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Abstract

Due to the ongoing coronavirus (COVID-19) pandemic, an unprecedented amount of SARS-
CoV-2 sequence data is available. The scale of this data has out-paced traditional methods
for its analysis, while machine-learning approaches aimed at clustering and classification of
SARS-CoV-2 variants is becoming an attractive alternative. Since the SARS-CoV-2 genome
is highly dimensional, considering the much smaller spike region can save a great deal of
processing. As the spike protein mediates the attachment of the coronavirus to the host
cell, most of the newer and more contagious variants can be characterized by alterations to
the spike protein; hence it is often sufficient for characterizing the different SARS-CoV-2
variants. Another important consideration is to have a fast feature embedding generation,
which is the subject of this work.

Applying any machine learning (ML) model to a biological sequence requires first trans-
forming it into a fixed-length (numerical) form. While there exist several compact embed-
dings for SARS-CoV-2 spike protein sequences, the generation process is computationally
expensive since the features, added to the resulting vectors, are indexed in a näıve fashion.
To solve this problem, we propose a fast and alignment-free hashing-based approach to
design a fixed-length feature embedding for spike protein sequences, called Hashing2Vec,
which can be used as input to any standard ML model. Using real-world data, we show
that the proposed embedding is not only efficient to compute but also outperforms current
state-of-the-art embedding methods in terms of classification accuracy. In terms of runtime,
we achieve up to a 99.8% improvement in the Hashing2Vec-based embedding generation as
compared to the baselines on a set of 7K spike amino acid sequences. It also outperforms
the baselines on this data in terms of predictive performance and achieves accuracy and
ROC-AUC scores of 86% and 84.4%, respectively.

Keywords: COVID-19, SARS-CoV-2, Sequence Classification, Spike Sequence, Hashing,
k-mers, Feature Embedding

1. Introduction

The COVID-19 disease caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has had a lasting global impact. It has infected almost 1.36 million people
from 219 countries as of April 2021 Uyangodage et al. (2021). According to a recent report
(June 2022) by the centers for disease control and prevention (CDC) a total of 86, 379, 937
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cases are reported in the United States alone. With the pandemic levels of this disease, an
unprecedented amount of SARS-CoV-2 genomic sequencing data has been collected and is
still ongoing. Such data is important for gaining a deeper understanding of the disease,
which will help researchers to advise preventive measures and minimize its effects.

The SARS-CoV-2 genome, depicted in Figure 1, is composed of various regions that
code for different proteins. Of these proteins, the spike (S) protein is notable because it is
responsible for the attachment of the virus to the host cell membrane. Because of this, the
mutation rate within the spike region is elevated compared to the remaining regions, as
selection pressure for increased transmissibility is the driving force behind the emergence
of new variants Harvey et al. (2021). As a result, many variants are characterized by
particular mutations in the spike region, hence the spike protein often suffices to provide
the necessary information for SARS-CoV-2 variant classification.

Figure 1: The SARS-CoV-2 genome, of roughly 30K base pairs in length, codes for both
structural (S, E, M and N) and non-structural proteins (ORF1ab). Among the structural
proteins, the S (spike), comprising roughly 1273 amino acids (see inset) is responsible for
attaching the virus to the host cell membrane. Increased viral transmissibility is a result of
advantageous mutations in the spike region.

Despite the savings in processing that considering only the spike protein affords, the
number of sequences (millions) is several orders of magnitude beyond what can be handled
by more traditional methods for analyzing sequencing data. As a result, machine learning
(ML) approaches have begun to become an attractive alternative — many of the state-of-
the-art variant classification and clustering methods being ML approaches Kuzmin et al.
(2020); Ali et al. (2021b, 2022d, 2021a); Tayebi et al. (2021). Designing a fixed-length
numerical representation (also called embedding) of such sequences is an important step in
an ML-based classification pipeline Hu et al. (2022); Ali et al. (2022c); Ali (2022); Ali et al.
(2021c); Ullah et al. (2020). Many existing methodologies are dealing with this conversion,
such as Spike2Vec Ali and Patterson (2021), PWM2Vec Ali et al. (2022a) and string ker-
nel Farhan et al. (2017); Ali et al. (2022b, 2021d). Alignment-based approaches are among
the more computationally expensive due to the need for multiple sequence alignment op-
erations as a preprocessing step Chowdhury and Garai (2017). Conversely, alignment-free
approaches such as Spike2Vec generate a feature vector based on k-mers frequencies for a
given sequence, while PWM2Vec uses k-mers weights to create the embedding. Although
the existing embedding techniques yield promising classification results, they are still com-
putationally costly to generate, especially for very long sequences (and large k). This is
because they index the many features (e.g., k-mers), in building the resulting vector, in a
näıve and inefficient fashion. Therefore, to lower the computational overhead while keeping
the classification performance high, we proposed a hashing-based embedding technique.

