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Abstract

A foundational requirement of a deployed ML model is to generalize to data drawn from a
testing distribution that is different from training. A popular solution to this problem is to
adapt a pre-trained model to novel domains using only unlabeled data. In this paper, we
focus on a challenging variant of this problem, where access to the original source data is
restricted. While fully test-time adaptation (FTTA) and unsupervised domain adaptation
(UDA) are closely related, the advances in UDA are not readily applicable to TTA, since
most UDA methods require access to the source data. Hence, we propose a new approach,
CATTAn, that bridges UDA and FTTA, by relaxing the need to access entire source data,
through a novel deep subspace alignment strategy. With a minimal overhead of storing the
subspace basis set for the source data, CATTAn enables unsupervised alignment between
source and target data during adaptation. Through extensive experimental evaluation on
multiple 2D and 3D vision benchmarks (ImageNet-C, Office-31, OfficeHome, DomainNet,
PointDA-10) and model architectures, we demonstrate significant gains in FTTA perfor-
mance. Furthermore, we make a number of crucial findings on the utility of the alignment
objective even with inherently robust models, pre-trained ViT representations and under
low sample availability in the target domain.

Keywords: Test-Time Adaptation; Robustness; Domain Shifts; Geometric Alignment

1. Introduction

When the assumption that the training and testing data are drawn from the same distri-
bution is violated, the performance of supervised models can drop drastically (Torralba
and Efros, 2011). However, in practice, a deployed model is expected to generalize under
unknown shifts in the data distribution (e.g., from synthetic to real). Consequently, un-
derstanding and improving the generalization of models under such shifts has become an
active area of research (Hoffman et al., 2018; Ganin et al., 2016; Deng et al., 2018). This
problem appears under a variety of formulations in the literature, including domain adap-
tation (Ben-David et al., 2006), domain generalization (Wang and Deng, 2018), few-shot
adaptation (Triantafillou et al., 2021), and adversarial robustness (Chen et al., 2020).
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Security, LLC.
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Figure 1: An overview of the proposed approach that incorporate subspace-based feature
alignment for fully test-time adaptation. At test time, we only assume access
to the trained source model and the subspace approximation of source latent
features.

In this paper, we focus on unsupervised, fully test-time adaptation (TTA), where a de-
ployed model is adapted using unlabeled data from the target domain, without assuming
access to the original source data. This is a practically useful setting, since enabling access
to source data during model deployment requires a large memory footprint for common
datasets (e.g., ImageNet) and can also lead to shortcomings related to privacy and data
usage rights. Existing TTA approaches can be organized based on a) whether data from
the source domain can be accessed during adaptation; b) which parameters of the source
model are updated; and c) whether data from the target domain is labeled or unlabeled.
A closely related problem is unsupervised domain adaptation (UDA), which attempts to an-
ticipate and adapt for distribution shifts between the labeled source data and unlabeled
target data. Despite significant advances in UDA over the last decade, state-of-the-art so-
lutions for TTA do not utilize explicit alignment objectives. This motivates our approach,
CATTAn (Calibrate-by-Aligning for Test Time Adaptation) wherein we show that, by lever-
aging the latent space geometry, we can relax the requirement of source data access, and
enable geometric alignment between source and target data at test-time. While our method
requires access to source data in the form of basis vectors of a subspace spanned by the
source features, it does not store the loadings (or coefficients). Consequently, this neither
affects the memory overhead (the basis set requires less than 2 MB of storage in comparison
to several GBs of training data) nor compromises the privacy needs, since state-of-the-art
deep inversion methods (Behrmann et al., 2019; Yin et al., 2020; Dong et al., 2021) cannot
effectively recover the training data using only features from later layers of a network, let
alone with only the subspace basis. Using extensive empirical studies on several standard
2D image and 3D point cloud benchmarks, for the first time, we find that including unsu-
pervised alignment in the cost function leads to significant performance gains over existing
fully test-time adaptation methods.

Contributions:
(i) We propose a new test-time adaptation approach CATTAn to bridge UDA and TTA, while
not requiring access to full source data;
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(ii) We introduce a simple, post-hoc strategy to perform a distribution shift check after the
model is already adapted to the target. Through this simple detector, we show that we can
recover the source domain performance even after the model is adapted;
(iii) We perform rigorous empirical studies on large-scale vision benchmarks (ImageNet,
DomainNet, OfficeHome,PointDA-10) and network architectures (ResNet50, ViT);
(iv) Our codes will be publicly released https://anonymous.4open.science/r/CATTAn.

