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Abstract

With the Internet of Everything (IoE) nowadays, monitoring edge systems is essential for
coordinating everything into an IoE web. However, it is hard to monitor edge systems due
to limited system information and limited sensors. To infer system information and provide
robust monitoring capability, machine learning models were used to approximate mapping
rules between different measurements. However, mapping rule learning using traditional
machine learning tools is one way only, e.g., from measurement variables to the state vector
variables. And, it is hard to be reverted, leading to over-fitting because of inconsistency
between the forward and inverse learnings. Hence, we propose a structural deep neural
network framework to provide a coherent two-way functional approximation. For physical
regularization, we embed network size into the number of variables in the latent layers.
We also utilize state sensors in the ‘latent layer’ to guide other latent variables to create
state sets. The performance of reconstruction for the two-way mapping rule is validated
extensively using test cases in the engineering, physics, and mathematical analysis domain.

Keywords: Edge Systems; Unobservability; Monitoring; Network Information; Auto-
Physics-Encoder; Optimization; Symbolic Regression; Two-way Flow.

1. Introduction

Internet of Everything (IoE) integrates cyber-infrastructure with system physics to improve
the computational and communication capabilities of the system. These are primarily
used to accomplish system planning, monitoring, and control operations Ding et al. (2021).
System physics is the underlying physical model of the system that governs the relationship
between the measurement variables and state vectors. Due to the close interaction between
cyber-infrastructure and the physics of the system, without enough sensors for monitoring, it
results in process interruption and system failure. For example, active devices complement
the Cyber-Physical Systems (CPS) Mart́ınez-Castro and Jang (2018), such as the home
devices and system controllers at the system edge without complete observability. Such
edge system happens at the boundary areas of power grid networks Baran (2001), heat
exchange networks Sheng et al. (2022), water distribution networks Tshehla et al. (2017),
natural gas networks Jalving and Zavala (2018), etc. Hence, in the absence of knowledge
about the control rules by the system operator on the edge, new dynamics are introduced
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Figure 1. Framework of the constrained neural network model.

into the system. It makes robust system analysis difficult to perform. Hence, monitoring
and control at the system edge is an essential component in the IoE management systems.
So this paper focuses on the state estimation problem in monitoring.

Traditionally, in systems with good sensing capability, state estimation is quite useful to
monitor system states Lefebvre et al. (2014). However, the prerequisite for state estimation
is the need for complete system information, which does not hold especially at system
edges. In that case, state estimation is performed using discriminative learning to learn the
regression rule from one set of variables to another. However, there are two problems. One
is the lack of physical knowledge to regularize the mapping rules for future operating points,
which will create dramatically different data. The second problem is that only physical laws
can create a two-way mapping with consistent results. But the learning algorithms can not
handle inconsistency in the two-way mapping rule learning for physical systems. This is
due to the challenge with data-driven learning algorithms in which typically the mapping
is one way only, from measurement variables to the state vector variables, and can not be
reverted. To resolve this issue, we design a structural deep neural network framework.

Although the system is only partially observable, we embed knowledge of the network
size into the latent layer. This is a critical design in our physics-auto-encoder as our pri-
mary rule is not to compress information in the latent layer but to maintain just the right
information in the latent layer, consisting of system states and latent units. Another benefit
of embedding system size into the latent layer is to obtain the latent layer with a physical
meaning of the system state. So, these state measurements will guide the latent units to
extract a state set that can uniquely recreate all the measurements in the physical sys-
tems uniquely. To understand the framework and the outcome of the proposed data-driven
model, the framework for the model-X is shown in Figure 1.

