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1. n agents 2 support partial information noise model

In a two support noise model we have Nsp = {1, α} with α > 1, such that for any coalition
S ⊆ N , P[α(S) = α] = p = 1− P[α(S) = 1]. We derive the agreement probability, fT (p, α)
in the following lemma. Note that this lemma serves as the base case in the Mathematical
induction based proof of the Theorem 11 in the main paper.

Lemma 1 Let π̃ be ε̃-PAC stable partition of noisy game (N, ṽ), and let π̃ be a ε-PAC stable
outcome of the noise-free game (N, v), where ε is identified in Theorem 5 of the paper. Then
the agreement probability fT (p, α) is given by

fT (p, α) =

{
1, if π̃(i) = T, ∀ i ∈ T
p+ (1− p)|R(T )|+1−|I(α,T )|, otherwise

where I(α, T ) =

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))ṽi(T )
≥ α

}
.

Proof Recall from Theorem 5 in main paper we have the following

PT∼D̃[∪i∈T vi(π̃(i)) ≥ vi(T )] ≥ (1− ε̃)fT (p,α).

Also, recall that the agreement event is defined as

M(π̃, T ) := {({α(π̃(i))}π̃(i)∈R(T ), α(T )) : ∩i∈T {vi(π̃(i)) ≥ vi(T ) ∩ α(π̃(i))vi(π̃(i)) ≥ α(T )vi(T )}},

and fT (p, α) = P[M(π̃, T )] is the probability of agreement event. Moreover,

R(T ) := {π̃(i) | i ∈ T}; I(α, T ) =

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))

ṽi(T )
≥ α

}
.

To find the agreement probability, fT (p,α) we consider two cases I(α, T ) = ∅, and I(α, T ) 6=
∅. For these cases we identify the possible noise values {α(π̃(i))}π̃(i)∈R(T ), α(T ) that are
element of M(π̃, T ).
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• Case 01: [I(α, T ) = ∅]. In this case, we have following elements in M(π̃, T ).

– α(π̃(i)) = 1, ∀ π̃(i) ∈ R(T ) and α(T ) = 1. The probability of such choice of α’s
is

(1− p)|R(T )|+1. (1)

– α(π̃(i)) = α for exactly one π̃(i) ∈ R(T ), and α(π̃(i)) = 1 for remaining
coalitions in R(T ), and α(T ) = α. Probability of such choice of α’s is (p× (1−
p)|R(T )|−1) × p. And there are

(|R(T )|
1

)
ways of selecting exactly one coalition

π̃(i) ∈ R(T ). Thus, the probability of above α’s is
(|R(T )|

1

)
p(1− p)|R(T )|−1p.

In general, for any k ∈ {0, 1, . . . , |R(T )|} coalitions π̃(i) ∈ R(T ), take α(π̃(i)) =
α. Moreover, α(π̃(i)) = 1 for remaining |R(T )|−k coalitions and take α(T ) = α.

Further, we have
(|R(T )|

k

)
similar choices. So, the probability of the above choice

of α’s is

|R(T )|∑
k=0

{(
|R(T )|
k

)
pk(1− p)|R(T )|−k

}
× p = p×

|R(T )|∑
k=0

(
|R(T )|
k

)
pk(1− p)|R(T )|−k


= p.

(2)

This is because for any coalition S, we have P[α(S) = α] = p = 1− P[α(S) = 1]
and the fact that binomial probabilities summed up to 1.

• Case 02: [I(α, T ) 6= ∅]. Then, in addition to the above possible cases, we will have
a few other cases, which are:

– α(π̃(i)) = α for exactly one π̃(i) ∈ I(α, T ), α(π̃(i)) = 1 for remaining coalitions
inR(T ) and α(T ) = 1. Probability of such choice of α’s is p(1−p)|R(T )|−1(1−p) =
p(1 − p)|R(T )|. And there are

(|I(α,T )|
1

)
ways of choosing exactly one coalition

π̃(i) ∈ I(α, T ). Thus the overall probability is
(|I(α,T )|

1

)
p(1− p)|R(T )|.

In general, we have α(π̃(i)) = α for any k ∈ {1, 2, . . . , |I(α, T )|} coalitions π̃(i) ∈
I(α, T ). Moreover, α(π̃(i)) = 1 for remaining |R(T )|−k coalitions, and α(T ) = 1.
Probability of such choice of α’s is pk(1 − p)|R(T )|−|I(α,T )|(1 − p). And there

are
(|I(α,T )|

k

)
ways of selecting k coalitions π̃(i) ∈ I(α, T ). Thus the overall

probability is

|I(α,T )|∑
k=1

(
|I(α, T )|

k

)
pk(1− p)|R(T )|−|I(α,T )|(1− p). (3)

The probability of event M(π̃, T ), i.e., P[M(π̃, T )] is obtained by adding probabilities given
in Equations (1), (2) and (3).

P[M(π̃, T )] = (1− p)|R(T )|+1 + p+

|I(α,T )|∑
k=1

(
|I(α, T )|

k

)
pk(1− p)|R(T )|−|I(α,T )|(1− p)

= (1− p)|R(T )|+1 + p+ (1− p)|R(T )|−|I(α,T )|+1

[
1− (1− p)|I(α,T )|

]
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= p+ (1− p)|R(T )|−|I(α,T )|+1.

This ends the proof.

If π̃(i) 6= T for at least one i ∈ T , then fT (p, α) = 1, ∀ α if and only if p = 0 or p = 1.
That is, if the value of all the coalitions are retained, or if values of all of them are inflated
by α, then for all i ∈ T , and for all π̃(i) ∈ R(T ), one has π̃(i) �i T , and π̃(i) �′i T . Thus,
π̃ is ε-PAC stable outcome of unknown noise-free game and hence π̃ is noise-robust.

