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Abstract

In contrast to risk-averse multi-armed bandit (MAB), where one aims for a best risk-
sensitive arm while having a risk-neutral attitude when running the risk-averse MAB algo-
rithm, in this paper, we aim for a best arm with respect to the mean like in the standard
MAB, but we adopt a risk-averse attitude when running a standard MAB algorithm. Con-
ditional value-at-risk (CVaR) of the regret is adopted as the metric to evaluate the perfor-
mance of algorithms, which is an extension of the traditional expected regret minimization
framework. For this new problem, we revisit several classic algorithms for stochastic and
non-stochastic bandits, UCB, MOSS, and Exp3-IX with its variants and propose parameters
with good theoretically guaranteed CVaR-regret, which match the results of the expected
regret and achieve (nearly-)optimality up to constant. In the non-stochastic setting, we
show that implicit exploration achieves a trade-off between the variability of the regret and
the regret in expectation. Numerical experiments are conducted to validate our results.

Keywords: multi-armed bandit; conditional value-at-risk

1. Introduction

Multi-armed bandit (MAB) is a fundamental model for studying optimal learning in se-
quential decision-making. It has a wide variety of applications, e.g., portfolio optimization
(Shen et al., 2015) or web optimization (White, 2012). In MAB, an agent (or player) faces a
repeated game (i.e., decision-making problem) where it has to choose an action called arm,
which would yield a reward. To maximize the total gain, the agent needs to balance the
exploration of all possible arms and the exploitation of the seemingly most profitable one.

Running a MAB algorithm to solve this trade-off results in observing a stochastic regret,
i.e., difference between reward of a posteriori known best arm and reward of chosen arm.
Traditionally, the quality of MAB algorithms is measured in terms of their expected total
regrets (Auer et al., 2002; Audibert and Bubeck, 2009). In practice, a MAB algorithm is
generally run only a few times (even possibly once), whereas the empirical average of the
observed regret is only guaranteed to concentrate around its mean after a large number of
runs. Thus, the regret in expectation fails to satisfactorily account for the risk sensitivity
of the player. Indeed in many scenarios such as medical treatment or financial investment,
we may be interested in the regret in extreme circumstances rather than on average. In
this regard, a regret bound in probability may be a more desirable choice (Audibert et al.,
2009; Auer et al., 1995), however such bound still fails to describe the tail risk beyond a
confidence level.
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As an illustration, consider the following situation where the best arm is underestimated
while some suboptimal arms are over-estimated, which would lead the player to keep drawing
the latter arms until the over-estimation and under-estimation are corrected, which may take
some time and lead to a high total regret. Although this situation may happen rarely, a risk-
sensitive player would prefer to avoid it by finding a better trade-off between exploration and
exploitation. Intuitively, more exploration than usual is required to control the probability
of such adverse events, even if a potential price on the expected regret has to be paid.

Risk sensitivity has been investigated in MABs. In these risk-sensitive MAB studies,
the goal is to find a risk-sensitive best arm, but algorithms are still analyzed in terms of
regret bounds in expectation or probability. Various risk measures have been considered,
such as mean-variance (Sani et al., 2012; Vakili and Zhao, 2016; Zhu and Tan, 2020) and
conditional value-at-risk (Maillard, 2013; Galichet et al., 2013; L.A. et al., 2020; Baudry
et al., 2021). We refer readers to Tan et al. (2022) for a comprehensive survey. In contrast
to risk-sensitive MABs, in this paper, we study the conditional value-at-risk (CVaR) of the
regret (CVaR-regret) while arms are still evaluated in terms of their means. To the best of
our knowledge, no previous work has analyzed bounds on CVaR-regret.

The remaining of the paper is organized as follows. In Section 2, after recalling the
necessary background, we formally state the problem studied in this paper. In Section 3,
we then state our main results regarding CVaR-regret in various MAB settings. In Section 4,
we conduct some experiments to verify our analyses. We conclude the paper in Section 5.

2. Background and Problem Formulation

Let K ≥ 2 be the number of arms and T ≥ K be the time horizon. In each round t ∈ [T ] =
{1, . . . , T} of the iterated game, the agent chooses a distribution pt over [K] to sample an
action at and the environment reveals the gain gt,at (or equivalently, the loss ℓt,at) associated
with the arm. Depending on how the reward signals are generated, MAB can be divided into
stochastic and non-stochastic ones. The objective of the agent is to maximize the total gain∑T

t=1 gt,at , or equivalently, minimize the regret in the corresponding setting. To achieve the
goal, the agent needs to make decisions based on rational policy π = (π1, . . . , πT ), where
πt : (a1, g1, . . . , at−1, gt−1) 7→ pt maps the interaction history to a distribution over [K]. It
is worth noting that the agent may have no prior knowledge of the horizon. Any algorithm
that does not rely on the knowledge of the horizon is called anytime.