Hashing is a procedure for mapping data to fixed-size values. These values are treated
as identifiers for the corresponding inputs. Hashing is a favorable technique for storing
and retrieving data due to fast searches. Numerous methods use the underlying concept of
hashing, such as bloom filters. A bloom filter is a hashing-based space-efficient probabilistic
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data structure used to verify the presence of an element (e.g., a k-mer) in a set. Its space
efficiency is due to using only bits to store these elements, but it can yield false-positive
results if the hash function output overlaps for different input elements. The “counting”
variant of a bloom filter stores elements along with their frequencies, supporting the deletion
operation (by setting the frequency of an element to 0). Our approach uses a hash function
— the Fowler-Noll-Vo (FNV) hash function to be precise — and keeps track of frequencies,
but differently, to generate a feature vector that is amenable to downstream analysis with
ML approaches, unlike a bloom filter, which is just a data structure to be used directly.

In summary, our contributions in this paper are the following:

1. We propose a fast, alignment-free, and efficient embedding method, called Hashing2Vec, which
quickly computes a low dimensional numerical embedding for biological sequences.

2. We show that the proposed embedding method is easy to compute and can speed up the
embedding generation time by up to 99.8% as compared to the baselines.

3. We also show that Hashing2Vec is efficient in terms of predictive performance on real-world
SARS-CoV-2 spike sequence data using different machine learning classifiers. It outperforms
the baselines and achieve up to 86% and 84.4% accuracy and ROC-AUC on a set of 7K spike
amino acid sequences, respectively.

4. Using a t-distributed stochastic neighbor embedding (t-SNE) based visualization, we show
that the overall structure of Hashing2Vec is not so different from the baseline embeddings.

The rest of the paper is organized as follows: The literature related to SARS-CoV-2
sequence classification is given in Section 2. Section 3 outlines the details of our proposed
model along with existing embedding approaches (baselines). A description of the dataset
used for experiments, and the evaluation metrics are discussed in Section 4. The results of
these experiments are highlighted in Section 5, followed by Section 6 which concludes the
paper and discusses future prospects.

2. Related Work

More traditional methods for analyzing sequencing data typically employ a phylogenetic ap-
proach Minh et al. (2020). However the number of sequences currently available for viruses
such as SARS-CoV-2 (millions) is several orders of magnitude beyond the capabilities of
such methods, making machine learning (ML) approaches, such as sequence classification,
a more attractive alternative.

Sequence classification is a well-researched issue in bioinformatics Krishnan et al. (2021).
Several alignment-based Kuzmin et al. (2020); Ali et al. (2022a) and alignment-free Ali and
Patterson (2021) embedding approaches have been proposed recently for ML tasks such
as classification and clustering. In Kuzmin et al. (2020), authors used a straightforward
approach called One-Hot-Encoding (OHE) to generate the numerical representation for
biological sequences, but the approach is not scalable due to the very high dimensional-
ity of the feature vector. The authors in Ali et al. (2022a) generate feature embeddings
for spike sequences using a position weight matrix (PWM) based method. However, one
disadvantage is that it only functions for aligned sequences. The use of k-mers counts
for phylogenetic applications was first explored in Blaisdell (1986), which proposed con-
structing accurate phylogenetic trees from several coding and non-coding nDNA sequences.
The k-mers based approach is also used for sequence analysis in metagenomics Wood and
Salzberg (2014). An alignment-free k-mers based approach for classifying SARS-CoV-2
sequences was proposed in Ali and Patterson (2021).
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Although k-mers-based approaches achieve reasonable performance, their applications
are inherently limited due to sparsity, and accurate k-mers calculation challenge for sta-
tistical methods. To counter this caveat, the authors in Singh et al. (2017) proposed the
gapped k-mer.

Utilizing some idea of the similarity between biological sequences to create a kernel
matrix Farhan et al. (2017); Ali et al. (2022b) is also used for classifying biological sequences.
The quadratic (O(n2)) memory cost of this method makes it nearly impossible to hold the
kernel matrix in memory when n is large. In Shen et al. (2018), authors employ a neural
network to extract the features using the Wasserstein distance (WD). The embedding
generation has applications in many domains, such as in Hu et al. (2022), authors proposed
backward compatible embedding for product recommendations. Feature embedding is an
integral part of any machine learning-based solution.

Experiments on metagenomics datasets containing labels showed that Locality Sensi-
tive Hashing (LSH) Shi and Chen (2019) can shorten training times for the model and
achieve greater accuracy than competing approaches. The authors of Hash2Vec Argerich
et al. (2016) have proposed a hash function to generate a (approximate) word embedding
for language processing. The approximate nature of Hash2Vec allows for collision in the
resultant vectors, which degrades the performance of the embedding. Authors in Laehne-
mann et al. (2016) demonstrated the use of bloom filters for error correction in raw read
data to assist a de novo assembly. Authors in Ellis et al. (2019) use bloom filters to iden-
tify potentially overlapping reads to attain a less expensive all-to-all alignment. However,
bloom filters have the disadvantage that collisions might happen.

3. Methodological Framework

This section discusses the existing systems available for sequence embedding, and we have
used them as baseline systems for our experiments. Moreover, it also talks about our
proposed approach in detail.