The principal contributions of the proposed method are four-fold. [i.] A two-way
mapping function is used in a structural deep learning framework to introduce physical
knowledge to regularize the learning of forward and inverse mapping consistency against
over-fitting and unobservability. [ii.] The latent unit is created to embed knowledge of the
network size into the latent layer. [iii] Improve the computational complexity by utilizing the
spatial data of location and topology of nodes, which is common in physical systems. [iv.]
Bound the uncertainty. Numerical results support our claim and contributions precisely.
Our work opens the door for the economic monitoring of vast edge systems.
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1.1. Related Work

1.1.1. Data-driven Methods to Learn System physics:

Data-driven methods enabled a major breakthrough in the state estimation algorithm De-
hghanpour et al. (2018). To utilize the data-driven methods to learn system models di-
rectly from measurement data, a number of works have explored using measurement data
itself. These methods use machine learning as a tool. For example, probabilistic and data-
driven methods are utilized for identification of physical topology Muller et al. (2005); Singh
et al. (2005, 2010); Luan et al. (2015); Hayes et al. (2016); Cavraro and Arghandeh (2018);
Cavraro et al. (2019). In addition, one can embed physics in the mapping rule learning with
machine learning Zhang et al. (2020); Powell et al. (2020); Guddanti et al. (2022); Yuan and
Weng (2022); Li et al. (2021). Although these methods show some physical understanding
of learning, they can not handle inconsistency in the two-way mapping rule learning for
physical systems. Additionally, the highly important concept of state estimation is not
analyzed extensively, making the learning algorithms less robust and less explainable.

1.1.2. State Estimation with Auto-Encoder with Full Observability:

When the system is observable in a well-monitored area, there are past works utilizing auto-
encoder. For example, Miranda et al. (2012); Barbeiro et al. (2014) assumes full system
knowledge and uses an auto-encoder to reconstruct missing data in state estimation with
auto-encoders for smart grid. Different from the smart grid, Cheng et al. (2020) develops
an adversarial auto-encoder for parameterized nonlinear fluid flow modeling, but it still
assumes good system knowledge. Therefore, it remains open on how to design auto-encoder
for systems with unobservability, with confidence.

1.1.3. Reducing Computational Complexity for Learning in Physical
Systems:

Many physics-informed learning methods are time-consuming due to excessive parameter
tuning process and a lot of data for training. To resolve this issue, some works have ap-
proached the problem in terms of the machine learning model selection. For example,
Coelho et al. (2020) proposes a composite regularization-based network selection approach
to reduce time for parameter tuning. For applications using psychological data, Epskamp
and Fried (2018) uses a regularization-based model selection approach to reduce the compu-
tational complexity. In load monitoring application, Sundaray (2019) proposes a machine
learning approach, based on identification of the most representative features to reduce
computational complexity. But, these methods still do not take into account the system
physics consideration, which can help with narrowing down the learning space further.

1.1.4. Other Works:

In dynamic systems, multiple linear models are learned in Chen and Poor (2022) on a
two-stage algorithm. But, it’s objective is not to learn any mappings, rather it learns the
linear models that constitute sample trajectories. In physical-informed machine learning
domain, the design in Lu et al. (2021) improves generalization by discovering a new opera-
tor. However, the mapping is one-way only so it lacks consistency. In symbolic regression
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domain, symbolic regression is used in Cranmer et al. (2020) to generate an overall algebraic
equation. But, first, it utilizes genetic algorithm, thus the method is intractable. Second,
no consideration is given to prior system knowledge in library function terms. Lastly, the
mapping in the work Cranmer et al. (2020) is one-way only, therefore it lacks consistency.

2. Preliminaries

In a CPS, when a node is partially observable, the state vectors are unknown. This par-
tial observability in the topology impacts the calculation of measurement variables at the
neighboring nodes. Although the measurement variables and state vectors are coupled alge-
braically, it becomes difficult to use a method based on a system equation solver to realize
the algebraic relationship in the presence of partial observability. Therefore, in the absence
of any algebraic relationship, a data-driven method needs to be employed to obtain the
relationship between the measurement variables and state vectors. This mapping is utilized
to determine the measurement variables associated with the unobservable nodes, which oth-
erwise was not possible to obtain using system equations. In our proposed model-X, the
measurement variables and state vectors may not necessarily be from the same observable
node. The way we deal with it has been discussed in the Subsection 3.2.

