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Appendix A. Proofs

A.1. Proof of theorem 6

By definition we have P̂ (A) =
∫
A p̂(x)dx, then with the change of variable formula we

obtain :

P̂ (A) =

∫
A
|JacF (x)|q(F (x))dx

=
1

(2π)d/2

∫
A
|JacF (x)|e−∥F (x)∥2/2dx

As F is L1-Lipschitz we have |JacF (x)| ≤ Ld
1, then

P̂ (A) ≤
(

L1√
2π

)d ∫
A
e−∥F (x)∥22dx

≤
(

L1√
2π

)d ∫
A
dx

≤
(

L1√
2π

)d

vol(A),

and thus TV (P ∗, P̂ ) = supA |P ∗(A)− P̂ (A)| implies

TV (P ∗, P̂ ) ≥ sup
A

(
P ∗(A)−

(
L1√
2π

)d

vol(A)

)

A.2. Proof of theorem 7

By definition of the TV distance, we have

DTV(P
∗, P̂ ) ≥ sup

R,x0

|P ∗(BR,x0)−Q(F (BR,x0))|,
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where BR,x0 is the ball of a radius R centered in x0.
Then, the idea is to show that the image of a ball BR by a L1-Lipschitz function is in a

ball of radius L1R, and then use a reverse isoperimetric inequality the find an upper bound
of the measure of a ball of a radius L1R.

Proof of F (BR,x0) ⊂ BL1R,F (x0)

First of all, for every z ∈ F (BR,x0), there exist x ∈ BR such that F−1(z) = x, we have :

∥F (F−1(z))− F (x0)∥ = ∥F (x)− F (x0)∥
≤ L1∥x− x0∥
≤ L1R

Upper bound of Q(BL1R) This bound is extracted from the work of Ball (1993) on the
Reverse Isoperimetric Inequality. First of all, it can be easily establish that Q(BL1R(F (x0)))
is at a maximum when F (x0) = 0. From now on, we will only consider BL1R the ball
centered on 0. Therefore the objective is to find an upper bound on :

Q(BL1R) =
∫
∥z∥<L1R

q(z)dz

=
∫
∥z∥<L1R

1
(
√
2π)d

e−∥z∥2/2dz

We can use the polar coordinates system to get another expression of the Gaussian measure

with Sd−1(r) =
2πd/2rd−1

Q(d/2) being the volume of the hypersphere :

Q(BL1R) = 1
(2π)d/2

∫ L1R
0 Sd−1(r)e

−r2/2dr

= 2
2d/2Γ(d/2)

∫ L1R
0 rd−1e−r2/2dr

However rd−1e−r2/2 has a maximum value reached for r =
√
d− 1, we can have an upper

bound :
Q(BL1R) ≤ 2

2d/2Γ(d/2)

√
d− 1

d−1
e−

d−1
2

∫ L1R
0 dr

≤
√
2L1R

Γ(d/2)

(
d−1
2e

) d−1
2

Then, with the Stirling approximation of the Gamma function:

1

2
Γ(d/2) =

1

d
Γ(d/2 + 1)

≥
√
π
√
d

d
(d/2)d/2e−d/2

≥
√
π

2d/2
d

d−1
2 e−

d
2

We obtain:
Q(BL1R) ≤ 2

2d/2Γ(d/2)
(d− 1)

d−1
2 e−

d−1
2

≤ L1R
√
e√

π

(
d−1
d

) d−1
2

Using the bound

1√
e
<

(
d− 1

d

) d−1
2

,
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we have

Q(BL1R) <
L1R√

π

Lower Bound of the TV As soon as we have an upper bound on Q(BL1R), we have :

DTV(P
∗, P̂ ) ≥ sup

R,x0

(P ∗(BR,x0)−Q(F (BR,x0)))

≥ sup
R,x0

(P ∗(BR,x0)−Q(BL1R,x0))

≥ sup
R,x0

(
P ∗(BR,x0)−

L1R√
π

)
A.3. Proof of Theorem 8

Value of Q(BR,0) By construction

Q(BR,0) = P
(
∥z∥2 ≤ R2

)
,

when z follows the standard Gaussian distribution in Rd. This quantity can be computed
using the cumulative distribution function of the chi-square distribution, i.e.