2.1. Stochastic MAB

A stochastic bandit is defined by a collection of distributions ν = (ν1, . . . , νK) from which
the reward signals are sampled from. With given bandit instance ν and policy π, the
regret is a well-defined random variable, which can be used to evaluate the quality of the
algorithm. However, for technical reasons (Bubeck and Cesa-Bianchi, 2012), the regret of
stochastic bandit is too difficult to bound. A reasonable alternative is the pseudo-regret,
which is a random variable with respect to the stochastic choices of arms:

RT =
K∑
k=1

∆kNk(T )
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where µk = E[νk] is the mean return of the k-th arm, ∆k = maxs∈[K] µs − µk is its sub-

optimality gap, I{·} is the indicator function, and Nk(t) =
∑t

s=1 I{at = k} is the pull time
of the k-th arm in the first t rounds.

For the sake of control the tail probability, a common assumption is that the gain of each
arm obeys σ-subgaussian distribution, i.e., E[exp(λ(νk−µk))] ≤ exp(σ2λ2/2) for any λ ∈ R.
The assumption covers a large collection of distributions such as the ones with bounded
support and provides the Chernoff-Hoeffding bound, i.e., P{µ̂k,s − µk ≥ ε} ≤ exp(− sε2

2σ2 ),
where µ̂k,s is the empirical mean of the k-th arm in its s trials.

To minimize the regret, one may consider how the regret increases with respect to
the horizon with fixed bandit instance, where Lai and Robbins (1985) show that every
consistent policy suffers Ω(log T ) expected regret. Another approach is to consider the worst
instance the agent possibly confront for fixed horizon, where Auer et al. (1995) prove that
every algorithm has Ω(

√
KT ) expected regret. Both of above two scenarios are extensively

investigated, where UCB (Auer et al., 2002) and MOSS (Audibert and Bubeck, 2009) are
probably the most fundamental algorithms that match the order of respective lower bounds.

2.2. Non-stochastic MAB

Stochastic bandit assumes that rewards are sampled from a stationary distribution, which
limits its practical usage. In contrast, an adversarial bandit is defined by losses ℓ ∈ [0, 1]T×K

secretly selected by an adversary, where the (total) regret is defined as: (Auer et al., 1995):

RT =
T∑
t=1

ℓt,at − min
k∈[K]

T∑
t=1

ℓt,k

Note this total regret is again a random variable with the respect to the stochastic choices
of the arms. As adversarial bandit contains no statistical assumption, we only concern
the worst instance the agent may confront for fixed horizon. The most basic approach is
probably Exp3 (Auer et al., 1995), which adopts exponentially weighted forecaster pt,k ∝
exp(−ηt

∑t−1
s=1 ℓ̂s,k) with the importance-weighted estimator:

ℓ̂t,k =
ℓt,atI{at = k}

pt,k

where pt,k = P{at = k|Ft−1} is the probability of drawing the k-th arm conditioned on
the interaction history up to the end of round t − 1. Despite that Exp3 enjoys a good
expected regret (Bubeck and Cesa-Bianchi, 2012), the fluctuation of the estimator brings
difficulty to risk analysis. Therefore, we consider instead Exp3-IX (Kocák et al., 2014) with
the following estimator:

ℓ̃t,k =
ℓt,atI{at = k}

pt,k + γt

In this paper, we also consider two variants of adversarial bandits. The first one is
bandit with expert advice, where the player has access to N “experts” to help choose the
best arm, which are represented by N distributions ξt(1), . . . , ξt(N) over [K] in each round
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t ∈ [T ] (Auer et al., 1995). The objective of the learner is to minimize the regret against
the best expert:

RT =
T∑
t=1

ℓt,at − min
n∈[N ]

T∑
t=1

ξt(n)
T ℓt

Regret RT is again a random variable since the at’s are random.
The other variant is non-stationary bandits (Herbster and Warmuth, 1998). Beyond

chasing the best single arm, a class of sequences that switch at most S time between arms
is considered. Denote C(S) ⊆ [K]T as the set of sequences with no more than S switches.
The objective of the learner is to minimize the (total) regret against the best sequence:

RT =

T∑
t=1

ℓt,at − min
(Jt)Tt=1∈C(S)

T∑
t=1

ℓt,Jt

2.3. Risk Measures

Let X be a real random variable in terms of loss, for any α ∈ (0, 1], the conditional value-
at-risk (CVaR) of X at level 1− α is defined as (Artzner et al., 1999)

CVaR1−α(X) = inf
λ∈R

{
λ+

1

α
E[(X − λ)+]

}
where (X)+ = max{0, X}. Let F (x) = P{X ≤ x} and F−1(x) = inf{y ∈ R : F (y) ≥ x},
CVaR can be equivalently defined as CVaR1−α(X) = 1

α

∫ α
0 F−1(1− x)dx. From this defini-

tion, one can easily show that P{X > f(γ)} ≤ γ for any γ ∈ (0, 1) implies CVaR1−α(X) ≤
1
α

∫ α
0 f(γ)dγ for any α ∈ (0, 1]. Informally speaking, CVaR represents the conditional ex-

pectation of X over the worst α-fraction. As a coherent risk measure (Artzner et al.,
1999), CVaR enjoys several desirable properties including translation invariance, positive
homogeneity, and sub-additivity.