Corollary 2 When π̃ = N , i.e., the grand coalition is ε̃-PAC stable outcome in the noisy
game, then R(T ) = {N} for any coalition T . Thus, I(α, T ) = ∅, or I(α, T ) = {N}.
Therefore, fT (p, α) simplifies to

fT (p, α) =

{
1, if I(α, T ) = {N}
(1− p)2 + p, if I(α, T ) = ∅.

(4)

2. n agents 2 support partial information noisy games without core

Suppose π̃ is not ε̃-PAC stable partition fo the noisy game (N, ṽ). Moreover, let the noise
support be Nsp = {1, α}, the following lemma provides the expression of hT (p, α). Note that
this lemma serves as the base case for the Mathematical induction based proof of Theorem
15 in the main paper.

Lemma 3 Suppose π̃ is not a ε̃-PAC stable outcome of the noisy game (N, ṽ), then the
agreement probability hT (p, α) for noise support Nsp ∈ {1, α} is given by

hT (p, α) =

{
1, if π̃(i) = T, ∀ i ∈ T
(1− p) + p|R(T )|+1−|J (α,T )|, otherwise,

(5)

where J (α, T ) :=

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))ṽi(T )
≥ 1

α

}
.

Proof From Theorem 13 of the main paper, we have the following

P[∪i∈T vi(π̃(i)) ≥ vi(T )] ≥ (1− ε̃)hT (p,α).

To get hT (p, α) := P[F (T, π̃)] we consider two cases viz. J (α, T ) = ∅, and J (α, T ) 6= ∅.
For these cases, we identify the possible noise values elements of F (T, π̃).

• Case 01: [J (α, T ) = ∅]. In this case, we have the following possibilities:

– α(π̃(i)) = α, ∀ π̃(i) ∈ R(T ), and α(T ) = α. Probability of such a choice of α’s
is

p|R(T )|+1. (6)
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– α(π̃(i)) = 1 for k ∈ {0, 1, . . . , |R(T )|} coalitions π̃(i) ∈ R(T ), and α(π̃(i)) = α for
remaining |R(T )| − k coalitions. Moreover, α(T ) = 1. Probability of such choice

of α’s is (1− p)kp|R(T )|−k(1− p). Further, there are
(|R(T )|

k

)
ways of selecting k

coalitions π̃(i) from R(T ). Thus, the overall probability is

|R(T )|∑
k=0

(
|R(T )|
k

)
(1− p)kp|R(T )|−k(1− p) = 1− p. (7)

• Case 02: [J (α, T ) 6= ∅]. In addition to the above possible cases, we have a few other
cases:

– α(π̃(i)) = 1 for any k ∈ {1, 2, . . . , |J (α, T )|} coalitions π̃(i) ∈ J (α, T ). Moreover,
α(π̃(i)) = α for remaining coalitions in R(T ). Also, α(T ) = α. Probability
of such choice of α’s is (1 − p)kp|R(T )|−kp = (1 − p)kp|R(T )|−k+1. And there

are
(|J (α,T )|

k

)
ways of selecting k coalitions π̃(i) ∈ J (α, T ). Thus the overall

probability is
|J (α,T )|∑
k=1

(
|J (α, T )|

k

)
(1− p)kp|R(T )|−k+1. (8)

The probability P[F (T, π̃)] is obtained by adding probabilities given in Equations (6), (7)
and (8).

P[F (T, π̃)] = p|R(T )|+1 + (1− p) +

|J (α,T )|∑
k=1

(
|J (α, T )|

k

)
(1− p)kp|R(T )|−k+1

= p|R(T )|+1 + (1− p) + p|R(T )|−|J (α,T )|+1

[
1− p|J (α,T )|

]
= (1− p) + p|R(T )|−|J (α,T )|+1.

This ends the proof.

If π̃(i) 6= T for at least one i ∈ T , then hT (p, α) = 1, ∀ α if p = 0 or p = 1. That is,
if the value of all coalitions are retained, or if value of all of them are inflated by α, then
coalition T �i π̃(i), and T �′i π̃(i) for all i ∈ T . Thus, neither noise-free nor noisy game
will have π̃ as PAC stable outcome. Moreover, if we allow hT (p, α) = η for some user-given
satisfaction η, we get a noise set in accordance to the Remark 14 in the main paper. In
this case, the noise set also depends on |R(T )|, and |J (α, T )| for coalition T . Hence, the
partition is η noise-robust non core-stable for the noise set I?(T, η).
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3. Proof of Theorem 15 of main paper

Theorem: For n agent noisy hedonic game (N, ṽ) with Nsp = {α1, α2, . . . , αl}, the agree-
ment probability hT (p,α) is given by:

hT (p,α) =


1, if π̃(i) = T, ∀ i ∈ T,∑

r,s∈[l]:αr>αs
p
|R(T )|−|J (αr,αs,T )|+1
r × {(ps + pr)

|J (αr,αs,T )| − p|J (αr,αs,T )|
r }

+
∑l

a=1 pa

(∑l
b=a pb

)|R(T )|
, otherwise.