3.1. Efficient But Costly Baselines

There are several newly proposed approaches to create fixed-length numerical embeddings
given spike sequences. They are expensive to produce even while their predictive perfor-
mance is efficient. We start by discussing those methods in this section.

3.1.1. Spike2Vec Ali and Patterson (2021)

This method aims to provide numerical embedding of the given input spike sequences to
enable the application of ML models. Initially, it generates k-mers of the given spike
sequence, as k-mers are known to preserve the ordering information of the sequence.

Definition 1 (k-mers) It is referred to as a set of (consecutive) amino acids (also called mers) of
length k for any given sequence (also called nGram in the NLP domain).

The total number of k-mers generated for a sequence of length N is N − k + 1.
The Spike2Vec computes the frequency vector based on k-mers to map the k-mers

alphabetical information into a numerical representation. This vector consists of the counts
of occurrences of each k-mer of the sequence. The workflow of Spike2Vec is shown in
Figure 2. The figure illustrates that for a given sequence with alphabet Σ of amino acids,
its k-mers are computed and a feature vector of size |Σ|k is created to hold the k-mers
frequencies (Figure 2 (b)). At the same time we use sliding window to generate k-mer



Hashing2Vec

for the spike sequence as shown in Figure 2 (c) and (d). Then for each k-mer, the k-mers
counts are calculated Figure 2 e), and its respective bin in the feature vector is searched (bin
searching see Defination 2) and updated with the frequency count. But this bin searching
is an expensive operation, especially for long sequences, and high k. Our experiments are
performed using k = 3.

Definition 2 (Bin searching) Given a vector for all possible k-mers (|Σk|), each k-mer in the
spike sequence is assigned to a bin in feature vector. Since we do not (initially) know the position
of bin for a specific k-mer, we need to perform searching. This problem is called bin searching.

Figure 2: Flow chart of Spike2Vec embedding.

3.1.2. PWM2Vec Ali et al. (2022a)

PWM2Vec is another approach for converting biological sequences to numerical form. It
takes the sequence as input and yields the feature embedding as output. It follows the
underlying concept of k-mers too, but rather than using constant frequency values of k-
mers, it assigns weights to each amino acid of the k-mers. The weight determination of an
amino acid is based on its location in a k-mer position weight matrix (PWM). PWM2Vec
preserves the ordering information and considers amino acids’ relative importance. We used
k = 9 for this embedding in our experiments, which is decided using standard validation
set approach Devijver and Kittler (1982).

3.1.3. String Kernel Farhan et al. (2017)

String kernel provides a way to measure the similarity between two sequences. The simi-
larity is determined by measuring the number of matched and mismatched k-mers between
two sequences, or if two k-mers are at a distancem, then they are considered to be matched.
Furthermore, this approach proposed a closed-form solution for the size of the intersection
of d-mismatch neighborhoods, which is a computationally efficient method. Moreover, it
followed locality-sensitive hashing theory to estimate k-mers of two sequences at distance
m, which further reduced the computational overhead. This methods design a kernel ma-
trix of length q × q, where q is the total number sequences in the data. We use the kernel
matrix as input to kernel PCA to get the principal components based feature embeddings.
Our experiments are carried out with k = 3 in this case. Since string kernel requires storing
a kernel matrix, it have problem of storage overhead as q increases.
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3.1.4. Wasserstein Distance Guided Representation Learning
(WDGRL) Shen et al. (2018)

WDGRL is an unsupervised domain adoption technique. It uses the source and target
encoded distributions to determine the Wasserstein distance (WD), which is utilized for
extracting features from input data with the help of neural networks. It aims to determine
the representation by minimizing the estimated WD and optimizing the feature extractor
network. It uses the standard one-hot encoded (OHE) vector of a sequence as input. The
OHE Kuzmin et al. (2020) is an algorithm for creating a fixed-length numerical represen-
tation of sequences. Due to WDGRL being based on a neural network, its requirement for
training data can be expensive.

3.1.5. Spaced k-mers Singh et al. (2017)

Feature vectors for sequences based on k-mers frequencies are very large-sized and sparse,
and their size and sparsity negatively impact the sequence classification performance.
Spaced k-mers introduced the concept of using non-contiguous length k sub-sequences
(g-mers) for generating compact feature vectors with reduced sparsity and size. Given a
spike sequence as input, it first computed g-mers. From those g-mers, we compute k-mers,
where k < g. We used k = 4 and g = 9 to perform the experiments. The size of the
gap is determined by g− k. But this method still goes through computationally expensive
operation of bin searching.

3.1.6. Auto-Encoder Xie et al. (2016)

This approach employs a deep neural network to learn the feature representation of data.
It follows the technique of non-linear mapping from data space X to a lower-dimensional
feature space Z, where it iteratively optimizes the objective. It takes the sequences as
input. For our experiments, we have used a 2 layered network with an ADAM optimizer
and MSE loss function.

3.1.7. SeqVec Heinzinger et al. (2019)

This work has proposed a way to represent the protein sequences in continuous vectors by
using the language model named ELMO (Embeddings from Language Models) Sarzynska-
Wawer et al. (2021). It captures the biophysical properties from the unlabeled data
UniRef50 and creates the embeddings. This process is known as SeqVec (Sequence-to-
Vector). It assigns the embeddings to a word by considering the context of a word.