State estimation relies on a general model Muscas et al. (2014), which can be represented
as: y = f(x) + ϵ, where y represents the vector of network measurements and pseudo-
measurements, x represents the state vector, f represents the vector of non-linear measure-
ment functions, and ϵ represents the measurement noise vector. ϵ, is usually assumed to
be independent zero-mean Gaussian variable with the standard deviation of measurement
values. Most state estimation programs are formulated as over-determined systems of non-
linear equations, that are solved as weighted least squares (WLS) problems Maddala (1992),
Lin and Davenport Jr (1997), Simpson and Monlgomery (1998), Monticelli (2000). In WLS
approach, the state x is usually estimated by minimizing the weighted sum of squares of
the residuals, argminx

∑k
i=1wi(yi − fi(x))

2, where wi denotes weight associated with the
ith measurement, and k is the total number of measurements. Although, state estimation
is widely adapted in power systems, the problem of limited measurements is common to
CPS. So, model-X contributions can improve monitoring capability for oceanic circulation
systems, climate models, aerial-vehicle monitoring, and spacecraft control systems etc.

Notation

The bold letters are used to denote vectors and vector functions; lower case letters denote
scalars and scalar functions. Subscripts are used to indicate a subset. The term x̂ indicates
the expected value of x. The use of curly braces represents a set of variables. Furthermore,
y = {y1, · · · , yn}T represents the measurement variables, and x = {x1, · · · , xn}T represents
the state vectors, with n being the number of nodes in the CPS. In addition, O and Ō rep-
resent the notations for the observable and unobservable subsystems, respectively. In the

observable subsystem the corresponding set of variables are represented as
{
(xiO, y

i
O)

}k
i=1

,
with k being the number of samples in the observable subsystem. Similarly, in the unob-
servable subsystem, the estimates of the corresponding set of variables are represented as{
(xiŌ, y

i
Ō)

}k′
i=1

, with k′ being the number of samples in the unobservable subsystem.
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Figure 2. General architecture of the auto-encoder for model-X.

3. Proposed Method - Model-X for System Monitoring in Partial
Observability

To solve forward and inverse mapping consistency, the first innovation we provide is a two-
way mapping function using a structural deep learning framework. First, the mapping from
measurement variables y to state vectors x is referred to as a forward mapping. Second, the
mapping from state vectors x to measurement variables y is referred to as inverse mapping.
Using this, the measurement variables of the system are reproducible. However, to deal
with the uncertainty arising out of the unobservability in the system, intermediate mapping
is used. The mapping from state vectors x to latent units is referred to as an intermediate
mapping. Hence, the sensor information is used to map from the state vectors xO to learn
the latent units xŌ, which are unobservable. This involves embedding the network size into
the latent layers, which is discussed in detail in the Subsection 3.2. The numerical result
for the reduction in the computational burden due to sensor information is presented in the
Subsection 5.2. The latent layer consists of two components: state vectors xO, and latent
units xŌ, which are the estimates of unobservable components of the state vectors, which
is discussed in detail in the Subsection 3.2.

However, neither the forward nor the intermediate mapping, estimate the system pa-
rameters explicitly. So, the next innovation we provide is performing the inverse mapping
using symbolic regression to estimate the system parameters. Hence, inverse mapping from
the latent variables set xO,xŌ to the measurement variables y, yields the estimation for
system parameters by using symbolic regression. As xŌ is unobservable throughout the
mapping, the estimate of xŌ obtained from the intermediate mapping is considered for the
inverse mapping, for estimation of system parameters. Therefore, the measurements are
reconstructed by using the state vectors and the latent units in the latent layer. As the
proposed data mining technique does not require any system parameters, the need for an
accurate system model is eliminated as a result. The Figure 2 shows the general idea of
the latent representation for model-X in the framework of auto-encoder architecture, with
a focus on the two-way mapping directions. The Figure 2 shows the two-way mapping
with a similar setup to the regular auto-encoder. However, the key differences between the
proposed physics-auto-encoder and the regular auto-encoder model are, first, the state is
partially observable in the proposed method, second the proposed model has a clear physical
meaning of the latent variables, and last, part of the latent layer in the proposed approach,
is observable in the domain of the cyber-physical system.
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3.1. Forward Mapping: Preparing for Two-Way Information Flow

