Appendix: On the expressivity of bi-Lipschitz normalizing flows

Alexandre Verine Benjamin Negrevergne Yann Chevaleyre ALEXANDRE.VERINE@DAUPHINE.PSL.EU BENJAMIN.NEGREVERGNE@DAUPHINE.PSL.EU YANN.CHEVALEYRE@DAUPHINE.PSL.EU

LAMSADE, Université Paris-Dauphine, PSL, Paris, France

Fabrice Rossi

ROSSI@CEREMADE.DAUPHINE.FR

CEREMADE, Université Paris-Dauphine, PSL, Paris, France

Editors: Emtiyaz Khan and Mehmet Gönen

Appendix A. Proofs

A.1. Proof of theorem 6

By definition we have $\hat{P}(A) = \int_A \hat{p}(\boldsymbol{x}) d\boldsymbol{x}$, then with the change of variable formula we obtain:

$$\widehat{P}(A) = \int_{A} |\operatorname{Jac}_{F}(\boldsymbol{x})| q(F(\boldsymbol{x})) d\boldsymbol{x}$$

$$= \frac{1}{(2\pi)^{d/2}} \int_{A} |\operatorname{Jac}_{F}(\boldsymbol{x})| e^{-\|F(\boldsymbol{x})\|^{2}/2} d\boldsymbol{x}$$

As F is L_1 -Lipschitz we have $|\operatorname{Jac}_F(\boldsymbol{x})| \leq L_1^d$, then

$$\widehat{P}(A) \le \left(\frac{L_1}{\sqrt{2\pi}}\right)^d \int_A e^{-\|F(\boldsymbol{x})\|_2^2} d\boldsymbol{x}$$

$$\le \left(\frac{L_1}{\sqrt{2\pi}}\right)^d \int_A d\boldsymbol{x}$$

$$\le \left(\frac{L_1}{\sqrt{2\pi}}\right)^d \operatorname{vol}(A),$$

and thus $TV(P^*, \widehat{P}) = \sup_A |P^*(A) - \widehat{P}(A)|$ implies

$$TV(P^*, \widehat{P}) \ge \sup_{A} \left(P^*(A) - \left(\frac{L_1}{\sqrt{2\pi}} \right)^d \operatorname{vol}(A) \right)$$

A.2. Proof of theorem 7

By definition of the TV distance, we have

$$\mathcal{D}_{\text{TV}}(P^*, \widehat{P}) \ge \sup_{R, x_0} |P^*(B_{R, x_0}) - Q(F(B_{R, x_0}))|,$$

where B_{R,x_0} is the ball of a radius R centered in x_0 .

Then, the idea is to show that the image of a ball B_R by a L_1 -Lipschitz function is in a ball of radius L_1R , and then use a reverse isoperimetric inequality the find an upper bound of the measure of a ball of a radius L_1R .

Proof of $F(B_{R,x_0}) \subset B_{L_1R,F(x_0)}$

First of all, for every $z \in F(B_{R,x_0})$, there exist $x \in B_R$ such that $F^{-1}(z) = x$, we have :

$$||F(F^{-1}(z)) - F(x_0)|| = ||F(x) - F(x_0)||$$

 $\leq L_1 ||x - x_0||$
 $\leq L_1 R$

Upper bound of $Q(B_{L_1R})$ This bound is extracted from the work of Ball (1993) on the Reverse Isoperimetric Inequality. First of all, it can be easily establish that $Q(B_{L_1R}(F(\mathbf{x}_0)))$ is at a maximum when $F(\mathbf{x}_0) = 0$. From now on, we will only consider B_{L_1R} the ball centered on 0. Therefore the objective is to find an upper bound on:

$$Q(B_{L_1R}) = \int_{\|\boldsymbol{z}\| < L_1R} q(\boldsymbol{z}) d\boldsymbol{z}$$

=
$$\int_{\|\boldsymbol{z}\| < L_1R} \frac{1}{(\sqrt{2\pi})^d} e^{-\|\boldsymbol{z}\|^2/2} d\boldsymbol{z}$$