Since it is used in our proofs, we also mention another coherent risk measure called
entropic value-at-risk (EVaR), which is defined as:

EVaR1−α(X) = inf
λ>0

{
1

λ
log

E[exp(λX)]

α

}
and serves as an upper bound of CVaR (Ahmadi-Javid, 2012).

2.4. Problem Statement

In this paper, we aim at bounding the CVaR-regret, which is the metric we use to evaluate
a bandit algorithm. It is defined as the CVaR of the pseudo-regret CVaR1−α

(
RT

)
for

stochastic MAB and the CVaR of the regret CVaR1−α(RT ) for non-stochastic MAB. Since
CVaR0(X) = E[X], the traditional expected regret is a special case of the CVaR-regret.

3. Main Results

We now present our theoretical analyses where we revisit the following existing algorithms:
UCB, MOSS, and Exp3-IX with some variants, Exp4-IX and Exp3-SIX.
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3.1. Stochastic Bandits

Algorithm 1: UCB

Input: ρ ≥ 0
Pull each arm once
for t = K, . . . , T − 1 do

at+1 ← argmax
k∈[K]

(
µ̂k,Nk(t) +

√
ρ log T

Nk(t)

)
Sample at+1

end

We firstly revisit UCB (Auer et al., 2002),
as shown in Algorithm 1. Our result ex-
tends the traditional result for the ex-
pected regret and shows that UCB with
sufficient exploration rate enjoys logarith-
mic CVaR-regret under the assumption of
subgaussian reward distributions, where
the leading factor is independent of α. Re-
markably, additional exploration beyond
the threshold is poisonous, regardless of
the value of α.

Theorem 1 Suppose that νk − µk is a 1-subgaussian distribution for any k ∈ [K]. Then,
for Algorithm 1 with ρ ≥ 4, for any α ∈ (0, 1]

CVaR1−α(RT ) ≤ 4

(
ρ log T +

√
2πρ

(
2 log2

1

α
+ 2 log

1

α
+ 1

)
log T + 2 log

e

α

)
K∑
k=1

1

∆k

+

√
32

α
+

K∑
k=1

∆k

Proof Denote ∗ as the optimal arm. A sub-optimal arm k will be pulled in round t > K
only if µ̂∗,N∗(t) ≤ µ∗− ∆k

2 or µ̂k,Nk(t) ≥ µk+
∆k
2 . Thus, the pseudo-regret can be decomposed

as the corresponding two terms, which are caused by underestimation and overestimation,
respectively.

Step I: bounding the regret caused by underestimation

Define ∆ = max
{
0, µ∗ −mint∈[T ]

(
µ̂∗,N∗(t) +

√
ρ log T
N∗(t)

)}
. For any ε > 0, there is

P{∆ > ε} ≤ P

{
∃s ∈ N+ : µ̂∗,s +

√
ρ log T

s
< µ∗ − ε

}

≤
∞∑
s=1

exp(−
s(
√

ρ log T
s + ε)2

2
) ≤ T−ρ/2

∞∑
s=1

exp

(
−ε2s

2

)
= T−ρ/2 exp(− ε2

2 )

1− exp(− ε2

2 )

By letting γ = T−ρ/2 exp(− ε2

2
)

1−exp(− ε2

2
)
we obtain ε =

√
2 log(T−ρ/2γ−1 + 1). Since x ≥ log(x +

1),∀x ∈ (−1,∞), for any γ ∈ (0, 1)

P
{
∆ >

√
2T−ρ/2γ−1

}
≤ P

{
∆ >

√
2 log

(
T−ρ/2γ−1 + 1

)}
≤ γ

Hence we yield CVaR1−α(∆) ≤
√

8
αT

−ρ/4.

Step II: bounding the regret caused by overestimation
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Now suppose k satisfies ∆k > 2∆. For such an arm k and any s ∈ N+

P{Nk(T ) > s} ≤ P

{
µ̂k,s +

√
ρ log T

s
≥ µk +

∆k

2

}
≤ exp

(
−
sc2∆2

k

8

)
≤ T

− ρc2

2(1−c)2

The second inequality sign holds by assuming u is large sufficiently to satisfy ∆k
2 −

√
ρ log T

s ≥
c∆k
2 for some c ∈ (0, 1), which leads to

s∆2
k

8 ≥ ρ log T
2(1−c)2

and the last inequality sign. Recall

that the inequality holds for any integer such that s ≥ 4ρ log T
(1−c)2∆2

k
. By solving γ = T

− ρc2

2(1−c)2

we obtain

P

{
Nk(T ) >

4

∆2
k

(√
2 log

1

γ
+
√

ρ log T

)2

+ 1

}
≤ γ

Hence, we yield

CVaR1−α(Nk(T )) ≤
4

∆2
k

(
ρ log T +

√
2πρ

(
2 log2

1

α
+ 2 log

1

α
+ 1

)
log T + 2 log

e

α

)
+ 1

Little calculus needs to be done to see the inequality above. Let I =
∫ α
0

√
log 1

γdγ =

2
∫∞√

log 1
α

γ2 exp(−γ2)dγ. Then,

I2 ≤ 4

∫ π
2

0
cos2 θ sin2 θdθ

∫ ∞√
2 log 1

α

r5 exp(−r2)dr =
α2π

4

(
2 log2

1

α
+ 2 log

1

α
+ 1

)
Step III: summing
The pseudo-regret can be decomposed as follows

RT =
K∑
k=1

∆kNk(T )I{∆k ≤ 2∆}+
K∑
k=1

∆kNk(T )I{∆k > 2∆}

Then, by the sub-additivity of CVaR, we have

CVaR1−α

(
RT

)
≤ 2TCVaR1−α(∆) +

K∑
k=1

∆kCVaR1−α(Nk(T )I{∆k > 2∆})

By substituting the values we complete the proof.