From the review, we know the system equation as x = fθ(y) + ϵ, for the mapping from
measurement variables y to the state vectors x, where the function fθ represents the under-
lying physics of the system, and ϵ represents the additive noise. We define forward mapping
as a projection from measurement variables to the state vectors via a structural deep neu-
ral network. Therefore, the encoder is mapping the measurement variables to the state
vectors in the latent layer. Mathematically, the set of {yO,xO} variables are coupled alge-
braically. Considering this coupling, the forward mapping between these variables can be
inferred upon exploring the observable subsystem. The forward mapping from measurement
variables to the state vectors involves the optimization, as shown in Equation 1.

argmin
θ1

{∥fθ1(yO)− xO∥22}, (1)

where θ1 denotes the set of learned parameters of fθ1 . The target function denoted by
f∗θ1 : yO → xO satisfies xO = f∗θ1(yO) and learns the forward mapping function.

3.2. Intermediate Mappings: Preserving Complete Information on Physical
States

The forward mapping can be inferred from the coupling between observable measurements in
terms of algebraic relationships. However, in the presence of partial observability, one needs
additional information to infer knowledge about the partial state of the system. Therefore,
in model-X, knowledge about the latent layer is vital to understanding the physics of the
CPS system. Different from the normal auto-encoder, we constrain the latent layer and
create an intermediate mapping in the model-X. The intermediate mapping will map from
limited but observable state vectors in the latent layer to the latent units in the latent layer.
And, we constrain the total number of system states, including both the state vectors and
latent units, to be equal to the physical network size. This means that we can determine
the number of latent units needed to make the model more physical. The mathematical
formulation is as shown in Equation 2.

argmin
θ2

∥xŌ − fθ2(xO)∥22, (2)

where θ2 denotes the set of learned parameters of fθ2 . The target function denoted by
f∗θ2 : xO → xŌ satisfies xŌ = f∗θ2(xO) and learns the intermediate mapping function for
obtaining state vector correlation.

3.3. Inverse Mappings: Embedding All Physical Possibilities

By using forward and intermediate mapping, the mapping function and the latent units are
obtained. However, to estimate the system parameters, inverse mapping of the state vectors
to the measurement variables is required. Hence, the inverse mapping objective function
involves the optimization as shown in Equation 3.

argmin
θ3

∥yO − fθ3(xO,xŌ)∥22, (3)
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Figure 3. Architecture of the proposed model -X, a physics constrained neural network
integrated with a symbolic regression.

where θ3 denotes the set of learned parameters of fθ3 . The target function denoted by
f∗θ3 : {xO,xŌ} → yO satisfies yO = f∗θ3

(xO,xŌ) and learns the inverse mapping function.
The term xŌ indicates the estimated value of the latent unit. To understand the mappings
and the logical flow of the proposed data-driven model, the basic architecture for the model-
X is shown in Figure 3. The symbolic regression is performed by employing symbolic
library function, Θ. The symbolic library function, Θ, consists of all possible polynomial
terms resulting from the combination of state vectors xO, and latent units xŌ, which are
the estimates of unobservable components of the state vectors. The possible polynomial
terms are based on the prior knowledge about the system. This includes the physical laws
governing the system. This selection of underlying physics is performed by an ℓ1 regularized
regression as shown in Equation 4.

argmin
w

∥yO −wTΘ∥22 + β∥w∥1, (4)

where β is the hyper-parameter for ℓ1 regularization with w representing weights of the
variables corresponding to the symbolic function terms.

We are using inductive bias for the proposed method by generating symbolic library
function terms. This considers the prior knowledge about the system as a hypothesis.
However, the system interactions cannot be learned directly by using sparsity inductive
bias, as the system is partially observable. Thus, in order to determine the interaction
pattern for the system variables, an ℓ−1 regularization for sparsity of the interaction terms
is used. In the Figure 3 of model-X, the functional mapping fθ3 is obtained by optimizing the
inverse mapping in Equation 3 using symbolic regression. This contributes to the estimation
of the physical laws corresponding to non-zero coefficient values only. The reason for using
ℓ1 regularization for inverse mapping in this work as opposed to ℓ2 regularization is that
the ℓ1 norm performs better than a ℓ2 norm in terms of useful feature selection.