Proof We will prove this via Mathematical induction on the noise support l ≥ 2. Clearly,
this is true for l = 2 (from Lemma 3 above). Let us assume that it is true for l = k, i.e.;
there are sets

J (αr, αs, T ) =

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))

ṽi(T )
≥ αs
αr

}
,

such that the support α(S) = {α1, . . . , αk}, ∀ S ⊆ N where αs < αr, ∀ 1 ≤ s < r ≤ k. For
this k we have fT (pj , αj : j ∈ [k]) =: hT (p,α) (by assumption)

hT (p,α) =

k∑
a=1

pa

(
k∑
b=a

pb

)|R(T )|

+
∑

r,s∈[k]:αr>αs

p|R(T )|−|J (αr,αs,T )|+1
r ((pr+ps)

|J (αr,αs,T )|−p|J (αr,αs,T )|
r ).

We will now show that this is true for l = k + 1. To this end define J (αk+1, αs, T ) for all
s ∈ [k] such that αk+1 > αs

J (αk+1, αs, T ) =

{
π̃(i) ∈ R(T )

∣∣∣∣ ṽi(π̃(i))

ṽi(T )
≥ αs
αk+1

}
.

Now, there are two cases, J (αk+1, αs, T ) = ∅, ∀ αs, s ∈ [k], or J (αk+1, αs, T ) 6= ∅ for at
least for one s ∈ [k].

Case 01: [J (αk+1, αs, T ) = ∅, ∀ αs, s ∈ [k]]. Apart from the existing {α(π̃(i)}π̃(i)∈R(T )

and α(T ) for k support case, with this extra k + 1, it will also have α(T ) = αk+1 and

α(π̃(i)) = αk+1, ∀ π̃(i) ∈ R(T ). The probability of such extra α’s is pk+1

(∑k+1
b=k+1 pb

)|R(T )|
.

Therefore, the overall probability is

k∑
a=1

pa

(
k∑
b=a

pb

)|R(T )|

+ pk+1

(
k+1∑
b=k+1

pb

)|R(T )|

=
k+1∑
a=1

pa

(
k+1∑
b=a

pb

)|R(T )|

.

Case 02: [J (αk+1, αs, T ) 6= ∅ for at least one s ∈ [k]]. In this case, apart from all
α(T ) and {α(π̃(i))}π̃(i)∈J (αr,αs,T ), we have {α(π̃(i))}∀ π̃(i)∈J (αk+1,αr,T ), α(T ). For this set,
the possible pairs are such that α(π̃(i)) = αr, ∀ π̃(i) ∈ R(T ) \J (αk+1, αr, T ), and α(T ) =

αk+1. Thus, their combined probability is p
|R(T )|−|J (αk+1,αs,T )|+1
k+1 ((pk+1− ps)|J (αk+1,αr,T )|−

p
|J (αk+1,αr,T )|
k+1 ). Hence for k + 1 support, the probability is∑

r,s∈[k]:αr>αs

p|R(T )|−|J (αr,αr,T )|+1
r ((pr + ps)

|J (αr,αs,T )| − p|J (αr,αs,T )|
r )
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+ p
|R(T )|−|J (αk+1,αs,T )|+1
k+1 ((pk+1 + ps)

|I(αk+1,αs,T )| − p|J (αk+1,αs,T )|
k+1 ).

From case 01 and case 02 with k + 1 support, we have

hT (pj , αj ; j ∈ [k + 1]) =
∑

r,s∈[k+1]:αr>αs

p|R(T )|−|J (αr,αs,T )|+1
r

(
(pr + ps)

|J (αr,αs,T )| − p|J (αr,αs,T )|
r

)

+

k+1∑
a=1

pa

(
k+1∑
b=a

pb

)|R(T )|

.

Furthermore, it is true for k+ 1 support. Thus, from the principle of Mathematical induc-
tion, this is true for any l ≥ 2.

4. 2 agent 2 support model

In this Section, we will provide further details about the 2 agents’ full information noisy
game with 2 support of the noise distribution. First, we consider the following noisy game.

ṽ1(12) > ṽ1(1); ṽ2(12) > ṽ2(2). (game 1)

We also consider the other possible noisy games with 2 agents in later subsections.

4.1. Proof of Lemma 18 of main paper

Lemma: For noisy game 1 with complete information on ṽ and Nsp = {1, α} we have

P[π = π̃ | game 1] =


1− p(1− p2), if α ≥ r
1− p(1− p), if r ≤ α < r

1, if α < r,

(9)

where r = max
{
ṽ1(12)
ṽ1(1)

, ṽ2(12)ṽ2(2)

}
, and r = min

{
ṽ1(12)
ṽ1(1)

, ṽ2(12)ṽ2(2)

}
.

Also, this prediction probability P[π = π̃ | game 1] is convex in p. So, while the minimal
value for P[π = π̃ | game 1] occurs for noise probabilities around p = 0.5 (depending on α, r
and r), the maximal value of it is 1 at p = 0 and p = 1.
Proof For noisy game 1, we have π̃ = N . Now, consider the noise support Nsp = {1, α},
where α > 1 such that P[α(S) = α] = p = 1 − P[α(S) = 1], for some fixed and unknown
p. Given noisy game 1, there are 8 possible combinations of α’s (because each coalition has
two options). We will now enumerate all such possibilities:

1. α(1) = 1;α(2) = 1; α(12) = 1. The probability of such alpha is (1 − p)3. Thus,
the noise-free values are v1(1) = ṽ1(1); v2(2) = ṽ2(2), v1(12) = ṽ1(12) and v2(12) =
ṽ2(12). Therefore, The noise-free game is:

v1(12) > v1(1); v2(12) > v2(2).