Algorithm 2: MOSS

Input: ρ ≥ 0
Pull each arm once
for t = K, . . . , T − 1 do

at+1 ←

argmax
k∈[K]

(
µ̂k,Nk(t) +

√
ρ

Nk(t)
log+

T

KNk(t)

)
Sample at+1

end

Now we turn to MOSS (Audibert and
Bubeck, 2009), given in Algorithm 2. Just
as before, sufficient exploration guarantees
that the instance-independent CVaR-regret
grows at the square root rate. However,
additional exploration may be applied to
deal with the worst bandit instance, which
makes MOSS more difficult to tune. For
simplicity, in the following content, we de-
note log+ x = max{0, log x}.
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Theorem 2 Suppose that νk − µk is a 1-
subgaussian distribution for any k ∈ [K]. Then, for Algorithm 2 with ρ = 3, for any
α ∈ (0, 1],

CVaR1−α

(
RT

)
≤

(
15√
α
+

√
10

(
2 log2

1

α
+ 2 log

1

α
+ 1

)
+ 2 log

1

α
+ 10

)
√
KT +

K∑
k=1

∆k

Proof Again, we denote ∗ as the optimal arm and decompose the pseudo-regret as under-
estimation and overestimation terms.

Step I: bounding the regret caused by underestimation

Define ∆ = max{0, µ∗ − mint∈[T ]

(
µ̂∗,N∗(t) +

√
ρ

N∗(t)
log+ T

KN∗(t)

)
}. By denoting Ss =

s(µ̂∗,s − µ∗), for any ε > 0 and ρ > 2, there is

P{∆ > ε} ≤ P

{
∃s ∈ N+ : µ̂∗,s +

√
ρ

s
log+

T

Ks
< µ∗ − ε

}

= P

{
∃s ∈ N+ : Ss +

√
ρs log+

T

Ks
+ sε < 0

}

≤
∞∑
n=0

P

{
∃
(ρ
2

)n
≤ s ≤

(ρ
2

)n+1
: Ss +

√
ρs log+

T

Ks
+ sε < 0

}

≤
∞∑
n=0

P

{
∃s ≤

(ρ
2

)n+1
: Ss +

√
ρn+1

2n
log+

2n+1T

ρn+1K
+

ρn

2n
ε < 0

}

≤
∞∑
n=0

exp(−
2n(
√

ρn+1

2n log+ 2n+1T
ρn+1K

+ ρn

2n ε)
2

ρn+1
) ≤ K

T

∞∑
n=0

(ρ
2

)n+1
exp(−2−nρn−1ε2)

≤ K

T

(
ρ2

2eε2
+

∫ ∞

0

(ρ
2

)x+1
exp(−2−xρx−1ε2)dx

)
≤
(
1

e
+

1

log ρ
2

)
ρ2K

2ε2T

The fourth and fifth inequality signs follow inequality 2.17 of Hoeffding (1963) and (x+y)2 ≥
x2 + y2,∀x, y > 0. The sixth one holds by observing that f(x) =

(ρ
2

)x+1
exp(−ε22−xρx−1)

is at most unimodal. For such a function there is
∑b

x=a f(x) ≤ maxx∈[a,b] f(x)+
∫ b
a f(x)dx.

By a similar argument as in Theorem 1 we bound CVaR1−α(∆).
Step II: bounding the regret caused by overestimation
Now we suppose k satisfies ∆k > max{2∆,

√
4eρK/T}. For such an arm k and any

s ∈ N+

P{Nk(T ) > s} ≤ P

{
µ̂k,s +

√
ρ

s
log+

T

Ks
≥ µk +

∆k

2

}

≤ P

µ̂k,s +

√
ρ

s
log

∆2
kT

4ρK
≥ µk +

∆k

2

 ≤ exp

(
−
sc2∆2

k

8

)
≤
(
∆2

kT

4ρK

)− ρc2

2(1−c)2
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The third inequality sign holds by assuming s is large sufficiently to satisfy ∆k
2 −

√
ρ
s log

∆2
kT

4ρK ≥
c∆k
2 for some c ∈ (0, 1), which in turn guarantees the second inequality sign as s ≥

4ρ
(1−c)2∆2

k
log

∆2
kT

4ρK > 4ρ
∆2

k
. The last inequality follows by recalling that

s∆2
k

8 ≥
ρ

2(1−c)2
log

∆2
kT

4ρK .