Results:
(i) CATTAn produces SoTA results on all benchmarks, outperforming TENT (Wang et al.,
2021), SHOT (Liang et al.), as well as the recent (Mummadi et al., 2021) – ImageNet-C
(+2.1%), Office-home (+2.2%) and Office-31 (+1.7%);
(ii) To demonstrate the generality of our approach, we also conducted experiments on
PointDA-10, a widely adopted 3D point cloud benchmark and observed that CATTAn im-
proves over existing TTA baselines by +3.4%.
(iii) We conduct, for the first time, a FTTA experiment on the large-scale DomainNet (Peng
et al., 2019) dataset, based on self-supervised representations from the recent ViT-based
masked autoencoders (He et al., 2021). We find that CATTAn produces a boost of 1.1% over
the best-performing TTA baseline, and matches the performance of a state-of-the art UDA

approach (Roy et al., 2021);
(iv) We find that the proposed geometric alignment objective is beneficial even when the
target sample size is limited or when the source model was obtained via robust train-
ing (Hendrycks et al., 2020).

2. Fully Test-Time Adaptation

Our goal is to improve the generalization of a model trained on the source dataset {(xs, ys)} ∈
Ds to examples from the target domain {(xt)} ∈ Dt through adaptation under the following
conditions – c1: Ds ̸= Dt; c2: both source and target domain share the same set of labels;
c3: examples from Dt are not labeled; and c4: there is no access to original source data
samples during adaptation.

While this work focuses on unsupervised, fully test-time adaptation, a broad class of
formulations have been considered in the literature for adapting models under distribution
shifts. A popular formulation is conventional transfer learning, which first pre-trains a
source model using data from Ds, and uses labeled examples from Dt to perform end-to-end
fine-tuning or partial adaptation of selected layers in the source network (Donahue et al.,
2014; Yosinski et al., 2014). In contrast, unsupervised domain adaptation (UDA) jointly
infers domain-invariant representations for both labeled source and unlabeled target domain
examples, such that they both can utilize a shared classifier. Similarly, Sun et al. introduced
a test-time training (TTT) protocol based on an auxiliary rotation angle prediction task,
which also uses labeled source and unlabeled target examples.

Motivated by the need for source-free adaptation protocols, Liang et al. proposed SHOT
that can effectively repurpose a source model, without requiring access to the original source
data. Several variants of this approach have been proposed in the literature (Yang et al.,
2021; Xia et al., 2021; Huang et al., 2021) and all of them rely on end-to-end fine-tuning,
which can be a bottleneck in fully test-time adaptation (limited data as well as need for fast
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adaptation). Hence, recent methods such as TENT (Wang et al., 2021) and IP (Mummadi
et al., 2021) update only the batch normalization layers of the source model.

Table 1: Comparing CATTAn to existing FTTA approaches. Conf. Max.: conditional entropy-
/NLL, CB: class balance loss, BN: batchnorm.

SFTTA Methods Losses Updates
Conf. Max. CB pseudo lab. Geom. Align. BN params. I/P Trans. Align. Layer

Tent Ë ✕ ✕ ✕ Ë ✕ ✕
Tent+ Ë Ë ✕ ✕ Ë ✕ ✕
SHOT Ë Ë Ë ✕ Ë ✕ ✕
IP Ë Ë ✕ ✕ Ë Ë ✕

Ours Ë Ë ✕ Ë Ë ✕ Ë

Methodological gaps and Proposed Work. We begin by noting that the entropy min-
imization or other diversity promoting optimization strategies widely adopted by existing
TTA methods can be viewed as calibrating predictions from a pre-trained classifier under
distribution shifts (Shu et al., 2018). Furthermore, due to the source-free training assump-
tion, they do not leverage any domain alignment objectives. Our work is aimed at closing
this methodological gap by incorporating explicit domain alignment strategies from UDA

into fully test-time adaptation. In particular, we employ a novel deep subspace alignment
strategy to align the target and source subspaces during adaptation. This modification
incurs only a negligible memory burden when compared to TENT (storing the basis vectors
of a low-rank subspace). Table 1 shows how CATTAn compares to existing FTTA approaches.

3. Proposed Approach

As described in Section 2, our goal is to adapt a source model Fθ with parameters θ to
a (unlabeled) target domain at test-time. We express Fθ := Gω ◦ Hψ, as a composition
of a feature extractor Gω with parameters ω and a classifier Hψ with parameters ψ (i.e.,
θ := ω ∪ ψ). During adaptation, the classifier model Hψ is frozen and only the target
features are suitably modified.