3.2. Proposed Model: Hash the k-mers

Our goal in this paper is to generate numerical embeddings (ϕ) for spike sequences. A spike
sequence is a long string of amino acids (characters). Let Σ represent the alphabet (the
set of all unique amino acids comprised of ACDEFGHIKLMNPQRSTVWXY ) and k is the
length of a k-mer. The total number of k-mers of length k created from the given spike
sequence will be |Σ|k. Our model (called Hashing2Vec) uses a hashing-based technique
for embedding, with a hash table size of m to reduce the bin searching overhead (see
Definition 2). Moreover, the overall pipeline of Hashing2Vec for a given sequence is shown
in Algorithm 1. For a given sequence s, k-mer length k and hash table size m, it returns
the exact feature embedding of the sequence. The first step involves computing unique
k-mers of size k in a spike sequence of length n. In the next step, we create a dictionary
(local hash value to k-mers within a spike sequence) of size d, where d ≤ n − k + 1 (since
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there will be repetitive k-mer in a sequence) and store the counts of each unique k-mer in
the dictionary. The next step involves computing the (global) hash value for all possible
k-mers in the data and assigning them a hash table position. For each (local) k-mer within
a spike sequence, we use its global hash value and place its count in the hash table (we
use this hash table as a feature embedding ϕ). The dimension of ϕ is the size m of the
hash table. The final step is to use Principal Component Analyses (PCA) to get a low
dimensional representation of ϕ. Each step is explained in more detail below:

Step 1: Generating k-mers:

To generate the fixed-length embedding for a given spike sequence, we generate all possible
k-mers (see Definition 1) for a given spike sequence. An example of generating k-mers for
a given spike sequence is shown in Figure 2(d).

Remark 3 For Hashing2Vec embedding generation, we took k = 3, which is decided using standard
validation set approach Devijver and Kittler (1982).

Step 2: Counting the k-mers:

After creating the k-mers, we count the number of each k-mer by storing the unique k-mers
in a dictionary (this can be thought of as “local” hashing of the k-mers within a specific
spike sequence). After getting the k-mers count, the next step is to design an embedding
ϕ, where each unique k-mer is assigned a bin that will contain its count as the numerical
value. The k-mers that are not present in a given spike sequence will have zero value in ϕ.

To find the optimal bin for the k-mers in ϕ, a brute-force method is used to search the
embedding to see which bin a specific k-mer belongs to. For each k-mer in a given spike
sequence, this step must be repeated. In the worst case, this bin search for the relevant
k-mers position can end up being an expensive process. Therefore, we intend to solve the
problem of bin searching (see Definition 2) of ϕ in this paper, after the k-mers frequencies
computation is done. Note that bin searching is not an optimization problem.

Remark 4 Note that we are not concerned with the k-mers counting algorithm, rather our focus
is to improve the ϕ generation as a result of k-mers counting (i.e., improving the traditional bin
searching mechanism). There are many efficient and fast methods for k-mers counting, however,
discussing (and using) those methods are out of the scope to this research article.

Step 3: Assign Unique ID to k-mers Using Hashing:

We propose to use hashing to solve the bin searching problem. More specifically, we apply
hashing (we refer to then as “Global” hash values) on the k-mers using a popular hash
function, called Fowler–Noll–Vo Fowler et al. (2011), to assigns a unique ID (hash table
entry) to each k-mer.

Definition 5 (Fowler–Noll–Vo (FNV)) FNV is a non-cryptographic commonly utilized deter-
ministic hash function.

FNV (FNV-1a 32bit specifically) works by initializing a hash variable. Then it performs
two major operations for each byte of data. First, an XOR of the byte and the hash is
performed, and then the result is multiplied with a particular prime number. After mapping
the k-mers to consistent hash values, we designed a frequency-based feature vector.
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Remark 6 Note that the hash values assigned in Step 3 are different from the dictionary of k-mers
discussed in Step 2 (k-mers counting). In step 2, we are interested in designing a dictionary to
locally count the unique k-mers within a specific spike sequence (which will be different for different
spike sequences). Now, in order to design a general purpose feature embedding for a spike sequence,
we need a “global” hash value for each possible k-mer in all spike sequences, so that any k-mer in
any given spike sequence is mapped to same hash table entry (the resultant feature vector).

For a given spike sequence, we now have a k-mers count (computed in step 2) and
a global hash value (computed using FNV). At the global hash table entry, we place the
k-mer count directly for all k-mers in a given spike sequence. All the other entries in the
hash table will have the value 0. The pseudocode for Hashing2Vec is given in Algorithm 1.

