
Proceedings of Machine Learning Research 189, 2022 ACML 2022

Layer-wise Adaptive Graph Convolution Networks Using
Generalized Pagerank

Kishan Wimalawarne kishanwn@gmail.com
University of Tokyo, Hongo, Japan

Taiji Suzuki taiji@mist.i.u-tokyo.ac.jp

University of Tokyo, Hongo, Japan

RIKEN, Nihombashi, Tokyo, Japan

Editors: Emtiyaz Khan and Mehmet Gönen

Abstract

We investigate adaptive layer-wise graph convolution in deep GCN models. We propose
AdaGPR to learn generalized Pageranks at each layer of a GCNII network to induce adap-
tive convolution. We show that the generalization bound for AdaGPR is bounded by a
polynomial of the eigenvalue spectrum of the normalized adjacency matrix in the order of
the number of generalized Pagerank coefficients. By analysing the generalization bounds
we show that oversmoothing depends on both the convolutions by the higher orders of
the normalized adjacency matrix and the depth of the model. We performed evaluations
on node-classification using benchmark real data and show that AdaGPR provides im-
proved accuracies compared to existing graph convolution networks while demonstrating
robustness against oversmoothing. Further, we demonstrate that analysis of coefficients of
layer-wise generalized Pageranks allows us to qualitatively understand convolution at each
layer enabling model interpretations.

Keywords: GCN, adaptive, generalized pagerank, generalization bounds

1. Introduction

In recent years Graph Convolution Networks (GCN) have gained increased recognition as a
versatile tool to learn from graphs. Graph convolution networks use the graph topological
structures among the data to extract nonlinear features to perform learning tasks. Many
recent advances in graph convolution networks have produced state of the art performances
in applications such as social influence prediction (Li and Goldwasser, 2019), relationship
modelling (Schlichtkrull et al., 2018), and recommendation systems (Ying et al., 2018)

Despite the promising capabilities and many novel approaches, GCN still faces several
limitations that hinders its full potential in learning with graphs. A well known limitation
with GCN is oversmoothing (Oono and Suzuki, 2020a), where stacking of multiple con-
volution layers leads to drop in performance. Oversmoothing is prominent with a model
like the Vanila GCN (Kipf and Welling, 2017), since multiple convolutions by global graph
data lead to generalized features that lack the ability learn from labelled data. Recently,
many approaches have been proposed to mitigate the effect of oversmoothing. Some of
these methods include simple data processing such as data normalization by Pair-Norms
(Zhao and Akoglu, 2020) and random removal of edges using dropedges (Rong et al., 2020).

© 2022 K. Wimalawarne & T. Suzuki.

Wimalawarne Suzuki

Many other methods use more complex methods such as random walks as employed in Scat-
terGCN (Min et al., 2020) and skipping layers as with JKNet (Xu et al., 2018). A notable
recent development is GCNII (Chen et al., 2020), which uses scaled residual layers and ad-
dition of the initial layer to each convolution layer. GCNII has reported strong robustness
against oversmoothing, however, it often requires a deep network to gain a considerable
high accuracy.

Another limitation that we identify with GCN is the lack of adaptability of graph con-
volution at each layer. Most GCN models apply the same graph convolution method to
each layer of a deep network (Kipf and Welling, 2017; Chen et al., 2020). This not only
cause oversmoothing but it may also lead to redundant memory usages and computations.
Furthermore, most GCN models do not provide a systematic approach to understand and
interpret graph convolutions applied at each layer of a deep model. In practice, to design
a optimal GCN model it is desirable to know the suitable graph convolution method to
apply as well as the amount of convolution to be applied at each layer depending on the
data and the learning task. Recently proposed GPR-GNN (Chien et al., 2021) learns a
generalized Pagerank within the APPNP model (Klicpera et al., 2019) to perform adaptive
graph convolution. However, GPR-GNN is a shallow network and does not consider graph
convolution in multiple layers, hence, it may not be efficient as a deep GCN model.

In this paper, we investigate adaptive convolution in deep graph convolution networks.
In contrast to the widely adapted view of applying the same graph convolution method
at each layer, we propose that graph convolution should be different for each layer. In
our view, graph convolution should be adaptive in a layer-wise manner where the GCN
model should be able to learn how to apply graph convolution depending on the network
architecture, nature of the data, and the learning task. We propose AdaGPR to apply
adaptive generalized Pageranks at each layer of a GCNII model by learning to predict the
coefficients of generalized Pageranks using sparse solvers. We also give a new generalization
error analysis of AdaGPR in which the Rademacher complexity is given as a polynomial of
the eigenvalue spectrum of the normalized adjacency matrix. This bound reflects the mixing
information effect, more specifically, the oversmoothing effect, and thus yields a better
generalization error bound for a graph with a large node degree. We conduct evaluations
on node-classification and show that AdaGPR provides better accuracy compared to state
of the art GCN methods. As a further advantage of our method, we demonstrate that
analysis of the coefficients of layer-wise generalized Pagerank allows us to quantitatively
understand layer-wise convolution leading to semi-interpretable GCN models.