3.1. Geometric Alignment Regularization

Upon training Fθ on the source dataset, we extract the latent features for source data
Zs = Gω(Xs) where Zs ∈ Rns×D and ns is the number of source samples. We then compute
a low-dimensional linear subspace with the basis Ws ∈ RD×d that spans the source features
Zs using principal component analysis (PCA). Here, D denotes the ambient dimensionality
of the latent space and d is the subspace dimension. For test-time adaptation, our approach
stores this pre-computed basis set Ws in addition to the learned model parameters.

In order to introduce an alignment objective between the source and target features,
we first extract features for the target data Xt i.e., Zt = Gω(Xt) and then perform a
d−dimensional subspace approximation to obtain the corresponding basis Wt. Note, W

T
s Ws =

I and WT
t Wt = I, where I is the identity matrix. The classical subspace alignment (SA)

process estimates the transformation matrix Φ that aligns Ws and Wt:

Φ∗ = argmin
Φ

∥WtΦ−Ws∥2F , (1)
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where, ∥.∥F denotes the Frobenius norm. The solution to this objective can be obtained in
closed form (Fernando et al., 2013) as

Φ∗ = (Wt)
⊤Ws. (2)

SA then projects Zs onto the source subspace as ZsWs, and the target features Zt onto
aligned co-ordinate system (also referred to as the source-aligned target subspace) as ZtWtΦ.
However, näıve linear subspace alignment is known to be insufficient for modern datasets
with large domain shifts. Hence, CATTAn uses deep subspace alignment (DSA) that addresses
two main challenges: First, we equip DSA with the capability of re-utilizing the source
classifier while performing alignment. To this end, we re-project the source-aligned target
features into the ambient space as W̄t = WtΦ

∗ = Wt(Wt)
TWs and solve

Ẑ∗
t = argmin

Ẑt

∥∥∥ẐtWs − ẐtW̄t

∥∥∥2
F
= argmin

Ẑt

∥∥∥ẐtWs − ẐtWt(Wt)
⊤Ws

∥∥∥2
F
, (3)

where Ẑ∗
t denotes the modified target features. The solution to this optimization is

Ẑ∗
t = ZtWtΦ

∗W⊤
s . (4)

Second, since the eventual goal is not optimal feature alignment but to maximally improve
the performance of the model on target data, we include prediction calibration objectives.
In such a setting, one can no longer obtain a closed-form solution for Φ∗. As a result,
CATTAn uses the following subspace alignment cost in its objective:

LΦ = ∥WtΦ−Ws∥2F , (5)

along with objectives that promote well-calibrated predictions on re-projected source-aligned
target features Ẑt from (4). To enable end-to-end gradient-based training, we implement
subspace alignment as a network AΦ(.) that parameterizes Φ using a fully connected layer
of d neurons without any non-linear activation function or bias i.e. (4) now becomes

Ẑ∗
t = AΦ(ZtWt)W

⊤
s . (6)

Note, we do not use non-linearity because if we include a non-linear activation, Φ and conse-
quently WtΦ will fail to represent linear subspace alignment. Through extensive empirical
studies in Section 4, we show that, this linear subspace alignment in deep latent spaces is
highly effective at improving FTTA performance.

3.2. Prediction Calibration Objective

Calibrating the target predictions using methods such as conditional entropy minimization
has been the most common objective in test-time adaptation under distribution shifts, which
can be defined as H(ŷ) = −∑c p(ŷc) log p(yc), where ŷ = Fθ(x) are the predictions for x
obtained using the model Fθ and p(ŷc) denotes the probability for sample x to be assigned
to a specific class c ∈ C. However, it has been found that entropy minimization can lead
to vanishing gradients for high-confidence predictions, thus hindering the training process.
Hence, we adopt the non-saturating loss function proposed by Mummadi et al.:

Llr(p(ŷ)) = − log

(
p(ŷc∗)∑
i ̸=c∗ p(ŷi)

)
= − log

(
eŷc∗∑
i ̸=c∗ e

ŷi

)
= −ŷc∗ + log

∑
i ̸=c∗

eŷi ,
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Algorithm 1: Proposed algorithm for fully test-time adaptation

Input: Source-model Fθ; Source subspace Ws; target data Xt
Initialize: λlr, λcb, niter; Freeze classifier Hψ; Collect affine transformation parameters
{γl,m, βl,m} for each normalization layer l and channel m in Gω