By a similar argument as in Theorem 1, we obtain

CVaR1−α(Nk(T )) ≤
4

∆2
k

ρ log
∆2

kT

4ρK
+

√
2πρ

(
2 log2

1

α
+ 2 log

1

α
+ 1

)
log

∆2
kT

4ρK
+ 2 log

e

α

+ 1

≤ 4

∆k

√
T

K

(
log e

α√
eρ

+

√
π

2e

(
2 log2

1

α
+ 2 log

1

α
+ 1

)
+

√
ρ

e

)
+ 1

The second inequality sign follows by log x ≤ x/e, ∀x > 0.
Step III: summing
The pseudo-regret can be decomposed as follows

RT ≤
K∑
k=1

∆kNk(T )I{∆k ≤ 2∆}+
K∑
k=1

∆kNk(T )I
{
∆k ≤

√
4eρK/T

}
+

K∑
k=1

∆kNk(T )I
{
∆k > max{2∆,

√
4eρK/T}

}
Then, by the sub-additivity of CVaR, we have

CVaR1−α(RT ) ≤ 2TCVaR1−α(∆) +
√
4eρKT

+
K∑
k=1

∆kCVaR1−α

(
Nk(T )I

{
∆k > max{2∆,

√
4eρK/T}

})
By substituting the values we complete the proof.

3.2. Non-stochastic Bandits

Algorithm 3: Exp3-IX

Input: {ηt}Tt=1, {γt}Tt=1

Initialization: L̃0,k = 0, ∀k ∈ [K]
for t = 1, . . . , T do

pt,k ←
exp(−ηtL̃t−1,k)∑K

k=1 exp(−ηtL̃t−1,k)
, ∀k ∈ [K]

Sample at ∼ pt = (pt,1, . . . , pt,K)

L̃t,k ← L̃t−1,k + ℓ̃t,k,∀k ∈ [K]

end

In the adversarial setting, we consider the
Exp3-IX, as illustrated in Algorithm 3. Re-
garding of the algorithm, Neu (2015) rec-
ommends γt = ηt/2 for achieving a good
high probability bound. With some further
investigation, we consider that the CVaR-
regret is a more natural metric for reveal-
ing the nature of implicit exploration, where
the rate γt is associated with α. By letting
α = 1 we yield γt = 0 and CVaR0(RT ) =
E[RT ] ≤

√
2KT logK and 2

√
KT logK in

the horizon-known and anytime cases, where Exp3-IX boils down to Exp3 and our bounds
match the result of Bubeck and Cesa-Bianchi (2012). In this regard, implicit exploration is
not beneficial for minimizing the expected regret but reducing the variability of the regret.
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Theorem 3 For Algorithm 3 with ηt =
√

2 logK
KT and γt =

√
log 1

α
2KT , we have:

CVaR1−α(RT ) ≤
√

2KT logK +

√
2KT log

1

α
+

1

2

√
logK log

1

α
+

1

2
log

1

α

For Algorithm 3 with ηt =
√

logK
Kt and γt =

1
2

√
log 1

α
Kt , we have:

CVaR1−α(RT ) ≤ 2
√
KT logK + 2

√
KT log

1

α
+

1

2

√
logK log

1

α
+

1

2
log

1

α

Proof Denote ∗ as the optimal arm.
Step I: bounding the random regret stochastically
By the standard analysis for Exp3 of Bubeck and Cesa-Bianchi (2012), for any non-

increasing sequence {ηt}Tt=1 we have

T∑
t=1

K∑
k=1

pt,k ℓ̃t,k ≤
T∑
t=1

ηt
2

K∑
k=1

pt,k ℓ̃
2
t,k +

T∑
t=1

ℓ̃t,∗ +
logK

ηT

≤
T∑
t=1

ηt
2

K∑
k=1

ℓ̃t,k +

T∑
t=1

ℓ̃t,∗ +
logK

ηT

Recall that ℓt,at =
∑K

k=1(pt,k + γt)ℓ̃t,k. Then,

RT =

T∑
t=1

ℓt,at −
T∑
t=1

ℓt,∗ =

T∑
t=1

K∑
k=1

(pt,k + γt)ℓ̃t,k −
T∑
t=1

ℓt,∗

≤
T∑
t=1

(ηt
2
+ γt

) K∑
k=1

ℓ̃t,k +
T∑
t=1

(
ℓ̃t,∗ − ℓt,∗

)
+

logK

ηT

Hence, to bound RT , it suffices to bound
∑T

t=1(
ηt
2 + γt)

∑K
k=1 ℓ̃t,k and

∑T
t=1(ℓ̃t,∗ − ℓt,∗).