3.4. Combined Objective for the Proposed Model X

The detailed architecture of the proposed model is visualized in Figure 3, which shows the
mathematical process of learning the mappings. The proposed objective of model-X by
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using a symbolic regression for inverse mapping, is described in Equation 5. This equation
is obtained by combining Equations 1, 3, and 4, and represents the objective function to be
optimized for estimating the system parameters.

argmin
ψ

∥xO − fθ1(yO)∥22 + ∥xŌ − fθ2(xO)∥22 + ∥yO −wTΘ∥22 + β∥w∥1, (5)

where ψ = {θ1 ∪ θ2 ∪ w} denotes the set of learned parameters of the model, Θ denotes
the symbolic library terms obtained from the set of {xO,xŌ}. In Equation 5, the first term
performs the forward mapping operation, and the second term performs the intermediate
mapping operation for estimating xŌ. The third term in Equation 5 performs the estimation
of system parameters.

With this approach, system parameters are estimated from measurement variables alone.
This is a fundamental change to the problem of system model approximation. In Equation
5, xO, and yO are the known terms, while Θ depends on the estimates xŌ. The mapping
functions fθ1 , fθ2 , and the model parameter w are the target variables of the optimization
function. The objective of the optimization function is to obtain the term w, which contains
the system parameters. Thus, by combining a symbolically informed latent layer with
the proposed constrained neural network, an improvement in the model approximation is
achieved, which is presented in the Subsection 5.1. This improvement applies to components
corresponding to both the observable and unobservable subsystems.

The algorithm for the proposed method is summarized in Algorithm 1.

Algorithm 1: Training Algorithm for Physics Constrained Symbolic Network via ℓ1
- Norm

Data: G = {yO,xO} such that G is the set of measurement variables and state
vectors of the observable subsystem.

Result: Forward and inverse mapping function learning, yielding system parameters.
begin

Check: G ̸= ∅
while Error converges do

1. Map yO to xO using a deep neural network.
2.a. Estimate xŌ from xO using physically informed latent constraint:
argminθ2 ∥xŌ − fθ2(xO)∥22;
2.b. Create symbolic library function using xO and xŌ: (Θ).
3. Combine the physically informed latent constraint with a symbolic
regression: argminw{∥yO −wTΘ∥22 + β ∥w∥1}˙
4. Using sensor information, obtain the observable system parameters wO:
argminwO{∥yO − wTOxO∥22}.
5. Perform multi-objective optimization upon combining the objectives from
Step−1, and Step−3, and by considering the constraints from Step−4, to
estimate the complete system parameters (w).

end

end
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4. Performance Guarantees for Quantifying Uncertainties

We need to measure the uncertainty of model-X for performance confidence. As latent
space is typically used to generate new samples with similar properties, the latent unit
obtained by intermediate mapping is used to incorporate the uncertainty, using a Bayesian
perspective Kabir et al. (2018). Uncertainty quantification is presented in Theorem 1 using
a Bayesian framework inspired by Kingma and Welling (2014) and Gundersen et al. (2021).

Theorem 1 (Confidence Interval for the Model-X) For d ∈ N representing the di-
mensionality of yO, Σ

+ representing the pseudoinverse of E[Σ], and ν = min {NMC , d}
degrees of freedom for the chi-squared distribution of the probability P for the χ2(P ) function,

the confidence interval for the reconstructed y
(m)
O ∀ m ∈ [1, d] is:[

E[y(m)
O ]−

√
χ2
ν(P ) ∥uTnS

1
2 ∥2,E[y(m)

O ] +
√
χ2
ν(P ) ∥uTnS

1
2 ∥2

]
where uTm denotes the mth row of the matrix U , where E[Σ] = USUT , by using singular
value decomposition.

Proof The posterior distribution for the decoder part of Model-X, P (yO | xO) is predicted
using the following.

P (yO | xO) = lim
NMC→∞

∫
P
(
yO

∣∣ xŌ,xO
)
P
(
xŌ

∣∣ xO
)
dxŌ

=
1

NMC

NMC∑
j=1

P
(
yO

∣∣∣ x(j)

Ō ,xO

)
.