Our experiments show that for k = 3, the optimal hash table size (m) is 404048. The
optimality of m is determined (iteratively) by eliminating the collisions of hash values.
Since the parameter m (hash table size) is a learned parameter, hence it guarantee zero
collisions in the hash table. The value of m is learned by iteratively increasing the hash
table size until each unique k-mer got a unique hash table id. Therefore our created feature
embeddings are exact (not approximate embeddings). Moreover, the learning of m needed
to be done only once in the start and we can then have O(1) time complexity for placing
each k-mers in relevant bins of feature vector (the hash table entry) afterwards for any
number of sequences (hence it could be scaled to any size of data as no bin searching
overhead is required). For Hashing2Vec, we only require one hash function. The resultant
hash table (containing k-mers count) is considered as the final feature vector ϕ. At this
point, for q spike sequences (total number of spike sequences in the data), we get a q ×m
dimensional matrix, where each row corresponds to a numerical representation of a spike
sequence and each column corresponds to a specific k-mer count.

Algorithm 1: Hashing2Vec

Input: Spike Sequence seq, and integer k and m
Output: Feature Vector ϕ based on Hash Values

1 kmers = ∅;
2 ϕ = List(0) × m; // feature embedding vector of length m
3 for i← 1 to |seq| do
4 kmer.append(seq[i : i+ k]); // create k-mers using sliding window

5 end
6 unique kmer, kmer count = createDictionary(kmers); // local hash value

/* create the FNV hash of size m for each k-mer using its count */

7 for i← 1 to |unique kmer| do
8 global hash value = FNV (unique kmer[i],m)

// map k-mer count to hash table for each unique kmer in dictionary

9 ϕ[global hash value] = kmer count[i]

10 end
11 ϕ = PCA(ϕ, 500); // get the first 500 PCA components

12 return(ϕ)

Step 4: Low Dimensional Representation Using PCA:

Since the dimensionality (size) of the hash table (feature embedding ϕ) is very high, we
applied Principle Component Analysis (PCA) Wold et al. (1987) to reduce it. PCA is a
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popular and widely followed technique for the reduction of data dimensionality. For our
experiments, we have chosen the first 500 PCA components.

Hashing2Vec Workflow

The workflow of our proposed model is given in Figure 3. In the first step, we compute
the unique k-mers frequency count for the spike sequence of length n as shown in the left
box of Figure 3 (a), (b) and (c)). The k-mers are generated using a sliding window of
size k. Along with it, a dictionary d is maintained to keep the counts of unique k-mers
in a spike sequence, where the size |d| of the dictionary is |d| ≤ n − k + 1 (since we will
have repeated k-mers in the sequence). Afterward, each unique k-mer in the dictionary d
is passed through the FNV hash function to get a (global) corresponding hash value. The
k-mer frequency count from the dictionary is mapped to the hash table using the respective
computed (global) hash value for each unique k-mer in the dictionary as shown in Figure 3
(d)). Finally, the feature embedding (ϕ) of the sequence is generated using the hash table,
and the length of the feature embedding (ϕ) is m since the size of the hash table is m.

Figure 3: Flow chart of Hashing2Vec based embedding.

4. Evaluation Framework

In this section, we describe our dataset in detail. We also discuss the classifiers and evalua-
tion metrics used for experimentation purposes. In the end, we show a visual representation
of the data to analyze any (hidden) patterns from raw sequences. The datasets used are
as follows,

Spike7k dataset: This dataset consists of SARS-CoV-2 spike sequences extracted from
GISAID 1 along with information about the respective lineages of each sequence. The ex-
tracted data contains 22 coronavirus lineages within 7000 total sequences Ali et al. (2022b).
The detail of each lineage i.e. name (count/distribution), in the dataset is as follow: B.1.1.7
(3369), B.1.617.2 (875), AY.4 (593), B.1.2 (333), B.1 (292), B.1.177 (243), P.1 (194), B.1.1
(163), B.1.429 (107), B.1.526 (104), AY.12 (101), B.1.160 (92), B.1.351 (81), B.1.427 (65),
B.1.1.214 (64), B.1.1.519 (56), D.2 (55), B.1.221 (52), B.1.177.21 (47), B.1.258 (46), B.1.243
(36),and R.1 (32). For this dataset, our classification task is using the lineage as the class la-
bel. Table 1 illustrates demonstrates examples of spike sequences consisting of a long string
of characters, where each character represents an amino acid, and variations/mutations in
these amino acids form different lineages of the coronavirus. This table contains an example
of Alpha, Beta, and Gamma variant sequences along with their respective mutations. The
mutations column refers to amino acids, with their respective mutation position. For ex-
ample, N501Y indicated that the amino acid N was to be replaced by Y at the 501 position
of the sequence to create an alpha variant.

1. https://www.gisaid.org/

https://www.gisaid.org/
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Coronavirus Host dataset: The spike sequences, along with their metadata (genus/
subgenus, infected host, etc), of the clades of the Coronaviridae family are extracted from
ViPR Pickett et al. (2012); Ali et al. (2022a) and GISAID 2, and the spike sequence with
its corresponding host information is utilized to form our Coronavirus Host dataset. The
count of each host (class label) in our dataset is Bats (153), Bovines (88), Cats (123),
Cattle (1), Equine (5), Fish (2), Humans (1813), Pangolins (21), Rats (26), Turtle (1),
Weasel (994), Birds (374), Camels (297), Canis (40), Dolphins (7), Environment (1034),
Hedgehog (15), Monkey (2), Python (2), Swines (558), and Unknown (2). We used a 5558
total number of spike sequences corresponding to 21 unique hosts. For this dataset, our
classification tasks are using hostname as class label.