From this game we have π = π̃ = N .
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2. α(1) = 1;α(2) = 1; α(12) = α Probability of such alpha’s is p(1 − p)2. Thus the

actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2), v1(12) = ṽ1(12)
α and v2(12) = ṽ2(12)

α .
Therefore, the actual preferences will depend on the relative values of α and ṽ . If
α and ṽ ’s are such that ṽ1(12)

α > ṽ1(1) and ṽ2(12)
α > ṽ2(2), then π = N , otherwise

π = {{1}, {2}}.

3. α(1) = 1;α(2) = α; α(12) = 1. The probability of such alpha is p(1− p)2. Thus, the

actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2)
α , v1(12) = ṽ1(12) and v2(12) = ṽ2(12).

Since, ṽ2(12) > ṽ2(2) > ṽ2(2)
α . The noise-free game is:

v1(12) > v1(1); v2(12) > v2(2).

So, we have π = π̃ = N .

4. α(1) = α; α(2) = 1; α(12) = 1. Probability of such alpha’s is p(1 − p)2. Thus, the

actual values are v1(1) = ṽ1(1)
α ; v2(2) = ṽ2(2), v1(12) = ṽ1(12) and v2(12) = ṽ2(12).

Since, ṽ1(12) > ṽ1(1) > ṽ1(1)
α . Therefore The noise-free game is:

v1(12) > v1(1); v2(12) > v2(2).

From this game we have π = π̃ = N .

5. α(1) = 1;α(2) = α; α(12) = α. The probability of this alpha is p2(1 − p). Thus,

the actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2)
α , v1(12) = ṽ1(12)

α and v2(12) = ṽ2(12)
α .

The actual preferences will depend on the relative values of α and ṽ . If α and ṽ ’s are
such that ṽ1(12)

α > ṽ1(1), then π = N , otherwise π = {{1}, {2}}.

6. α(1) = α;α(2) = 1; α(12) = α. The probability of such alpha is p2(1− p). Thus, the

actual values are v1(1) = ṽ1(1)
α , v2(2) = ṽ2(2); v1(12) = ṽ1(12)

α and v2(12) = ṽ2(12)
α .

The actual preferences will depend on the relative values of α and ṽ . If α and ṽ ’s are
such that ṽ2(12)

α > ṽ2(2), then π = N otherwise π = {{1}, {2}}.

7. α(1) = α;α(2) = α; α(12) = 1. Probability of such alpha’s is p2(1 − p). Thus, the

actual values are v1(1) = ṽ1(1)
α , v2(2) = ṽ2(2)

α ; v1(12) = ṽ1(12) and v2(12) = ṽ2(12).

Since, ṽ1(12) > ṽ1(1) > ṽ1(1)
α . and, ṽ2(12) > ṽ2(2) > ṽ2(2)

α . The noise-free game is:

v1(12) > v1(1); v2(12) > v2(2).

From this game we have π = π̃ = N .

8. α(1) = α;α(2) = α; α(12) = α. The probability of such alpha is p3. Thus, the

actual values are v1(1) = ṽ1(1)
α , v2(2) = ṽ2(2)

α ; v1(12) = ṽ1(12)
α and v2(12) = ṽ2(12)

α .
Therefore, the noise-free game is:

v1(12) > v1(1); v2(12) > v2(2).

From this game it is clear that π = π̃ = N .
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Recall, r = max
{
ṽ1(12)
ṽ1(1)

, ṽ2(12)ṽ2(2)

}
, and r = min

{
ṽ1(12)
ṽ1(1)

, ṽ2(12)ṽ2(2)

}
. Out of 8 cases there are 5

cases (case 1,3,4,7,8) in which the grand coalition π = π̃ = N is formed in noise-free game.
In these conditions, the relative value of ṽ1(·), ṽ2(·) should satisfy α ≥ r, and this constitute
the first expression p3 + p2(1− p) + 2p(1− p)2 + (1− p)3 of P[π = π̃ | game 1]. Apart from
this, if the inflation interval is r ≤ α < r, then π = π̃ = N is also possible from case (6)
with probability p2(1−p). Thus, p2(1−p) will be added to the above prediction probability.
So, we have P[π = π̃ | game 1] corresponding to it. Moreover, finally, if α < r, all cases are
allowable, and hence the grand coalition will always form in the noise-free game. Thus,

P[π = π̃ | game 1] =


p3 + p2(1− p) + 2p(1− p)2 + (1− p)3, if α ≥ r
p3 + 2p2(1− p) + 2p(1− p)2 + (1− p)3, if r ≤ α < r

1, if α < r.

(10)

Simplifying these polynomials, we have

P[π = π̃ | game 1] =


1− p(1− p2), if α ≥ r
1− p(1− p), if r ≤ α < r

1, if α < r.

(11)

This ends the proof.

If we allow some user given satisfaction ζ on the prediction probability, i.e., P[π = π̃ | game 1] =
ζ, we get the following noise interval

I?(ζ = 0.9) =


[0, 0.101] ∪ [0.946, 1], if α ≥ r;
[0, 0.113] ∪ [0.887, 1], if r ≤ α < r

1, if α < r.

(12)

4.2. Details of the other 2 agent noisy games

Here we will give the prediction probabilities for other possible noisy games with 2 agents
and 2 noise support.

4.2.1. Both agents prefer staying alone in noisy game

As opposed to the noisy game 1, in noisy game 2 both agents prefer to stay alone. The
noisy preferences of agents are as follows:

ṽ1(1) > ṽ1(12); ṽ2(2) > ṽ2(12). (game 2)

Clearly π̃ = {{1}, {2}} 6= N is the core-stable outcome. The following lemma provides
prediction probability, P[π = π̃ | game 2] for noisy game 2.