(6)

The sampling from latent space has been used to estimate the confidence region for
prediction uncertainty of the trained model. Using the Monte-Carlo estimator, the mean
prediction value E[yO] and the empirical co-variance matrix E[Σ] can be obtained. The
empirical standard deviation is σ̂ =

√
diag(E[Σ]). To estimate the confidence interval, let

us assume P (yO | xO) ∼ N (µ, σ), where E[yO] and E[Σ] are approximations to µ and σ, as
obtained above from NMC samples. Hence, the confidence interval estimate for yO is given
as follows:

y
(i)
O ∈ Rd : (yO

(j) − E[yO
(j)]) Σ+ (yO

(j)−E[yO
(j)])T ≤ χ2

ν(P ), (7)

where χ2(P ) is the quantile function for probability P of the chi-squared distribution with
ν = min {NMC , d} degrees of freedom. Here, d ∈ N represents the dimensionality of yO,
and Σ+ represents the pseudoinverse of E[Σ]. Now, using singular value decomposition,
E[Σ] = USUT , where uTm denotes the mth row of the matrix U . Hence, the interval for

y
(m)
O ∀ m ∈ [1, d] is:[

E[y(m)
O ]−

√
χ2
ν(P ) ∥uTnS

1
2 ∥2,E[y(m)

O ] +
√
χ2
ν(P ) ∥uTnS

1
2 ∥2

]
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Theorem 1 provides the upper and lower bound on the estimation error for the recon-
struction of the measurement values. The bounds are defined by the expected value of the
reconstructed measurements, with the deviation characterized by the quantile function for
probability of the chi-squared distribution and the empirical covariance matrix of the recon-
structed power values. The reconstruction is performed by considering the unobservability
as latent units, which can be obtained by using the Monte-Carlo estimator. The numerical
result for the uncertainty bound of the proposed method is presented in the Subsection 5.3.

5. Experiments

The contributions of this work are validated numerically for a diverse selection of test cases
from the engineering, physics, and mathematical analysis domain. These include power
grid transmission and distribution test cases based on MATPOWER Zimmerman et al.
(2011), energy systems based on different renewable penetrations Tan and Zhang (2017),
heat exchange network based on synthetic sparse parameters Davis and Hu (2011), and UF
sparse matrix systems Davis and Hu (2011) based complex networks. For these test cases,
the proposed method is trained by optimizing the objective function in Equation 5. To
validate the performance of learning physical system representation, the proposed method
is compared with Sparse Identification of Nonlinear Dynamics (SINDy) from Brunton et al.
(2016) based on compressive sensing based technique as discussed in Wang et al. (2011),
and with the Physics-Informed Neural Network (PINN) model from Raissi et al. (2019). For
ablation study, SINDy method is used as it considers only the inverse mapping component
in the analysis. The reproducibility table is provided in Supplementary Table 1.

• Power systems test cases based on MATPOWER: We implement the IEEE
standard power system models in the high-level simulation toolbox MATPOWER
Zimmerman et al. (2011) based on MATLAB. For the experiments, we considered
IEEE 4-bus, 5-bus, 9-bus, 14-bus, 18-bus, 22-bus, 33-bus, 69-bus, 85-bus, and 141-bus
test case systems. The test cases consist of the magnitude and phase angle values
for voltage measurements along with the active and reactive power demands for the
observable system nodes at multiple time instants. To use the symbolic regression-
based inverse mapping, rectangular coordinates of the voltage phasors have been used
to represent the power-flow mappings based on Sundaray and Weng (2022).

• Heat exchange network based on a 207-node system using synthetic sparse
parameters: We implement a heat exchange network based on Davis and Hu (2011).
The test case consists of the total heat supplied to the system, and the change in
temperature of the system for the observable system nodes at multiple time instants.
The total heat supplied to the system is considered as the measurement, and change
in temperature of the system is considered as the state vector. We denote it by HE
207. The heat exchange equation is the system physics for generating simulated data.

• UF sparse matrix-based system: The UF sparse matrix-based complex network
system Davis and Hu (2011) is used to validate model-X. We considered 15-node,
98-node, and 274 node test case systems, and denote those by UFS 15, UFS 98, and
UFS 274 respectively. The state vector and measurement values are simulated based
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Figure 4. Comparison of system parameter estimation in a partially observable system.

on the system physics and the sparse coefficient matrix. The test cases consist of the
explanatory variable and response variable for the observable system nodes at multiple
time instants. The response variable of the system is considered the measurement,
and the explanatory variable of the system is considered the state vector.