Step II: bounding the CVaR of the two terms respectively
Suppose 0 ≤ αt,k ≤ 1 for any t ∈ [T ], k ∈ [K]. Since exp(x/(1+λ)) ≤ 1+x,∀0 ≤ x ≤ 2λ

and 0 ≤ 2γtαt,kℓt,atI{at = k}/pt,k ≤ 2γt/pt,k, for any t ∈ [T ], k ∈ [K]

exp
(
2γtαt,k ℓ̃t,k

)
= exp

(
2γtαt,k

ℓt,atI{at = k}
pt,k(1 + γt/pt,k)

)
≤ 1 + 2γtαt,k

ℓt,atI{at = k}
pt,k

= 1 + 2γtαt,k ℓ̂t,k

Using the inequality, one can further derive

exp
(
2γTαt,k ℓ̃t,k

)
= exp

[
γT
γt

log
(
exp(2γtαt,k ℓ̃t,k)

)]
≤ exp

(
γT
γt

log(1 + 2γtαt,k ℓ̂t,k)

)
≤ 1 + 2γTαt,k ℓ̂t,k
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The last inequality sign follows by x log(1 + y) ≤ log(1 + xy), ∀x ∈ [0, 1], y ∈ [0,∞). Now
multiplying the above two inequalities with respect to k ∈ [K] yields

exp

(
2γt

K∑
k=1

ℓ̃t,k

)
≤

K∏
k=1

(1 + 2γtℓ̂t,k) = 1 + 2γt

K∑
k=1

ℓ̂t,k

exp

(
2γT

K∑
k=1

αt,k ℓ̃t,k

)
≤

K∏
k=1

(1 + 2γTαt,k ℓ̂t,k) = 1 + 2γT

K∑
k=1

αt,k ℓ̂t,k

where the first inequality assumes αt,k ≡ 1 and both equality signs hold as ℓ̂t,k ̸= 0 iff
at = k. Taking the expectation of above two inequalities we obtain

E

[
exp

(
2γt

K∑
k=1

ℓ̃t,k

)∣∣∣∣Ft−1

]
≤ 1 + 2γt

K∑
k=1

ℓt,k ≤ exp

(
2γt

K∑
k=1

ℓt,k

)

E

[
exp

(
2γT

K∑
k=1

αt,k ℓ̃t,k

)∣∣∣∣Ft−1

]
≤ 1 + 2γT

K∑
k=1

αt,kℓt,k ≤ exp

(
2γT

K∑
k=1

αt,kℓt,k

)
Multiplying them with respect to t ∈ [T ] yields

EVaR1−α

(
2

T∑
t=1

γt

K∑
k=1

(
ℓ̃t.k − ℓt,k

))
≤ log

1

α

EVaR1−α

(
2γT

T∑
t=1

K∑
k=1

αt,k

(
ℓ̃t,k − ℓt,k

))
≤ log

1

α

Here by letting αt,k = I{k = ∗} we obtain EVaR1−α(2γT
∑T

t=1(ℓ̃t,∗ − ℓt,∗)) ≤ log 1
α . Recall

that EVaR is an upper bound of CVaR (Ahmadi-Javid, 2012), we yield bounds for the
CVaR of the two terms.

Step III: summing
In the horizon known case, by letting ηt = η and γt = γ we yield

CVaR1−α(RT ) ≤
(

η

4γ
+

1

2

)(
2γKT + log

1

α

)
+

1

2γ
log

1

α
+

logK

η

=
ηKT

2
+

logK

η
+ γKT +

1

2γ
log

1

α
+

(
η

4γ
+

1

2

)
log

1

α

In the anytime case, by letting ηt = η1/
√
t and γt = γ1/

√
t and following

∑T
t=1 1/

√
t ≤∫ T

0 1/
√
tdt = 2

√
T we yield

CVaR1−α(RT ) ≤
(

η1
4γ1

+
1

2

)(
4γ1K

√
T + log

1

α

)
+

√
T

2γ1
log

1

α
+

√
T logK

η1

= η1K
√
T +

√
T logK

η1
+ 2γ1K

√
T +

√
T

2γ1
log

1

α
+

(
η1
4γ1

+
1

2

)
log

1

α

By substituting the values we complete the proof.
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Algorithm 4: Exp4-IX

Input: {ηt}Tt=1, {γt}Tt=1

Initialization: L̃0(n) = 0, ∀n ∈ [N ]
for t = 1, . . . , T do

qt(n)← exp(−ηtL̃t−1(n))∑N
n=1 exp(−ηtL̃t−1(n))

,∀n ∈ [N ]

pt,k ←
∑N

n=1 ξt,k(n)qt(n),∀k ∈ [K]
Sample at ∼ pt = (pt,1, . . . , pt,K)

L̃t(n)← L̃t−1(n) + ξt(n)
T ℓ̃t, ∀n ∈ [N ]

end

The result for the adversarial setting can
be generalised to the contextual and non-
stationary cases with little effort. In the
setting of bandit with expert advice, the
modified version of Exp4 (Auer et al., 1995)
that includes implicit exploration yields
the Exp4-IX algorithm (see Algorithm 4).
Similar to the adversarial case, Exp4-IX
matches the expected regret

√
2KT logN

and 2
√
KT logN of Exp4 in the horizon-

known and anytime cases (Bubeck and
Cesa-Bianchi, 2012), respectively.