Q(BR,0) =
γ
(
d
2 ,

R2

2

)
Γ
(
d
2

) ,

where γ is the lower incomplete gamma function given by

γ(x, k) =

∫ x

0
tk−1e−tdt.

Lower Bound of the TV Since we have the closed form of the measure over a ball we
can write :

DTV(P
∗, P̂ ) ≥ sup

R,x0

(P ∗(BR,x0)−Q(F (BR,x0)))

≥ sup
R,x0

(P ∗(BR,x0)−Q(BL1R,x0))

≥ sup
R,x0

P ∗(BR,x0)−
γ
(
d
2 ,

L2
1R

2

2

)
Γ
(
d
2

)


A.4. Proof of theorem 9

In this section, we denote BR = BR,F−1(0). As F
−1 is L2-Lipschitz, F

−1(BR/L2,0) ⊂ BR and
thus

P̂ (BR) ≥ P̂ (F−1(BR)) = Q(BR/L2,0).
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Therefore, by analogy with the proof of Theorem 8:

DTV(P
∗, P̂ ) ≥ sup

R
(Q(F (BR))− P ∗(BR))

≥ sup
R

(
Q(BR/L2

)− P ∗(BR)
)

≥ sup
R

γ
(
d
2 ,

R2

2L2
2

)
Γ
(
d
2

) − P ∗(BR)


A.5. Proof of Corollary 10

Since M1 and M2 are separated by a distance D the ball centered on F−1(0) has a radius at
least as big as D that we might call BD to simplify the notation. Therefore :

ᾱ = P̂ (M1) + P̂ (M2)

= 1− P̂ (M2 ∪M1)

≤ 1− P̂ (BD)
≤ 1−Q(F (BD))
≤ 1−Q(BD/L2

))

≤ 1−
γ( d

2
, D2

2L2
2
)

Γ( d
2
)

And since P ∗(BD) = 0 :

DTV(P
∗, P̂ ) ≥ |P̂ (BD)− P ∗(BD)|

≥ P̂ (BD(F
−1(0))

≥
γ( d

2
, D2

2L2
2
)

Γ( d
2
)

A.6. Bounds for learned variance

For a given variance σ2 and the corresponding covariance matrix σ2I, the Gaussian measure
of a ball Qσ(BR) of radius R associated can be written as :

Qσ(BR) =
∫
∥z∥<L1R

qσ(z)dz

=
∫
∥z∥<R

1
(
√
2π)dσd e

−∥z∥2/2σ2
dz

Then, with the proper change of variable z′ = z/σ, we have :

Qσ(BR) =
∫
∥σz′∥<R

1
(
√
2π)dσd e

−∥z∥2/2 |σI| dz′

=
∫
∥z∥<R

σ

1
(
√
2π)d

e−∥z∥2/2dz

= Q(BR/σ)

Hence the two bounds become :

DTV(P
∗, P̂ ) ≥ sup

R,x0

(
P ∗(BR,x0)−

γ(d2 ,
L2
1R

2

2σ2 )

Γ(d2)

)
,
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and

DTV(P
∗, P̂ ) ≥ sup

R

γ(d2 ,
σ2R2

2L2
2
)

Γ(d2)
− P ∗(BR,F−1(0))

 .
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Appendix B. 2D datsets

Figure B.1: 2D Dataset : Circles (left) and 8 Gaussians (right).

Appendix C. Inverse image of the center of the Gaussian latent
distribution

Figure C.2: Image of F−1(0) for MNIST of the Residual Flow of Chen et al. (2020)
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Figure C.3: Image of F−1(0) for CIFAR10 of the Residual Flow of Chen et al. (2020)


	Proofs
	Proof of theorem 6
	Proof of theorem 7
	Proof of Theorem 8
	Proof of theorem 9
	Proof of Corollary 10
	Bounds for learned variance

	2D datsets
	Inverse image of the center of the Gaussian latent distribution