Adaptation:
Zt = GωXt; // compute target features

Wt ← PCA(Zt) // compute target subspace

Compute Φ∗ using (2)
Initialize the weights of AΦ with Φ∗

for iter in niter do
Zt = Gω(Xt); // compute features for target samples

Ẑt = AΦ(ZtWt)W
⊤
s following (6) // project, align and re-project

ŷt = Fθ(Ẑt) // compute predictions for aligned target data

L = λlrLlr + LΦ + λcbLCB using (7) // compute overall objective

Update alignment AΦ and parameters {γl,m, βl,m} of Gω w.r.t. L
end
Output: A∗

Φ,G∗ω,F∗
θ

where c∗ = argmax p(ŷ). Since this likelihood ratio loss increases the gradient amplitude
for high confidence predictions, this is found to be superior to entropy.
Class Balance Loss: We also include a popular class diversity objective LCB to avoid
trivial solutions that are biased towards a subset of the classes, since we perform adaptation
using only unlabeled data. LCB is implemented as the binary cross-entropy between the
mean prediction from the network over a mini-batch and an uniform prior distribution.
Overall Objective: The overall objective of CATTAn is a combination of the alignment
cost LΦ, the prediction calibration term Llr and the class balance loss LCB:

L = λlrLlr + LΦ + λcbLCB, (7)

where the penalties λlr, λcb are hyper-parameters, the choice of which are not very sensitive
as we discuss in our analysis (Sec. 7).

3.3. Algorithm

Initialization Phase: Similar to TENT (Wang et al., 2021), our method first collects the
affine transformation parameters {γl,m, βl,m} for each normalization layer l and channel m
in the source model. The remaining parameters θ \ {γl,m, βl,m} are not updated during
adaptation. As described in Section 3.1, our method computes the target features Zt and
fits a subspace to obtain Wt. We then initialize the deep subspace alignment layer AΦ with
its weights initialized to Φ∗ from (2).
Adaptation and Termination: In the forward pass, the outputs of the feature extractor
Gω are transformed through AΦ, re-projected using (6) and are passed to the classifier.
We optimize for the parameters using the objective in (7). We repeat this process for the
pre-specified number of epochs. We detail our approach in Algorithm 1.
Estimating subspace dimension: To select the optimal subspace dimension d, a hyper-
parameter in our approach, we adopt the theoretical stability
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Figure 2: Estimating subspace dimen-
sionality using (8) for the
A→C setting from Office-
Home. The lower bound is
plotted in red and the dif-
ference between consecutive
eigenvalues in blue.

result from (Fernando et al., 2013) and modify it for
the FTTA setting. For a given δ > 0 and ϵ > 0, we
select the maximum subspace dimension d such that

(
emin
d − emin

d+1

)
≥
(
1 +

√
ln 2/δ

2

)(
16d3/2

ϵ
√
nt

)
, (8)

where ed represents the dth eigenvalue and nt denot-
ing the number of samples in target domain. This
theoretical bound gives us a selection rule for pick-
ing an optimal d. Given the principal components for
both source and target datasets, and the correspond-
ing eigenvalues, we compute the deviations ed−ed+1,
∀d, for both source and target data. Through (8), we
then obtain a stable solution d << D for a given δ and ϵ. In our experiments, we set δ = 0.1
and ϵ = 106. For example, we plot the values of the bound and

(
emin
d − emin

d

)
w.r.t. to sub-

space dimension for the A→ C case from OfficeHome in Figure 2 and we pick the value of
d = 800.

4. Experiments

List of Experiments: In Table 2 we provide the details of different experiments we
conducted, their goals and the models and datasets for a quick reference. In addition, we
provide a discussion on hyper-parameter choices and ablations of our method.

Evaluation Model Datasets Section

Utility of CATTAn for large-scale corruptions ResNet-50 ImageNet → ImageNet-C sec 5.1

Performance of CATTAn for common UDA benchmarks ResNet-50 OfficeHome, Office-31 sec 5.2

CATTAn for 3D point-cloud classification PointNET PointDA-10 sec 5.3

Efficacy of CATTAn with pre-trained ViT embeddings MAE with ViT as backbone DomainNet sec 6

Impact of target sample sizes Resnet-50 OfficeHome sec 7.2

Extending CATTAn to recover source performance ResNet-50 OfficeHome sec 7.3

Impact of robust training on CATTAn Robust ResNet-50 OfficeHome sec 7.4

Table 2: List of experiments.