Lemma 4 For noisy game 2 with full information of ṽ’s, the prediction probability that
unknown noise-free game has π = π̃ as a core-stable outcome is

P[π = π̃ | game 2] =

{
1− p2(1− p), if 1

α < r

1, if 1
α ≥ r.

(13)
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Moreover, the minimal and maximal values of above prediction probability are 0.85 (when
p = 2/3), and 1, respectively.

Similar to game 1, the probability of formation of partition π = {{1}, {2}} in an unknown
noise-free game is always more than 0.85. So, the safety value is 0.85. The prediction
probability is 1 when 1

α ≥ r for any noise probability p. Moreover, for some user-given
satisfaction ζ, we obtain the corresponding p by setting P[π = {{1}, {2}} | game 2] = ζ. In
particular, we have

I?(ζ = 0.9) =

{
[0, 0.413] ∪ [0.867, 1], if 1

α < r

[0, 1], 1
α ≥ r.

(14)

It is easy to see that the allowable p is larger than the interval given in Equation (12) for
game 1. So, the partition π̃ = {{1}, {2}} is noise robust for larger number of inflation
probabilities p. Again the noise set will shrink if we increase the satisfaction ζ.

Figure 1: The prediction probability P[π = π̃ | game 2]. For ζ = 0.9, the noise regimes are
given in Equation (14).

4.2.2. Agent 1 prefers to stay alone and agent 2 prefers grand coalition in
noisy game

Now, we consider a noisy game where agent 1 prefers to stay alone, whereas agent 2 prefers
the grand coalition. In particular, the preferences in the noisy game are

ṽ1(1) > ṽ1(12); ṽ2(12) > ṽ2(2). (game 3)

Again π̃ = {{1}, {2}} 6= N is noisy core-stable outcome. The prediction probability, P[π =
π̃ | game 3] is given in the Lemma below.

Lemma 5 For noisy game 3 with full information of ṽ’s, the prediction probability that
unknown noise-free game has π = π̃ as a core-stable outcome is given by:

P[π = π̃ | game 3] =

{
1− p(1− p), if 1

α <
ṽ1(12)
ṽ1(1)

1, if 1
α ≥

ṽ1(12)
ṽ1(1)

.
(15)
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Moreover, the minimal and maximal values of above prediction probability are 0.75 (when
p = 0.5), and 1, respectively.

Similar to game 1 and game 2 the probability of formation of partition π = {{1}, {2}}
in an unknown noise-free game is always more than 0.75 that is the safety value for
game 3. The prediction probability is 1 when 1

α ≥
ṽ1(12)
ṽ1(1)

for any noise probability p.
Moreover, for some user-given satisfaction, ζ we obtain the corresponding p by setting
P[π = {{1}, {2}} | game 3] = ζ. In particular,

I?(ζ = 0.9) =

{
[0, 0.113] ∪ [0.887, 1], if 1

α <
ṽ1(12)
ṽ1(1)

[0, 1], if 1
α ≥

ṽ1(12)
ṽ1(1)

.
(16)

The following figure shows the prediction probabilities for game 3.

Figure 2: The prediction probability P[π̃ = π | game 3]. For ζ = 0.9, we obtain the noise
regimes as given in Equation (16).

4.2.3. Agent 1 prefers grand coalition and agent 2 prefers to stay alone

Finally, consider a noisy game symmetric to game 3. Here agent 1 prefers a grand coalition,
and agent 2 prefers to stay alone. In particular, we have the following preferences.

ṽ1(12) > ṽ1(1); ṽ2(2) > ṽ2(12). (game 4)

Again π̃ = {{1}, {2}} 6= N is a noisy core-stable outcome. In the following lemma, we find
the prediction probability when noisy game 4 is considered.

Lemma 6 For noisy game 4 with full information of ṽ’s, the prediction probability that
noise-free game has π = π̃ as as core-stable outcome is given by:

P[π = π̃ | game 4] =

{
1− p(1− p), if 1

α <
ṽ2(12)
ṽ2(2)

1, if 1
α ≥

ṽ2(12)
ṽ2(2)

.
(17)

So, the minimal and maximal values of above prediction probability are 0.75 (when p = 0.5)
and 1 respectively.
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In this case also, the noise regime can be obtained using P[π = π̃ | game 4] = ζ. In
particular,

I?(ζ = 0.9) =

{
[0, 0.113] ∪ [0.887, 1], if 1

α <
ṽ2(12)
ṽ2(2)

[0, 1], if 1
α ≥

ṽ2(12)
ṽ2(2)

.
(18)

Figure 3 shows the prediction probabilities for game 4.

Figure 3: The prediction probability P[π = π̃ | game 4]. For ζ = 0.9, we obtain the noise
regimes as given in Equation (18).

5. 2 agents 3 support noise model

In this section, we consider two player noisy hedonic game with three support noise model,
i.e., Nsp = {1, α1, α2}, with α1 > 1, and α2 < 1. Note that α1, α2 > 0. Let P[α(S) =
α1] = p1; P[α(S) = α2] = p2; and P[α(S) = 1] = 1 − p1 − p2. That is the value of each
coalition is either inflated with probability p1, or deflated with probability p2 or retained
with probability 1 − p1 − p2. The following lemma provides the prediction probability for
game 1.