Sequence Variant Name Lineage Mutations

MFVFLVLL...QPTYGVG... Alpha B.1.1.7 N501Y
MFVFL..N.K..QPTYGVG... Beta B.1.351 K417N,E484K,N501Y
MFVFL..T.K..QPTYGVG... Gamma P.1 K417T,E484K,N501Y

Table 1: An example of sequences for Alpha, Beta, and Gamma variants of coronavirus,
along with their respective changes (marked red).

These two sequence datasets are used to perform experiments on code i5 processor-
based windows 10 system having 2.40 GHz speed and 32 GB memory. Further, the Python
programming language is used to carry out the experiments with 70-30% train and test
split respectively, and average results are reported for 5 runs. Our code and pre-processed
data are available online for reproducibility 3.

4.1. Evaluation Metrics and Classification Algorithms

Support Vector Machine (SVM), Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-
Nearest Neighbors (KNN), Random Forest (RF), Logistic Regression (LR), and Decision
Tree (DT) classifiers are used as baseline models for the sequence classification. The
performance of various models is evaluated using average accuracy, precision, recall, F1
(weighted), F1 (macro), Receiver Operator Characteristic Curve (ROC), Area Under the
Curve (AUC), and training runtime metrics. Furthermore, the one-vs-rest approach is
used to convert the binary evaluation metrics to multi-class ones.

4.2. Data Visualization

The t-distributed stochastic neighbor embedding (t-SNE) Van der Maaten and Hinton
(2008) is utilized to identify any hidden patterns in the data. This method works by
mapping the high dimensional input data into 2D space but preserves the pairwise distance
between data points in high dimensions. This visualization aims to highlight if different
embedding methods introduce any changes to the overall distribution of data. For various
embedding methods, Figure 4 illustrated the t-SNE-based visualization (with variants as
labels as shown in legends) of the Spike7k dataset. We can observe that overall the B.1.1.7
(Alpha) variant forms a single huge group (shown in yellow color) since its representation
in the dataset is larger than other variants. Moreover, we can observe that Hashing2Vec is
able to preserve the structure of the data similar to Spike2Vec, PWM2Vec, Spaced k-mers,
and String kernel. The WDGRL shows a scattered t-SNE plot, which means that the overall

2. https://www.gisaid.org/
3. https://github.com/sarwanpasha/Hashing2Vec

https://www.gisaid.org/
https://github.com/sarwanpasha/Hashing2Vec
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structure of data, in that case, is disturbed, hence the performance of the embeddings will
not be as good compared to other embedding methods (this behavior is also observed in
classification results in the next section, in Table 2).

(a) Spike2Vec (b) PWM2Vec (c) String Kernel (d) Autoencoder

(e) WDGRL (f ) Spaced k-mer (g) Hashing2Vec (h) SeqVec

Figure 4: t-SNE plots using different embeddings for 7000 Spike7k dataset sequences. This
figure is best seen in color.

5. Experimental Result

This section presents the classification results and embedding generation runtime for Hash-
ing2Vec and compares it to several baseline approaches using various evaluation criteria.

5.1. Classification Results

We report the classification results for the proposed and the baseline methods in Table 2
for the Spike7k dataset. From this table, we can observe that the LR model using Hash-
ing2Vec feature vectors outperformed all the other baselines embedding approaches in terms
of average accuracy, precision, recall, F1 (weighted), and F1 (macro), while SVM using
Hashing2Vec-based embedding has the highest ROC-AUC score as compared to other em-
bedding methods. This indicates that the Hashing2Vec embedding approach is the best
performing approach for sequence classification using ML models. Although WDGRL has
a minimum train time, its classification performance, however, is the lowest. One reason
for this behavior is that the WDGRL failed to preserve the overall structure of data in its
embeddings as compared to the other embedding methods (see Figure 4 for visualization
of embeddings). Although the prime goal of Hashing2Vec is to improve the embedding
generation runtime, we can observe that it also outperforms all baselines for all but one
evaluation metric.

Similarly, we also observe the behavior of Hashing2Vec for the Coronavirus Host dataset
and report the results in Table 3. Since the original host classification is done using
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Embedding Algo. Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time
(Sec.)