We can use the polar coordinates system to get another expression of the Gaussian measure with $S_{d-1}(r) = \frac{2\pi^{d/2}r^{d-1}}{Q(d/2)}$ being the volume of the hypersphere :

$$Q(B_{L_1R}) = \frac{1}{(2\pi)^{d/2}} \int_0^{L_1R} S_{d-1}(r) e^{-r^2/2} dr$$

= $\frac{2}{2^{d/2} \Gamma(d/2)} \int_0^{L_1R} r^{d-1} e^{-r^2/2} dr$

However $r^{d-1}e^{-r^2/2}$ has a maximum value reached for $r=\sqrt{d-1}$, we can have an upper bound :

$$Q(B_{L_1R}) \leq \frac{2}{2^{d/2}\Gamma(d/2)} \sqrt{d-1}^{d-1} e^{-\frac{d-1}{2}} \int_0^{L_1R} dr$$

$$\leq \frac{\sqrt{2}L_1R}{\Gamma(d/2)} \left(\frac{d-1}{2e}\right)^{\frac{d-1}{2}}$$

Then, with the Stirling approximation of the Gamma function:

$$\frac{1}{2}\Gamma(d/2) = \frac{1}{d}\Gamma(d/2 + 1)$$

$$\ge \frac{\sqrt{\pi}\sqrt{d}}{d}(d/2)^{d/2}e^{-d/2}$$

$$\ge \frac{\sqrt{\pi}}{2^{d/2}}d^{\frac{d-1}{2}}e^{-\frac{d}{2}}$$

We obtain:

$$Q(B_{L_1R}) \leq \frac{2}{2^{d/2}\Gamma(d/2)} (d-1)^{\frac{d-1}{2}} e^{-\frac{d-1}{2}}$$

$$\leq \frac{L_1R\sqrt{e}}{\sqrt{\pi}} \left(\frac{d-1}{d}\right)^{\frac{d-1}{2}}$$

Using the bound

$$\frac{1}{\sqrt{e}} < \left(\frac{d-1}{d}\right)^{\frac{d-1}{2}},$$

we have

$$Q(B_{L_1R}) < \frac{L_1R}{\sqrt{\pi}}$$

Lower Bound of the TV As soon as we have an upper bound on $Q(B_{L_1R})$, we have :

$$\begin{split} \mathcal{D}_{\text{TV}}(P^*, \widehat{P}) &\geq \sup_{R, x_0} \left(P^*(B_{R, x_0}) - Q(F(B_{R, x_0})) \right) \\ &\geq \sup_{R, x_0} \left(P^*(B_{R, x_0}) - Q(B_{L_1 R, x_0}) \right) \\ &\geq \sup_{R, x_0} \left(P^*(B_{R, x_0}) - \frac{L_1 R}{\sqrt{\pi}} \right) \end{split}$$

A.3. Proof of Theorem 8

Value of $Q(B_{R,0})$ By construction

$$Q(B_{R,0}) = \mathbb{P}\left(\|\boldsymbol{z}\|^2 \le R^2\right),\,$$

when z follows the standard Gaussian distribution in \mathbb{R}^d . This quantity can be computed using the cumulative distribution function of the chi-square distribution, i.e.

$$Q(B_{R,0}) = \frac{\gamma\left(\frac{d}{2}, \frac{R^2}{2}\right)}{\Gamma\left(\frac{d}{2}\right)},$$

where γ is the lower incomplete gamma function given by

$$\gamma(x,k) = \int_0^x t^{k-1} e^{-t} dt.$$

Lower Bound of the TV Since we have the closed form of the measure over a ball we can write:

$$\mathcal{D}_{\text{TV}}(P^*, \widehat{P}) \ge \sup_{R, \boldsymbol{x}_0} \left(P^*(B_{R, \boldsymbol{x}_0}) - Q(F(B_{R, \boldsymbol{x}_0})) \right)$$

$$\ge \sup_{R, \boldsymbol{x}_0} \left(P^*(B_{R, \boldsymbol{x}_0}) - Q(B_{L_1 R, \boldsymbol{x}_0}) \right)$$

$$\ge \sup_{R, \boldsymbol{x}_0} \left(P^*(B_{R, \boldsymbol{x}_0}) - \frac{\gamma\left(\frac{d}{2}, \frac{L_1^2 R^2}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \right)$$