Theorem 4 For Algorithm 4 with ηt =
√

2 logN
KT and γt =

√
log 1

α
2KT , we have:

CVaR1−α(RT ) ≤
√

2KT logN +

√
2KT log

1

α
+

1

2

√
logN log

1

α
+

1

2
log

1

α

For Algorithm 4 with ηt =
√

logN
Kt and γt =

1
2

√
log 1

α
Kt , we have:

CVaR1−α(RT ) ≤ 2
√

KT logN + 2

√
KT log

1

α
+

1

2

√
logN log

1

α
+

1

2
log

1

α

Proof Denote ∗ as the optimal expert. By the standard analysis for Exp3 of Bubeck and
Cesa-Bianchi (2012), for any non-increasing sequence {ηt}Tt=1 we have

T∑
t=1

K∑
k=1

pt,k ℓ̃t,k ≤
T∑
t=1

ηt
2

N∑
n=1

qt(n)

(
K∑
k=1

ξt,k(n)ℓ̃t,k

)2

+

T∑
t=1

K∑
k=1

ξt,k(∗)ℓ̃t,k +
logN

ηT

Following Jensen’s inequality

N∑
n=1

qt(n)

(
K∑
k=1

ξt,k(n)ℓ̃t,k

)2

≤
N∑

n=1

qt(n)
K∑
k=1

ξt,k(n)ℓ̃
2
t,k =

K∑
k=1

pt,k ℓ̃
2
t,k ≤

K∑
k=1

ℓ̃t,k

Recall that ℓt,at =
∑K

k=1(pt,k + γt)ℓ̃t,k. Then

RT =
T∑
t=1

ℓt,at −
T∑
t=1

K∑
k=1

ξt,k(∗)ℓt,k =
T∑
t=1

K∑
k=1

(pt,k + γt)ℓ̃t,k −
T∑
t=1

K∑
k=1

ξt,k(∗)ℓt,k

≤
T∑
t=1

(ηt
2
+ γt

) K∑
k=1

ℓ̃t,k +

T∑
t=1

K∑
k=1

ξt,k(∗)
(
ℓ̃t,k − ℓt,k

)
+

logN

ηT

By a similar argument as in Theorem 3 where αt,k = ξt,k(∗) and substituting the values we
complete the proof.
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Algorithm 5: Exp3-SIX

Input: {ηt}Tt=1, {γt}Tt=1, {βt}Tt=1

Initialization: p1,k = 1/K,∀k ∈ [K]
for t = 1, . . . , T do

Sample at ∼ pt = (pt,1, . . . , pt,K)

vt+1,k ←
pt,k exp(−ηtℓ̃t,k)∑K

k=1 pt,k exp(−ηtℓ̃t,k)
,∀k ∈ [K]

pt+1,k ← (1−βt)vt+1,k+βt/K,∀k ∈ [K]

end

In the setting of tracking the best se-
quence, the modified version of the shared
algorithm in Cesa-Bianchi et al. (2012) that
includes implicit exploration yields Exp3-
SIX (see Algorithm 5). It is worth noting
that explicit exploration is also included in
the algorithm due to technical need. This
scenario is more complicated so that addi-
tional logarithmic term occur in the bound.
Moreover, proposing anytime parameters
with good theoretical guarantees remains
open.

Theorem 5 For Algorithm 5 with βt =
S

T−1 , ηt =

√
2S
KT log eKT

S , and γt =

√
log 1

α
2KT , where

S = S + 1, we have:

CVaR1−α(RT ) ≤
√

2KTS log
eKT

S
+

√
2KT log

1

α
+

1

2

√
S log

eKT

S
log

1

α
+

1

2
log

1

α

Proof Since exp(−x) ≤ x2/2− x+ 1, ∀x ≥ 0, we have

K∑
k=1

pt,k ℓ̃t,k ≤ −
1

ηt

(
K∑
k=1

pt,k exp
(
−ηtℓ̃t,k

)
− 1

)
+

ηt
2

K∑
k=1

pt,k ℓ̃
2
t,k

≤ − 1

ηt
log

(
K∑
k=1

pt,k exp
(
−ηtℓ̃t,k

))
+

ηt
2

K∑
k=1

ℓ̃t,k

The second inequality sign holds by log x ≤ x− 1, ∀x > 0. One may find, for any k ∈ [K]

− 1

ηt
log

(
K∑
k=1

pt,k exp
(
−ηtℓ̃t,k

))
= − 1

ηt
log

pt,k exp
(
−ηtℓ̃t,k

)
vt+1,k

= ℓ̃t,k −
1

ηt
log

pt,k
vt+1,k

where the RHS is seemingly dependent on k but essentially not. Thus, for any distribution
qt = (qt,1, . . . , qt,K) over [K], we have

K∑
k=1

pt,k ℓ̃t,k −
K∑
k=1

qt,k ℓ̃t,k ≤ −
1

ηt

K∑
k=1

qt,k log
pt,k
vt+1,k

+
ηt
2

K∑
k=1

ℓ̃t,k

Denote J∗
t as the best sequence. Then, by the analysis of Theorem 2 in Cesa-Bianchi et al.