5.1. Proof of Lemma 20 of main paper

Lemma: For the 3 support noise model the prediction probability P[π = π̃ | game 1] is

P[π = π̃ | game 1] =

{
g(p1, p2), if α1 ≥ r ; 1

α2
≥ r ; α1

α2
≥ r

1, if α1 < r ; 1
α2
< r ; α1

α2
< r

(19)

where g(p1, p2) = p31 + p32 + 2(p1(1− p1− p2)2 + p22(1− p1− p2) + p1p2(1− p1− p2) + p1p
2
2) +

p21p2 + p21(1− p1 − p2) + p2(1− p1 − p2)2 + (1− p1 − p2)3.
Proof For game 1, with l = 3 support of noise there are 27 possible cases for α’s. Since
there are 3 coalitions, each coalition’s value can either be retained, inflated by α1, or deflated
by α2. We will now enumerate all of them:
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1. α(1) = 1;α(2) = 1; α(12) = 1 Probability of such alpha’s is (1− p1 − p2)3. Thus, the
actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2), v1(12) = ṽ1(12) and v2(12) = ṽ2(12).
The noise-free game is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

2. α(1) = 1;α(2) = 1; α(12) = α1. Probability of such alpha’s is p1(1− p1− p2)2. Thus,

the actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2), v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

.
The noise-free game preferences are unclear; they will depend on the relative values
of α1 and ṽ. If α1 and ṽ’s are such that ṽ1(12)

α1
> ṽ1(1) and ṽ2(12)

α1
> ṽ2(2) then π = N ,

otherwise π = {{1}, {2}}.

3. α(1) = 1;α(2) = α1; α(12) = 1. Probability of such alpha’s is p1(1− p1− p2)2. Thus,

the actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2)
α1

, v1(12) = ṽ1(12) and v2(12) = ṽ2(12).

Since ṽ2(12) > ṽ2(2) > ṽ2(2)
α1

. The noise-free game is: v1(12) > v1(1); v2(12) > v2(2).
So, π = π̃ in this case.

4. α(1) = α1; α(2) = 1; α(12) = 1. Probability of such alpha’s is p1(1−p1−p2)2. Thus,

the actual values are v1(1) = ṽ1(1)
α1

; v2(2) = ṽ2(2), v1(12) = ṽ1(12) and v2(12) =

ṽ2(12). Since, ṽ1(12) > ṽ1(1) > ṽ1(1)
α1

. The noise-free game is: v1(12) > v1(1);
v2(12) > v2(2). So, π = π̃ in this case.

5. α(1) = 1;α(2) = α1; α(12) = α1. Probability of such alpha’s is p21(1− p1− p2). Thus,

the actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2)
α1

, v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

.
The noise-free game preferences are unclear; they will depend on the relative values
of α1 and ṽ. If α1 and ṽ’s are such that ṽ1(12)

α1
> ṽ1(1), then π = N , otherwise

π = {{1}, {2}}.

6. α(1) = α1;α(2) = 1; α(12) = α1. Probability of such alpha’s is p21(1− p1− p2). Thus,

the actual values are v1(1) = ṽ1(1)
α1

, v2(2) = ṽ2(2); v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

.
The noise-free game preferences are unclear; they will depend on the relative values
of α1 and ṽ. If α1 and ṽ’s are such that ṽ2(12)

α1
> ṽ2(2), then π = N , otherwise

π = {{1}, {2}}.

7. α(1) = α1;α(2) = α1; α(12) = 1. Probability of such alpha’s is p21(1− p1− p2). Thus,

the actual values are v1(1) = ṽ1(1)
α1

, v2(2) = ṽ2(2)
α1

; v1(12) = ṽ1(12) and v2(12) =

ṽ2(12). Since, ṽ1(12) > ṽ1(1) > ṽ1(1)
α1

. and, ṽ2(12) > ṽ2(2) > ṽ2(2)
α1

. The noise-free
game is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

8. α(1) = α1;α(2) = α1; α(12) = α1. The probability of such alpha is p31. Thus, the

actual values are v1(1) = ṽ1(1)
α1

, v2(2) = ṽ2(2)
α1

; v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

.
The noise-free game is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

9. α(1) = 1;α(2) = 1; α(12) = α2. Probability of such alpha’s is p2(1− p1− p2)2. Thus,

the actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2), v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

.

Since α2 < 1, thus ṽ1(12)
α2

> ṽ1(12) > ṽ1(1) = v1(1). Similarly, ṽ2(12)
α2

> ṽ2(12) >
ṽ2(2) = v2(2). The noise-free game is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in
this case.
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10. α(1) = 1;α(2) = α2; α(12) = 1. Probability of these alpha’s is p2(1−p1−p2)2. Thus,

the actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2)
α2

, v1(12) = ṽ1(12) and v2(12) = ṽ2(12).
The noise-free game preferences are unclear; they will depend on the relative values
of α2 and ṽ. If α2 and ṽ’s are such that ṽ2(12) > ṽ2(2)

α2
then π = N , otherwise

π = {{1}, {2}}.

11. α(1) = α2; α(2) = 1; α(12) = 1. Probability of such alpha’s is p2(1−p1−p2)2. Thus,

the actual values are v1(1) = ṽ1(1)
α2

; v2(2) = ṽ2(2), v1(12) = ṽ1(12) and v2(12) =
ṽ2(12). The noise-free game preferences are unclear; they will depend on the relative

values of α2 and ṽ. If α2 and ṽ’s are such that ṽ1(12) > ṽ1(1)
α2

then π = N , otherwise
π = {{1}, {2}}.