• Renewable penetration-based energy systems test cases: To validate robust-
ness of model-X, we implement power system models integrated with renewable pene-
tration Tan and Zhang (2017). We considered 18-bus, 22-bus, 33-bus, 69-bus, 85-bus,
and 141-bus test case systems for renewable penetration. The test cases are denoted
by RXX, where XX denotes the number of buses. The test cases consist of the mag-
nitude and phase angle values for voltage measurements along with the active and
reactive power demands for the observable system nodes at multiple time instants.

5.1. Robust Reconstruction: Using Two-way Information Flow

By using model-X, the estimation of parameters corresponding to the nodes which are not
interacting with the unobservable bus directly is estimated accurately. In addition, the
parameters associated with the unobservable nodes are also estimated, which was otherwise
impossible to find using simple regression. The analysis is performed on multiple CPS
systems, and the mean and variance of the error values are plotted in Figures 4. The
performance comparison of model-X against comparative methods is shown to validate the
consistently perfect system parameter estimation capability of model-X, which proves the
forward and inverse mapping capability of model-X.
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5.2. Improvement in Computational Complexity: Embedding Constrained
network size into Latent Layer using Sensor Information

By using sensor data as a constraint in Equation 5, the number of system states is deter-
mined for estimating the unobservability. Obtaining an adequate number of system states
results in reducing the number of library functions. This helps in reducing the complexity of
optimization using symbolic regression. It results in improvement of the number of parame-
ters with increase in dimension, from exponential growth to linear growth. The comparison
of computational time with and without using sensor information is shown in Figure 5. This
validates the significant improvement in computational complexity of model-X. In Figure
5, the OoM (Out-of-Memory) points are obtained by using non-linear regression.

5.3. Performance Guarantee for Quantifying Uncertainty of Model-X: Using
Latent Layers Constrained Mapping Design

The estimation of parameters corresponding to the nodes which are directly interacting with
the unobservable node is obtained accurately by using the two-way information flow, which
otherwise would not be possible using prevalent methods. The confidence interval (CI) for
the performance of model-X in terms of the two-way information flow is shown in Figure 6.
It is important to note here that, the y-axis scale while obtaining the confidence interval is
determined by data points in terms of estimation error for the posterior distribution. So,
the plot captures the mean value of the posterior estimation error. However, as certain
points in terms of the posterior estimation error also fall beyond the mean value due to the
variable standard deviation, this is captured by the confidence interval region as shown in
the Figure 6.
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Figure 6. Confidence of system parameter estimation in partial observability.

6. Conclusion

We present a solution to the problem of providing robust monitoring capability for cyber-
physical systems (CPS) in data-limited scenarios by inferring system physics information.
It has played a key role in a variety of research directions. These include controllability of
edge systems, state estimation and attack detection in CPS, enhancing the functionality and
performance of the Internet of Everything (IoE), etc. This work shows that it is possible
to achieve superior mapping capability to learn the underlying physical information of the
systems, even with limited observability using consistent two-way mapping and the latent
layer design with network size and latent units. The proposed method shows strong perfor-
mance on the benchmark method. In addition to the improved mapping performance, the
method focus on understanding the relationship of latent units to measurements. Based on
the numerical results, the proposed method is capable of estimating the system parameters
with high accuracy in presence of partial observability of the system. It involves all system
components, including those interacting directly with the unobservability. The improve-
ment in the computational complexity achieved by embedding the network size into the
latent layers applies to a wide range of results using sensor information. It suggests that
the proposed model can adapt to any dimensionality of CPS. Improvement of the mapping
and computational capability ensures a robust and accurate model for a sustainable and
reliable CPS operation. This model provides confidence in the mapping. Thus, the model
has the potential to form the next generation of CPS management systems with design
consistency, maximized physical explainability, and confidence. This will instill trust in the
AI for IoE on the system edges with unobservability.
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