Datasets: We evaluate CATTAn using standard UDA datasets along with a robustness bench-
mark, ImageNet → ImageNet-C. (i) The OfficeHome (Venkateswara et al., 2017) dataset
is comprised of 15,500 images from 65 classes, where the images belong to 4 different do-
mains; (ii) The Office-31 dataset (Saenko et al., 2010) contains 4110 images from 31 classes
and represents three different domains; (iii) DomainNet (Peng et al., 2019) is a large scale
UDA benchmark with 500K images from 6 domains with 345 classes each; (iv) ImageNet
→ ImageNet-C (Hendrycks and Dietterich, 2019) is a challenging corruption robustness
benchmark that includes 15 types of synthetic corruptions with 5 severity levels; and (v)
PointDA-10 is the first 3D point-cloud benchmark specifically designed for domain adap-
tation and comprises point-clouds belonging to 10 categories across 3 domains. In total, it
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contains approximately 27.7K training and 5.1K test samples.
Models: As our method operates under the FTTA setting, any arbitrary pre-trained model
can be used. We experiment with the publicly available (pre-trained) Resnet-50 (He et al.,
2016) model for evaluation on the ImageNet-C benchmark, and the modified Resnet-50
architecture from (Liang et al.) for the UDA benchmarks. Furthermore, we also exper-
iment with a vision transformer(ViT) (Dosovitskiy et al., 2021)-based encoder (trained
using masked auto-encoders (He et al., 2021)) finetuned on the ImageNet dataset. For
PointDA-10, we use the PointNET (Qi et al., 2017) backbone proposed in PointDAN (Qin
et al., 2019). As this model has only a single 1D BN layer, we extend the architecture with
4 additional 2D BN layers (i.e., after the convolutional layers).
Baselines: We consider the following state-of-the-art FTTA methods for evaluation: (i)
TENT (Wang et al., 2021); (ii) TENT+, a variant of TENTthat includes the class-balance loss
defined in Section 3.2; (iii) The recent IP (Mummadi et al., 2021) approach that includes
a learnable input transformation module (convolutional layers) to correct for the shifts;
and (iv) SHOT (Liang et al.) that uses a pseudo-labeling based optimization strategy for
test-time adaptation. Note that, the model architectures and the training protocols (e.g.,
update only BN layers) were fixed to be the same for all methods.
Metrics: We use the accuracy and empirical calibration error (ECE) (Guo et al., 2017)
metrics for our evaluation.
Setup: For all UDA benchmarks, following standard practice, we considered each of the
domains as source and adapted the source model to each of the target domains at test-time
independently. We implemented CATTAn in PyTorch and used the Adam optimizer with
learning rate 1e− 4 and set the batch size to 64. All experiments were repeated thrice with
three different random seeds, and we report the average performance. Moreover, in cases
where validation sets were not specified, we performed a 90−10 random split, and used the
validation split to select hyper-parameters. For IP and CATTAn, we set λlr = 0.025 in all our
experiments. We implemented TENT and IP and generated results for Office-31, OfficeHome
and DomainNet datasets, as their performance on these datasets have not been reported
in their respective papers. We adapt TENT from the publicly available codebase 2, while
we re-implemented IP, since their code was not publicly released. Following the strategy
outlined in sec 3.3, we picked the subspace dimensionality d for our experiments. While
TENT has been found to be useful for online adaptation (single epoch), Wang et al. found
that performing the adaptation for more epochs consitently leads to better performance.
Hence, in our experiments, we performed 5 epochs of adaptation for all methods.

5. FTTA Performance on 2D and 3D Benchmarks

5.1. ImageNet-C Benchmark

In Table 3, we report the performance of our proposed method, along with the baselines, on
ImageNet-C at the highest severity level 5. It can be observed that the proposed method
improves over TENT, TENT+ and SHOT by 6% points and IP by 2% points respectively. Among
the baselines, IP performs the best - this can be attributed to the additional trainable input
transformation module, which is typically well-suited for handling pixel-level corruptions.

2. https://github.com/DequanWang/TENT
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Table 3: Results on all 15 corruptions of ImageNet-C benchmark at the highest severity
level-5 using standard Resnet50. Through the inclusion of an alignment objective,
CATTAn improves significantly upon existing baselines.

Method gauss SHOT impulse defocus glass motion zoom snow frost fog bright contrast elastic pixel jpeg Avg.

Source Only 4.7 5.4 4.7 15.1 8.9 13.1 22.8 15.6 20.3 22.7 55.6 4.4 14.8 23.1 33.3 17.6

TENT 16.54 18.6 16.64 16.78 17 28.72 42.66 39.72 34.8 51.78 66.16 14.32 47.4 50.84 40.56 33.50

TENT+ 16.96 19.1 17.3 17.1 17.56 29.22 42.82 40.04 35.4 51.82 65.82 15.78 47.64 50.88 40.68 33.87

SHOT 17.34 21.12 20 18.42 20.06 33.41 43.04 38.65 36.99 54.33 67.54 16.78 51.59 51.75 43.35 35.62

IP 23.94 26.88 25.06 23.2 22.62 36.28 48.7 46.58 39.44 56.08 67.58 18.6 53.1 55.58 48.76 39.49

Proposed 26.02 30.4 28.82 26.06 26.7 41.02 49.34 47.46 39.42 57.0 66.52 23.88 54.4 57 50.48 41.63

Table 4: Results on the OfficeHome Dataset obtained using Resnet50. Our approach im-
proves upon existing FTTA baselines. Interestingly, IP and TENT+ baselines perform
similarly, indicating that the input transformation module in IP is not effective at
undoing larger domain shifts.