12. α(1) = 1;α(2) = α2; α(12) = α2. probability of such alpha’s is p22(1− p1− p2). Thus,

the actual values are v1(1) = ṽ1(1); v2(2) = ṽ2(2)
α2

, v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

Since α2 < 1, thus ṽ1(12)
α2

> ṽ1(12) > ṽ1(1) = v1(1), and ṽ2(12)
α2

> ṽ2(2)
α2

. The noise-free
game is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

13. α(1) = α2;α(2) = 1; α(12) = α2. Probability of such alpha’s is p22(1− p1− p2). Thus,

the actual values are v1(1) = ṽ1(1)
α2

, v2(2) = ṽ2(2); v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

.

Since α2 < 1 thus ṽ2(12)
α2

> ṽ2(12) > ṽ2(2) = v2(2), and ṽ1(12)
α2

> ṽ1(1)
α2

. The noise-free
game is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

14. α(1) = α2;α(2) = α2; α(12) = 1. Probability of such alpha’s is p22(1− p1− p2). Thus,

the actual values are v1(1) = ṽ1(1)
α2

, v2(2) = ṽ2(2)
α2

; v1(12) = ṽ1(12) and v2(12) =
ṽ2(12). The noise-free game preferences are unclear; they will depend on the relative

values of α2 and ṽ. If α2 and ṽ’s are such that ṽ1(12) > ṽ1(1)
α2

and ṽ1(12) > ṽ2(2)
α2

then
π = N , otherwise π = {{1}, {2}}.

15. α(1) = 1;α(2) = α1; α(12) = α2. Probability of such alpha’s is p1p2(1−p1−p2). Thus,

the actual values are v1(1) = ṽ1(1), v2(2) = ṽ2(2)
α1

; v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

.

Since ṽ1(12)
α2

> ṽ1(12) > ṽ1(1) and ṽ2(12)
α2

> ṽ2(12) > ṽ2(2) > ṽ2(2)
α1

. The noise-free game
is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

16. α(1) = 1;α(2) = α2; α(12) = α1. Probability of such alpha’s is p1p2(1−p1−p2). Thus,

actual values are v1(1) = ṽ1(1), v2(2) = ṽ2(2)
α2

; v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

.
The noise-free game preferences are unclear; it will depend on the relative values α1,
α2 and ṽ. If α1, α2 and ṽ’s are such that ṽ1(12)

α1
> ṽ1(1) and ṽ2(12)

α1
> ṽ2(2)

α2
then π = N ,

otherwise π = {{1}, {2}}.

17. α(1) = α1;α(2) = 1; α(12) = α2. Probability of such alpha’s is p1p2(1−p1−p2). Thus,

the actual values are v1(1) = ṽ1(1)
α1

, v2(2) = ṽ2(2); v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

.

Since ṽ1(12)
α2

> ṽ1(12) > ṽ1(1) and ṽ2(12)
α2

> ṽ2(12) > ṽ2(2). The noise-free game is:
v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

18. α(1) = α2;α(2) = 1; α(12) = α1. Probability of such alpha’s is p1p2(1−p1−p2). Thus,

the actual values are v1(1) = ṽ1(1)
α2

, v2(2) = ṽ2(2); v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

.
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The noise-free game preferences are unclear; it will depend on the relative values of
α1, α2, and ṽ. If α1, α2 and ṽ’s are such that ṽ1(12)

α1
> ṽ1(1)

α2
and ṽ2(12)

α1
> ṽ2(2) then

π = N , otherwise π = {{1}, {2}}.

19. α(1) = α1;α(2) = α2; α(12) = 1. Probability of such alpha’s is p1p2(1 − p1 − p2).
Thus, the actual values are v1(1) = ṽ1(1)

α1
, v2(2) = ṽ2(2)

α2
; v1(12) = ṽ1(12) and v2(12) =

ṽ2(12). The noise-free game preferences are unclear; it will depend on the relative

values of α1, α2, and ṽ. If α1, α2 and ṽ’s are such that ṽ2(12) > ṽ2(2)
α2

then π = N
otherwise π = {{1}, {2}}.

20. α(1) = α2;α(2) = α1; α(12) = 1. Probability of such alpha’s is p1p2(1 − p1 − p2).
Thus, the actual values are v1(1) = ṽ1(1)

α2
, v2(2) = ṽ2(2)

α1
; v1(12) = ṽ1(12) and v2(12) =

ṽ2(12). The noise-free game preferences are unclear; it will depend on the relative

values of α1, α2, and ṽ. If α1, α2 and ṽ’s are such that ṽ1(12) > ṽ1(1)
α2

then π = N ,
otherwise π = {{1}, {2}}

21. α(1) = α1;α(2) = α1; α(12) = α2. Probability of such alpha’s is p21p2. Thus, the

actual values are v1(1) = ṽ1(1)
α1

, v2(2) = ṽ2(2)
α1

; v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

.

Since, ṽ1(12)
α2

> ṽ1(12) > ṽ1(1) > ṽ1(1)
α1

, and ṽ2(12)
α2

> ṽ2(12) > ṽ2(2) > ṽ2(2)
α1

. The
noise-free game is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

22. α(1) = α1;α(2) = α2; α(12) = α1. Probability of such alpha’s is p21p2. Thus, the

actual values are v1(1) = ṽ1(1)
α1

, v2(2) = ṽ2(2)
α2

; v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

.
The noise-free game preferences are unclear; it will depend on the relative values of
α1, α2, and ṽ. If α1, α2 and ṽ’s are such that ṽ2(12)

α1
> ṽ2(2)

α2
then π = N otherwise

π = {{1}, {2}}.

23. α(1) = α1;α(2) = α2; α(12) = α2. Probability of such alpha’s is p1p
2
2. Thus, the

actual values are v1(1) = ṽ1(1)
α1

, v2(2) = ṽ2(2)
α2

; v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

.