Spike2Vec Ali
and
Patter-
son
(2021)

SVM 0.855 0.853 0.855 0.843 0.689 0.843 61.112
NB 0.476 0.716 0.476 0.535 0.459 0.726 13.292
MLP 0.803 0.803 0.803 0.797 0.596 0.797 127.066
KNN 0.812 0.815 0.812 0.805 0.608 0.794 15.970
RF 0.856 0.854 0.856 0.844 0.683 0.839 21.141
LR 0.859 0.852 0.859 0.844 0.690 0.842 64.027
DT 0.849 0.849 0.849 0.839 0.677 0.837 4.286

PWM2Vec Ali
et al.
(2022a)

SVM 0.818 0.820 0.818 0.810 0.606 0.807 22.710
NB 0.610 0.667 0.610 0.607 0.218 0.631 1.456
MLP 0.812 0.792 0.812 0.794 0.530 0.770 35.197
KNN 0.767 0.790 0.767 0.760 0.565 0.773 1.033
RF 0.824 0.843 0.824 0.813 0.616 0.803 8.290
LR 0.822 0.813 0.822 0.811 0.605 0.802 471.659
DT 0.803 0.800 0.803 0.795 0.581 0.791 4.100

String Ker-
nel Farhan
et al.
(2017)

SVM 0.845 0.833 0.846 0.821 0.631 0.812 7.350
NB 0.753 0.821 0.755 0.774 0.602 0.825 0.178
MLP 0.831 0.829 0.838 0.823 0.624 0.818 12.652
KNN 0.829 0.822 0.827 0.827 0.623 0.791 0.326
RF 0.847 0.844 0.841 0.835 0.666 0.824 1.464
LR 0.845 0.843 0.843 0.826 0.628 0.812 1.869
DT 0.822 0.829 0.824 0.829 0.631 0.826 0.243

WDGRL Shen
et al.
(2018)

SVM 0.792 0.769 0.792 0.772 0.455 0.736 0.335
NB 0.724 0.755 0.724 0.726 0.434 0.727 0.018
MLP 0.799 0.779 0.799 0.784 0.505 0.755 7.348
KNN 0.800 0.799 0.800 0.792 0.546 0.766 0.094
RF 0.796 0.793 0.796 0.789 0.560 0.776 0.393
LR 0.752 0.693 0.752 0.716 0.262 0.648 0.091
DT 0.790 0.799 0.790 0.788 0.557 0.768 0.009

Spaced k-
mers Singh
et al.
(2017)

SVM 0.852 0.841 0.852 0.836 0.678 0.840 2218.347
NB 0.655 0.742 0.655 0.658 0.481 0.749 267.243
MLP 0.809 0.810 0.809 0.802 0.608 0.812 2072.029
KNN 0.821 0.810 0.821 0.805 0.591 0.788 55.140
RF 0.851 0.842 0.851 0.834 0.665 0.833 646.557
LR 0.855 0.848 0.855 0.840 0.682 0.840 200.477
DT 0.853 0.850 0.853 0.841 0.685 0.842 98.089

Auto-
Encoder Xie
et al.
(2016)

SVM 0.699 0.720 0.699 0.678 0.243 0.627 4018.028
NB 0.490 0.533 0.490 0.481 0.123 0.620 24.6372
MLP 0.663 0.633 0.663 0.632 0.161 0.589 87.4913
KNN 0.782 0.791 0.782 0.776 0.535 0.761 24.5597
RF 0.814 0.803 0.814 0.802 0.593 0.793 46.583
LR 0.761 0.755 0.761 0.735 0.408 0.705 11769.02
DT 0.803 0.792 0.803 0.792 0.546 0.779 102.185

SeqVec Heinzinger
et al.
(2019)

SVM 0.796 0.768 0.796 0.770 0.479 0.747 1.0996
NB 0.686 0.703 0.686 0.686 0.351 0.694 0.0146
MLP 0.796 0.771 0.796 0.771 0.510 0.762 13.172
KNN 0.790 0.787 0.790 0.786 0.561 0.768 0.6463
RF 0.793 0.788 0.793 0.786 0.557 0.769 1.8241
LR 0.785 0.763 0.785 0.761 0.459 0.740 1.7535
DT 0.757 0.756 0.757 0.755 0.521 0.760 0.1308

Hashing2Vec

SVM 0.853 0.858 0.853 0.842 0.685 0.844 10.044
NB 0.598 0.741 0.598 0.637 0.497 0.744 0.375
MLP 0.759 0.763 0.759 0.752 0.554 0.776 10.972
KNN 0.825 0.817 0.825 0.811 0.635 0.805 0.557
RF 0.835 0.842 0.835 0.813 0.642 0.804 4.593
LR 0.860 0.862 0.860 0.847 0.699 0.841 17.719
DT 0.822 0.828 0.822 0.815 0.635 0.812 1.539

Table 2: Classification results for different evaluation metrics using the proposed and base-
line methods for the Spike7k dataset. Best values are shown in bold.

PWM2Vec in Ali et al. (2022a), that is why we are comparing Hashing2Vec to PWM2Vec.
Results illustrates that the RF method corresponding to Hashing2Vec outperforms PWM2Vec
in terms of accuracy, precision, recall, and F1 weighted score, while the SVM of Hashing2Vec
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has the maximum AUC ROC score. Likewise, Hashing2Vec achieves minimum training time
for NB. These results indicate that the Hashing2Vec method has better performance than
PWM2Vec.

Embeddings Algo. Acc. Prec. Recall F1 (Weig.) F1 (Macro) ROC AUC Train Time
(Sec.)