Method A → C A → P A → R C → A C → P C → R P → A P → C P → R R → A R → C R → P Avg. ECE

Source Only 43.73 65.35 72.94 52.62 61.07 64.77 51.17 40.53 73.01 64.65 45.25 77.27 59.36 0.56

TENT 47.88 65.98 73.26 58.76 65.94 68.07 60.16 47.31 75.4 70.83 53.95 78.73 63.85 0.09

TENT+ 51.48 69.07 74.39 59.21 67.52 69.43 60.49 50.1 76.34 70.83 56.29 79.82 65.41 0.07

SHOT 50.61 68.69 74.71 58.34 67.63 70.07 57.73 49.14 76.38 69.47 54.89 79.88 64.795 0.06

IP 52.16 69.09 74.57 59.7 67.79 69.31 60.2 50.63 75.72 70.58 56.38 79.61 65.47 0.07

Proposed 52.81 73.89 77.07 61.93 71.12 72.94 61.89 52.35 79.05 72.11 56.68 80.27 67.68 0.08

However, by not adopting an explicit alignment objective and using only the prediction
calibration process to guide the adaptation, IP produces lower performance than CATTAn,
which does not employ any image-space transformation.

5.2. UDA Benchmarks

We demonstrate the efficacy of our method under large distribution shifts found in typical
UDA problems by performing experiments with OfficeHome and Office-31 datasets. The
comparative results for these two datasets can be found in Tables 4 and 5 respectively.
Similar to the observations from the previous experiment, CATTAn consistently performs
better than the existing FTTA baselines. On OfficeHome, CATTAn improves upon TENT,
IP and SHOT by 3.8, 2.2 and 2.8% points respectively, while on Office-31 CATTAn produces
gains of 2.4, 1.8 and 3.04% points. Interestingly, while the input transformation module
proposed in IP is useful with pixel-level corruptions, it is not able to achieve invariance to
the large semantic shifts that occur in typical domain adaptation benchmarks. As a result,
the performance of IP tends to be similar to that of TENT+. In contrast, the latent subspace
alignment strategy adopted by CATTAn produces large performance gains over TENT+. As
we consider more complex datasets with large diversities between domains going forward,
we compare our method against the more general and stronger baseline TENT+.

5.3. 3D point-cloud Dataset

As discussed earlier, our latent space alignment strategy is applicable to different model
architectures or data modalities. In order to demonstrate this, we experimented with a
recent 3D point-cloud classification DA benchmark (PointDA-10). As shown in Table 5.3,
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Table 5: Adaptation results for Office31 Dataset obtained using Resnet50. We observe
that CATTAn consistently improves upon state-of-the-art FTTA approaches.

Method A → C A → P A → R C → A C → P C → R Avg. ECE

Source Only 81.12 74.47 61.34 94.34 62.62 97.39 78.54 0.6

TENT 82.13 85.16 68.83 97.48 62.94 99.8 82.72 0.11

TENT+ 82.33 85.66 69.72 97.61 65.03 99.8 83.35 0.10

SHOT 80.72 82.64 67.59 97.23 64.54 99.8 82.08 0.18

IP 82.73 85.28 69.12 97.99 65.35 100 83.41 0.07

Proposed 85.54 86.29 72.88 98.62 67.59 99.8 85.12 0.07

the adaptation performance of CATTAn is significantly superior to TENT and TENT+ by 3.4%
and 2.8% points respectively (averaged across 6 experiments). Especially, in cases such as
Model→Shape and Scan→Model, CATTAn improves upon TENT+ by more than 6% points
while matching its performance in challenging settings such as Model→Scan. This clearly
evidences the effectiveness of our approach across different problem settings.

Table 6: Adaptation results on the PointDA-10, a 3D point cloud classification bench-
mark. We observe that the proposed approach provides an improvement of over
1.5%, thus evidencing its generality across model architectures and data modali-
ties.