Since, ṽ1(12)
α2

> ṽ1(12) > ṽ1(1) > ṽ1(1)
α1

. The noise-free game is: v1(12) > v1(1);
v2(12) > v2(2). So, π = π̃ in this case.

24. α(1) = α2;α(2) = α1; α(12) = α1. Probability of such alpha’s is p21p2. Thus, the

actual values are v1(1) = ṽ1(1)
α2

, v2(2) = ṽ2(2)
α1

; v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

Clearly, the preferences in the noise-free game are not clear; it will depend on the
relative values of α1, α2 and ṽ. If α1, α2 and ṽ’s are such that ṽ1(12)

α1
> ṽ1(1)

α2
then

π = N otherwise π = {{1}, {2}}.

25. α(1) = α2;α(2) = α1; α(12) = α2. Probability of such alpha’s is p1p
2
2. Thus, the

actual values are v1(1) = ṽ1(1)
α2

, v2(2) = ṽ2(2)
α1

; v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

.

Since, ṽ2(12)
α2

> ṽ2(12) > ṽ2(2) > ṽ2(2)
α1

. The noise-free game is: v1(12) > v1(1);
v2(12) > v2(2). So, π = π̃ in this case.

26. α(1) = α2;α(2) = α2; α(12) = α1. Probability of such alpha’s is p1p
2
2. Thus, the

actual values are v1(1) = ṽ1(1)
α2

, v2(2) = ṽ2(2)
α2

; v1(12) = ṽ1(12)
α1

and v2(12) = ṽ2(12)
α1

.
The noise-free game preferences are unclear; it will depend on the relative values α1,
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α2 and ṽ. If α1, α2 and ṽ’s are such that ṽ1(12)
α1

> ṽ1(1)
α2

and ṽ2(12)
α1

> ṽ2(2)
α2

then π = N
otherwise π = {{1}, {2}}.

27. α(1) = α2;α(2) = α2; α(12) = α2. The probability of such alpha is p32. Thus, the

actual values are v1(1) = ṽ1(1)
α2

, v2(2) = ṽ2(2)
α2

; v1(12) = ṽ1(12)
α2

and v2(12) = ṽ2(12)
α2

.
The noise-free game is: v1(12) > v1(1); v2(12) > v2(2). So, π = π̃ in this case.

Since r = max
{
ṽ1(12)
ṽ1(1)

, ṽ2(12)ṽ2(2)

}
, and r = min

{
ṽ1(12)
ṽ1(1)

, ṽ2(12)ṽ2(2)

}
. From above cases, we see

that in 14 out of 27 cases (case 1,3,4,7,8,9,12,13,15,17,21,23,25,27) we have π = π̃ = N in
noise-free game. In these cases, the relative value of ṽ1(·), ṽ2(·) should satisfy α1 ≥ r, 1

α2
≥

r, α1
α2
≥ r. The prediction probability in this case is given below as g(p1, p2). Whereas if we

allow for the cases, say α1 < r ; 1
α2
< r ; α1

α2
< r, then the prediction probability is 1. So,

these are the two extreme cases. However, if we take any other range of α’s, the prediction
probability will be more than g(p1, p2) and less than 1. Thus,

P[π = π̃ | game 1] =

{
g(p1, p2), if α1 ≥ r ; 1

α2
≥ r ; α1

α2
≥ r

1, if α1 < r ; 1
α2
< r ; α1

α2
< r,

(20)

where g(p1, p2) = p31 + p32 + 2(p1(1− p1− p2)2 + p22(1− p1− p2) + p1p2(1− p1− p2) + p1p
2
2) +

p21p2 + p21(1− p1 − p2) + p2(1− p1 − p2)2 + (1− p1 − p2)3.

5.2. Safety value via global minima for 2 agents and 3 support noise model

Here we will show that the above prediction probability given in Equation (20) can be
non-convex in p1, p2. So, the global minima are difficult to hope for.

Note that ∂g(p1,p2)
∂p1

= 3p21− (p2−1)2 and ∂g(p1,p2)
∂p2

= −2p1(p2−1)−3p22 +6p2−2. Hence,

we have ∂2g(p1,p2)
∂2p1

= 6p1,
∂2g(p1,p2)
∂p1p2

= ∂2g(p1,p2)
∂p2p1

= −2(p2−1), and ∂2g(p1,p2)
∂p22

= −2p1−6p2+6.

Thus, the Hessian of g(p1, p2) is

H(g(p1, p2)) =

[
6p1 −2(p2 − 1)

−2(p2 − 1) −2p1 − 6p2 + 6

]
.

For p1 = 0.3 and p2 = 0.5, we have

H(g(p1, p2)) =

[
0.18 1

1 2.4

]
.

The eigenvalues are λ1 = 2.78, and λ2 = −0.20. So, g(p1, p2) is not a convex function.
Therefore, finding the global minima is difficult.

Though the above prediction probability is non-convex, one can get the noise set such
that the prediction probability is more than a given satisfaction ζ. Similar to the 2 support
cases, where the prediction probability was a convex function, but the noise regimes were
disjoint intervals, in 3 support cases also, we get disjoint sets. However, computing the exact
safety value is problematic because it is the global minima of the non-convex prediction
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probability function. Note that the safety value is a fundamental limit such that below a
user-given satisfaction ζ, the partition is noise robust in the entire noise probability simplex.

As earlier, in the noise regimes where the prediction probability is more than ζ, a
partition π̃ that is core-stable in a noisy game will remain core-stable in a noise-free game.
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