PWM2Vec Ali
et al.
(2022a)

SVM 0.799 0.806 0.799 0.801 0.648 0.859 44.793
NB 0.381 0.584 0.381 0.358 0.400 0.683 2.494
MLP 0.782 0.792 0.782 0.778 0.693 0.848 21.191
KNN 0.786 0.782 0.786 0.779 0.679 0.838 12.933
RF 0.836 0.839 0.836 0.828 0.739 0.862 7.690
LR 0.809 0.815 0.809 0.800 0.728 0.852 274.917
DT 0.801 0.802 0.801 0.797 0.633 0.829 4.537

Hashing2Vec

SVM 0.815 0.825 0.815 0.818 0.725 0.863 5.591
NB 0.588 0.649 0.588 0.583 0.585 0.791 0.146
MLP 0.779 0.783 0.779 0.777 0.483 0.735 43.401
KNN 0.812 0.809 0.812 0.809 0.642 0.817 0.499
RF 0.859 0.859 0.859 0.853 0.735 0.846 5.767
LR 0.573 0.479 0.573 0.493 0.213 0.591 4.638
DT 0.800 0.804 0.800 0.800 0.660 0.840 1.855

Table 3: Classification results for different evaluation metrics using the proposed and base-
line methods for Coronavirus Host dataset. Best values are shown in bold.

5.2. Embeddings Generation Time

To evaluate the computation time for different embedding generations, we report the run-
time in Table 4 for the Spike7k dataset. We can observe that Hashing2Vec takes the lowest
time to generate the feature vectors as compared to the baseline methods. The PWM2Vec
is the second-best while the SeqVec takes the most time for feature vector generation. We
observed the same behavior regarding the embedding generation runtime in the case of
coronavirus host data as well.

We also provide % improvement for Hashing2Vec from PWM2Vec (second best in terms
of runtime) and SeqVec(worst in terms of runtime) using the following expression for the
Spike7k dataset:

% improvement =
RBaseline − RHashing2V ec

RBaseline
× 100 (1)

where RBaseline represents the runtime of baselines PWM2Vec and SeqVec embedding
methods while RHashing2V ec corresponds to the run-time for Hashing2Vec embedding com-
putation. We can observe that Hashing2Vec improves the runtime performance by 68.7%
and 99.8% as compared to PWM2Vec and SeqVec, respectively.

The runtime for computing PWM2Vec and Hashing2Vec with the increasing number
of sequences is shown in Figure 5 for the Spike7k dataset. We can see that Hashing2Vec
significantly outperforms the PWM2Vec (fastest among other embeddings) in terms of
runtime with any number of sequences. Additionally, we can observe that the increasing
runtime trend for Hashing2Vec is very slow as compared to the PWM2Vec, which makes
it more suitable for Big Data.

Overall, we can observe that the proposed embedding, called Hashing2Vec not only
performs slightly better in terms of predictive performance as compared to the baselines,
but it also preserves the overall structure of the data similar to the recently proposed
embedding methods. Moreover, Hashing2Vec can be generated very quickly as compared
to the other methods, making it an ideal choice while dealing with larger-sized datasets
because of its scalability property.
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Embeddings Runtime (Seconds)

Spike2Vec Ali and Patterson (2021) 354.061
PWM2Vec Ali et al. (2022a) 163.257

String Approx. Farhan et al. (2017) 2292.245
WDGRL Shen et al. (2018) 438.188

Spaced k-mers Singh et al. (2017) 12901.808
Auto-Encoder Xie et al. (2016) 181.70052
SeqVec Heinzinger et al. (2019) 32500.19

Hashing2Vec (ours) 51.094

% Improv. of Hashing2Vec from PWM2Vec 68.7%
% Improv. of Hashing2Vec from SeqVec 99.8%

Table 4: Embedding generation runtime for dif-
ferent methods using the Spike7k dataset. Best
value is shown in bold. The percentage improve-
ment of runtime (see Equation (1)) is also given
for Hashing2Vec.
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Figure 5: Runtime for embedding gen-
eration of PWM2Vec and Hashing2Vec
with increasing number of sequences for
the Spike7k dataset. The figure is best
seen in color.

6. Conclusion

We propose an efficient and alignment-free method, called Hashing2Vec, to generate nu-
merical embeddings for biological sequences. We show that Hashing2Vec-based embeddings
are fast to compute and improve the classification results as compared to baselines. We
performed extensive experiments on real-world biological data to validate the model us-
ing different evaluation metrics. Hashing2Vec shows 99.8% improvement in computational
runtime as compared to the baselines for embedding generation using Spike7k data. It also
achieves the maximum 86% accuracy and 84.4% ROC AUC score for the Spike7k data clas-
sification, and the highest 85.9% accuracy and 86.3% ROC AUC score for the Coronavirus
Host data classification as compared with the given baseline models. Future work involves
evaluating the Hashing2Vec for larger sets of sequence data (millions) and also applying
Hashing2Vec to other virus data such as Zika. We also plan to explore deep learning models
for spike sequence classification. Using other alignment-free baseline methods to compare
their performance with Hashing2Vec is another potential future extension.
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