Model→Shape Model→Scan Shape→Model Shape→Scan Scan→Model Scan→Shape Mean

Source Only 52.1 15.74 51.32 12.79 38.82 52.14 37.15

TENT 54.69 23.38 51.82 28.4 38.1 53.44 41.97

TENT+ 56.2 23.32 52.33 27.41 42.48 53.71 42.58

CATTAn 62.41 22.83 54.44 27.11 48.58 57.07 45.41

6. CATTAn with Pre-Trained ViT Embeddings

As Transformer-based solutions such as vision transformers (ViT) (Dosovitskiy et al., 2021)
and masked auto encoders (MAE) (He et al., 2021) are becoming increasingly popular and
achieve state-of-art performance in solving vision problems, it is imperative to understand
the efficacy of our alignment strategy on feature representations obtained from such large-
scale pre-trained transformer encoders. To this end, we consider the encoder from MAE (He
et al., 2021) fine-tuned on ImageNet as our feature extractor 3. As illustrated in Figure 3,
MAE first masks a large portion of the image and attempts to reconstruct the complete
image from the masked image. Once trained via this self-supervision, the encoder is then
fine-tuned with ImageNet data. We then freeze the encoder, obtain source features (class
tokens) Zs and perform PCA to obtain the basis Ws. Note that, we do not fine-tune the
ViT with source domain data, but instead use it as an off-the-shelf feature extractor. A
source model, which is comprised of a single MLP layer with batch normalization and a
linear classifier layer, is then constructed and trained using Zs. During adaptation with
unlabeled target data, we extract features Zt from the frozen encoder and obtain subspace

3. https://github.com/facebookresearch/mae/blob/main/FINETUNE.md
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Figure 3: Implementing CATTAn with pre-trained representations from Masked Autoen-
coders. The table shows the FTTA performance on DomainNet with representa-
tions from MAE (He et al., 2021).

basis vectors Wt. Using the optimization procedure of CATTAn, the batch normalization
parameters and the subspace alignment module AΦ are then estimated.

In this experiment, we used the large-scale DomainNet (Peng et al., 2019) benchmark.
Given that there are 6 domains in this dataset, we conducted a total of 30 test-time adapta-
tion experiments, where we consider one domain as source and the other domains as target.
In Figure 3, we report the average performance obtained on this benchmark. It can be seen
that CATTAn improves upon TENT+ by almost 1% (averaged over 30 experiments), thus indi-
cating that even under this challenging setting, the alignment objective plays an important
role. For comparison, we also include the result from a state-of-the-art multi-target domain
adaptation approach (Roy et al., 2021), which trains a Resnet-101 model end-to-end with
combined source and target data. Our results show that, with a powerful feature encoder,
simple test-time adaptation with CATTAn can produce similar performance. This clearly
emphasizes the improved representational power of modern pre-training strategies, as well
as the efficacy of CATTAn in aligning disparate domains even without accessing the entire
source data.

7. Analysis

7.1. Behavior of CATTAn

Role of different loss terms: In Table 1, we highlight the differences between the
different SoTA FTTA baselines and our method. Our extensive empirical study with multiple
SoTA benchmarks and these baselines clearly show that the proposed geometric alignment
is critical for the reported performance gains.

Choice of λcb: Using OfficeHome (Venkateswara et al., 2017) dataset, we study the sen-
sitivity of CATTAn w.r.t. change in the value of λcb. As can be evidenced from Figure 4(a),
for values greater than 0.4 the performance of CATTAn is stable with respect to changes in
λcb. In our experiments, we fixed λcb to be 1.0.

7.2. Impact of Target Sample Sizes

Next, we study the impact of CATTAn under varying sample complexity in the target domain.
While CATTAn is not expected to be very effective for online adaptation with a small batch
(due to the poor quality of subspace fit in high-dimensions with sparse examples), we make

11
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Figure 4: Analysis of CATTAn - (a) Performance of TENT+ and CATTAn for varying target
sample sizes; (b) Performance of CATTAn on the OfficeHome dataset with varying
values of class-balance penalty λcb; (c) Enabling CATTAn to recover performance
on the original source data through a simple test-time shift detection mechanism;
(d) FTTA performance with a robust source model – CATTAn improves upon the
baselines, this indicating that the proposed approach provides non-trivial invari-
ances not captured by a robust model.

an interesting finding that, even at significantly reduced sample sizes, CATTAn produces
superior adaptation performance than strong baselines such as TENT+. In Figure 4(b), we
plot the performance of TENT+ and CATTAn at different sample sizes. Unsurprisingly, the
performance drops as the target size decreases but importantly, the drop in performance of
CATTAn is less severe than that of TENT+.