A.4. Proof of theorem 9

In this section, we denote $B_R = B_{R,F^{-1}(0)}$. As F^{-1} is L_2 -Lipschitz, $F^{-1}(B_{R/L_2,0}) \subset B_R$ and thus

$$\widehat{P}(B_R) \ge \widehat{P}(F^{-1}(B_R)) = Q(B_{R/L_2,0}).$$

Therefore, by analogy with the proof of Theorem 8:

$$\mathcal{D}_{\text{TV}}(P^*, \widehat{P}) \ge \sup_{R} \left(Q(F(B_R)) - P^*(B_R) \right)$$

$$\ge \sup_{R} \left(Q(B_{R/L_2}) - P^*(B_R) \right)$$

$$\ge \sup_{R} \left(\frac{\gamma \left(\frac{d}{2}, \frac{R^2}{2L_2^2} \right)}{\Gamma \left(\frac{d}{2} \right)} - P^*(B_R) \right)$$

A.5. Proof of Corollary 10

Since M_1 and M_2 are separated by a distance D the ball centered on $F^{-1}(0)$ has a radius at least as big as D that we might call B_D to simplify the notation. Therefore:

$$\begin{array}{rcl} \bar{\alpha} & = & \widehat{P}(M_1) + \widehat{P}(M_2) \\ & = & 1 - \widehat{P}(\overline{M_2} \cup M_1) \\ & \leq & 1 - \widehat{P}(B_D) \\ & \leq & 1 - Q(F(B_D)) \\ & \leq & 1 - Q(B_{D/L_2})) \\ & \leq & 1 - \frac{\gamma(\frac{d}{2}, \frac{D^2}{2L_2^2})}{\Gamma(\frac{d}{2})} \end{array}$$

And since $P^*(B_D) = 0$:

$$\mathcal{D}_{\text{TV}}(P^*, \widehat{P}) \geq |\widehat{P}(B_D) - P^*(B_D)|$$

$$\geq \widehat{P}(B_D(F^{-1}(0)))$$

$$\geq \frac{\gamma(\frac{d}{2}, \frac{D^2}{2L_2^2})}{\Gamma(\frac{d}{2})}$$

A.6. Bounds for learned variance

For a given variance σ^2 and the corresponding covariance matrix $\sigma^2 I$, the Gaussian measure of a ball $Q_{\sigma}(B_R)$ of radius R associated can be written as:

$$\begin{array}{lcl} Q_{\sigma}(B_R) & = & \int_{\|\boldsymbol{z}\| < L_1 R} q_{\sigma}(\boldsymbol{z}) d\boldsymbol{z} \\ & = & \int_{\|\boldsymbol{z}\| < R} \frac{1}{(\sqrt{2\pi})^d \sigma^d} e^{-\|\boldsymbol{z}\|^2/2\sigma^2} d\boldsymbol{z} \end{array}$$

Then, with the proper change of variable $z' = z/\sigma$, we have :

$$Q_{\sigma}(B_{R}) = \int_{\|\sigma \mathbf{z}'\| < R} \frac{1}{(\sqrt{2\pi})^{d}\sigma^{d}} e^{-\|\mathbf{z}\|^{2}/2} |\sigma I| d\mathbf{z}'$$

$$= \int_{\|\mathbf{z}\| < \frac{R}{\sigma}} \frac{1}{(\sqrt{2\pi})^{d}} e^{-\|\mathbf{z}\|^{2}/2} d\mathbf{z}$$

$$= Q(B_{R/\sigma})$$

Hence the two bounds become:

$$\mathcal{D}_{\text{TV}}(P^*, \widehat{P}) \ge \sup_{R, \boldsymbol{x}_0} \left(P^*(B_{R, \boldsymbol{x}_0}) - \frac{\gamma(\frac{d}{2}, \frac{L_1^2 R^2}{2\sigma^2})}{\Gamma(\frac{d}{2})} \right),$$

and

$$\mathcal{D}_{\text{TV}}(P^*, \widehat{P}) \ge \sup_{R} \left(\frac{\gamma(\frac{d}{2}, \frac{\sigma^2 R^2}{2L_2^2})}{\Gamma(\frac{d}{2})} - P^*(B_{R, F^{-1}(0)}) \right).$$

Appendix B. 2D datsets

Figure B.1: 2D Dataset: Circles (left) and 8 Gaussians (right).

Appendix C. Inverse image of the center of the Gaussian latent distribution

Figure C.2: Image of $F^{-1}(0)$ for MNIST of the Residual Flow of Chen et al. (2020)

Figure C.3: Image of $F^{-1}(0)$ for CIFAR10 of the Residual Flow of Chen et al. (2020)