Yoochoose and Jdata, the model with 2 interest nodes achieves the best performance
in most metrics. Compare to single interest node with mixed interest representation, our
model with two interest nodes disentangles the latent interest representation for better
next item prediction. When the number becomes larger, performance will drop due to the
redundancy of interest representation.

6. Conclusion

In this paper, we pay special attention to the disentangled multi-interest representations of
user and multiple temporal information for session based recommendation. We construct
a multi-interest graph and devise the TMI-GNN model, which utilizes the multi-interest
graph to capture adjacent item transitions, distill multi-interest representations with the
injection of multi-form temporal information. In the experiments, our model outperforms
other state-of-the-art session-based models, showing the effectiveness of our model.
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