7.3. Extending CATTAn to Recover Source Performance

From our experiments with several DA benchmarks, we find that using an explicit alignment
objective leads to significantly improved test performance. However, this comes at a cost of
a drop in accuracy for samples from the original source domain after adaptation. This is an
inherent challenge with methods that include an explicit alignment during adaptation. As
a toy example, consider the case where the samples from target domain are rotated versions
of samples from source domain by a certain angle. In this case, ideally AΦ would be the
matrix that will undo this rotation. However, at test-time, if the same AΦ is applied to
source data, the classifier will fail, as this creates a new domain shift of rotating by twice the
angle. To address this issue, we propose a post-hoc strategy to determine if a test sample
belongs to the target domain or OOD (i.e., from the source domain). If the sample is OOD,
AΦ is no longer applicable and we replace it with AΦ = I (identity matrix). Note that, this
approach for OOD detection does not require access to source data and hence is applicable
with any off-the-shelf model.

12
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Our post-hoc mechanism is inspired by the recent results in measuring generalization
gap using inconsistencies between multiple hypotheses in a deep ensemble (Jiang et al.,
2021). Let us assume that we have K different hypotheses {F1

θ · · · FKθ } for the prediction
function that we want to approximate. We rely on the inter-hypothesis consistency to
check for distribution-shifts. The intuition here is that, an OOD sample has a higher risk
of having inconsistent predictions across the different hypotheses. Specifically, for each
sample we average the prediction probabilities from K − 1 models and assign the label
corresponding to the class that has the highest probability. We compare this prediction
against the prediction of Kth model. We repeat this for all k in K i.e.

q(x) =

K∑
k=1

1

 1

K − 1

(
argmax

( K∑
i,i ̸=k
F iθ(x)

))
== argmax(Fkθ (x))

 (9)

We finally obtain the normalized score for the inconsistency q̄(x) as q̄(x) = q(x)
K . Intuitively,

larger the q value for a given sample at test-time, higher is the likelihood for it to be drawn
from the target distribution. To facilitate this comparison, we compare q̄(x) against a user
defined threshold τ i.e., if q̄(x) < τ then use AΦ = I. We set the τ to be 0.75 in our
experiments.

We adopt the following approach to construct the multiple source hypotheses. The
first hypothesis construction follows the procedure explained in Section 3.1. For the second
hypothesis, we fit another target subspace but only to two-thirds of the target samples that
had the lowest confidence values and recompute the target subspace using them. Note, even
with this new target subspace, the adaptation process uses the entire target data. In other
words, the diversity in the hypotheses arises mainly from the different target subspace fits.
In our experiments, we set K = 3. As can be seen from Figure 4(c) this simple test can
effectively recover the accuracy on the source dataset. We also note that, this test can be
applied to any FTTA method (e.g., to avoid applying the input transformation to a source
sample in IP).

7.4. Impact of Robust Training on CATTAn

Having empirically established the effectiveness of CATTAn in achieving state-of-the-art re-
sults using standard models such as ResNet-50, a natural question to then ask is if the
alignment cost still helps when we consider an inherently robust model instead. To answer
this, we conducted experiments with a robust ResNet50 model (Hendrycks et al., 2021),
trained with DeepAugment and Augmix (Hendrycks et al., 2020) strategies. From Fig-
ure 4(d), we first notice that the source-only performance is improved by more than 1.3%
points when compared to the standard model, which indicates that a robust model al-
ready captures at least some of the invariant properties. Furthermore, we notice that both
TENT+ and CATTAn improve upon no adaptation performance significantly, with average ac-
curacies 66.1% and 69.29% respectively. With a performance boost of more than 3% points
than TENT+, CATTAn clearly evidences the importance of including an alignment objective
for FTTA even with a robust model. We also remark that, since most standard robustness
training paradigms do not include large distribution shifts such as the diverse shifts en-
countered in UDA datasets, alignment techniques such as CATTAn provide complementary
benefits.
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8. Conclusions

In this work, we explored the benefit of including an alignment objective in test time adap-
tation. First, we show that we can bridge UDA and TTA solutions without requiring access
to complete source data. Through CATTAn we incorporated deep subspace alignment and
demonstrated the effectiveness of alignment across different benchmarks. Using rigorous
empirical studies, we showed that our method consistently improves and outperforms the
state-of-the-art methods on several 2D image and 3D point-cloud benchmarks. We also
showed the effectiveness of the proposed method when we consider a powerful feature ex-
tractor such as Vision transformers and robust models. Interestingly, our method is robust
at even low sample sizes. We also proposed a novel post hoc algorithm that can be applied
after the model is adapted to target domain such that the model is still effective on the
source data. Future extensions of the work include extending to other vision tasks such
as semantic segmentation and exploring other alignment techniques which do not require
source data.
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