(2012), we obtain:

T∑
t=1

K∑
k=1

pt,k ℓ̃t,k −
T∑
t=1

ℓ̃t,J∗
t
≤

T∑
t=1

ηt
2

K∑
k=1

ℓ̃t,k +
T∑
t=2

1

ηt−1
log

1

1− βt

+
S

ηT
log

K(1− βT )

βT
+

1

ηT
logK
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Recall that ℓt,at =
∑K

k=1(pt,k + γt)ℓ̃t,k. Then

RT =
T∑
t=1

ℓt,at −
T∑
t=1

ℓt,J∗
t
=

T∑
t=1

K∑
k=1

(pt,k + γt)ℓ̃t,k −
T∑
t=1

ℓt,J∗
t

≤
T∑
t=1

(ηt
2
+ γt

) K∑
k=1

ℓ̃t,k +

T∑
t=1

(
ℓ̃t,J∗

t
− ℓt,J∗

t

)
+

T∑
t=2

1

ηt−1
log

1

1− βt
+

S

ηT
log

K(1− βT )

βT
+

1

ηT
logK

By a similar argument as in Theorem 3 where αt,k = I{J∗
t = k}, substituting the values,

and −x log x− (1− x) log(1− x) ≤ x log(e/x), ∀x ∈ (0, 1) we complete the proof.

4. Empirical Evaluation

We validate our analyses in two scenarios. In the following content, without special specifi-
cation, CVaR-regret refers to the CVaR of regret at level 0.95. In each setting of Scenario 1
and 2, we repeat for 500 and 100 times and adopt bootstrapping with size 5,000 and 1,000
respectively to estimate the expected regret and CVaR-regret with their standard errors.

4.1. Scenario 1: Bandit with Low Gains

We set K = 10 and generate the gains of all arms from independent Bernoulli trials, which
is a frequent scenario in Internet advertising. The mean of the first arm is set as 0.1 and
the other 9 arms are evenly divided into 3 groups with means 0.05, 0.02, and 0.01, which is
the same as Scenario 2 of Garivier and Cappé (2011). We firstly tuned the exploration rate
ρ for UCB and MOSS in the case T = 105, as illustrated in Figure 1(a). In the Bernoulli
scenario, the CVaR-regret of UCB is guaranteed to be logarithmic when ρ ≥ 1. Empirically
the CVaR-regret sharply drops before ρ reaches the value around the threshold and then
slowly rises. MOSS shows a similar pattern while the CVaR-regret is more stable with
large exploration rate. We then test tuned UCB, MOSS, and Exp3-IX with its anytime
version under different horizons, where the results are shown in Figures 1(b) and 1(c). The
parameters ηt and γt of Exp3-IX in the experiments are as proposed in Theorem 3. It is in
line with our expectations that CVaR-regret and expected regret are of Θ(log T ) and Θ(

√
T )

in the stochastic and adversarial settings and the CVaR-regret suffers a greater factor.
We also consider the case T = 104 to illustrate how CVaR-regret varies with respect

to α in the adversarial case, as demonstrated in Figure 1(d). Here without implicit explo-
ration (IX) refers to setting γt = 0, where the Exp3-IX boils down to Exp3. Recall that
CVaR0(X) = E[X], thus the CVaR-regret corresponding to α = 1 is the expected regret. It
can be observed that Exp3 enjoys a lower expected regret while suffering a higher variability.

4.2. Scenario 2: Non-stationary Bandit

Inspired by Neu (2015), we again generate the losses of all arms from independent Bernoulli
trials but reduce the number of arms to 2. The means of the first and second arms are set
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Figure 1: Experiments in the Scenario 1

as 0.5+∆ and 0.5−∆ for rounds t ≤ T
2 and 0.5− 4∆ and 0.5+∆ for rounds t > T

2 , which
guarantees the second arm to be the best one up to the first half of the game while the first
arm eventually becomes the leader. We set T = 106,∆ = 0.1 and test the performance of
Exp3-IX with different parameters, where η and γ are initially set as proposed in Theorem 3
and the multiplier is varied between 10−2 and 102. The results are presented in Figures 2(a)
and 2(b), where the parameters we propose almost minimize the CVaR-regret. Remarkably,
the data point closest to the left of base parameter in Figure 2(b) adopts the parameter
proposed by Neu (2015), which is inferior to our choice. Empirically larger values of ηt and
γt lead to a better performance while the gap shrinks with respect to the horizon.

5. Conclusion

We presented the analyses of the newly-introduced CVaR-regret for stochastic and non-
stochastic MAB algorithms, which match the results of the traditional expected regret
framework and yield bounds (nearly-)optimal up to constant. For UCB, the exploration
that guarantees a logarithmic growing expected regret is sufficient for governing the tail
risk. The case for MOSS is more complicated, where extra exploration needs possibly to
be implemented to cope with the worst instance. For Exp3-IX, we recommend the implicit
exploration rate γt to be associated with the selected level α and reveal that the implicit
exploration controls the tail risk at the cost of suffering a larger expected regret.
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Figure 2: Experiments in the Scenario 2
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exploration in bandit problems with side observations. In NeurIPS, 2014.

Prashanth L.A., Krishna Jagannathan, and Ravi Kolla. Concentration bounds for CVaR
estimation: The cases of light-tailed and heavy-tailed distributions. In ICML, 2020.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6:4–22, 1985.

Odalric-Ambrym Maillard. Robust risk-averse stochastic multi-armed bandits. In ALT,
2013.

Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic
bandits. In NeurIPS, 2015.
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