2. Review

We start by defining notations used in this paper. Let G = (V,E) a graph with nodes
vi ∈ V, i = 1, . . . , N and edges (vi, vj) ∈ E. Let X ∈ RN×q represents a feature matrix with
each row representing q features. Let Y ∈ RN×c represents labels of the N nodes with each
consisting of c classes. The adjacency matrix of G is represented as A ∈ RN×N , and the self-
loops added adjacency matrix is Â = A + IN , where IN ∈ RN×N is a identity matrix. We
denote the diagonal degree matrix of Â by D̂ij =

∑
k Âikδij , then the normalized adjacency

matrix is Ã = D̂−1/2ÂD̂−1/2.

Layer-wise Adaptive GCN Using GPR

The most simple graph convolution network (also known as the Vanilla GCN) was
proposed in Kipf and Welling (2017), where each layer of a multilayer network is multiplied
by the normalized graph adjacency matrix before applying a nonlinear activation function.
A 2-layer Vanilla GCN is given as

Z = softmax
(
ÃReLU(ÃXW0)W1

)
,

where W0 ∈ Rq×h and W1 ∈ Rh×c are learning weights with h hidden units. It is well
observed that the Vanilla GCN model is highly susceptible to oversmoothing with the
increase of depth (Oono and Suzuki, 2020a; Chen et al., 2020).

Recently, many methods that have been proposed to overcome oversmoothing (Zhao
and Akoglu, 2020; Chen et al., 2020). One of the successful methods robust agasint over-
smoothing with the increase of convolution layers is GCNII (Chen et al., 2020). It proposes
to multiply convolution at each layer and add the initial layers with sclaing. The resulting
l + 1th convolution layer of GCNII is given as

H(l+1) = σ
((

(1− αl)ÃH(l) + αlH
(0)
)(

(1− βl)IN + βlW
(l)
))
, (1)

where σ(·) is the ReLU operator, H(0) = σ(XW (0)) is the output from initial layer, W (0)

and W (l) are weight matrices, and αl ∈ [0, 1] and βl ∈ [0, 1] are user-defined parameters.
Another approach that resaerhers have adaptoed to overcome oversmoothness in graph

convolution models is to use the personalized Pagerank (Brin and Page, 1998) instead of the
convolution by the adjacency matrix. PPNP and APPNP (Klicpera et al., 2019) are tow
methods that uses the personalized Pagerank convolution to obtain improved accuracy for
node classification. A computationally feasible methods that avoid matrix inversion of the
personalized Pagerank is the generalized Pagerank (GPR) (Li et al., 2019), which is defined
with K powers of the normalized adjacency matrix with coefficients µ = [µ0, . . . , µK−1] ∈
[0, 1]K as

GPR(µ) :=
K−1∑
k=0

µkÃ
k. (2)

The advantage of using GPR is the ability to learn the coefficients µ from the data (Li
et al., 2019). Adaptive learning of GPR is used by GPRGNN (Chien et al., 2021) given by
the following model,

P = softmax(Z), Z =
K−1∑
k=0

µkH
(k), H(k) = ÃH(k−1), H

(0)
i: = fθ(Xi:), (3)

where θ represents learning parameters of a multilayer network and µ is learned using
message passing.

There are several limitations in above models. Both personalized Pagerank based models
and GPR-GNN apply only a single convolution by variants of the Pagerank on the learned
representation prior to the output layer. Further, these models do not apply any learning
weights and nonlinear activation functions after convolution, hence, they do not create deep
GCN models. On the other hand, the GCNII allows us to develop deep models that are
robust against the oversmoothing, however, it relies solely on convolutions by the normalized
adjacency matrix lacking any adaptive convolution or any benefits offered by the Pagerank.

Wimalawarne Suzuki

3. Proposed Method

We propose adaptive layer-wise graph convolution for deep graph conventional models. Our
approach is simple, where we propose to apply a generalised Pagerank at each layer of the
GCNII and learn coefficients of generalised Pageranks.

As in GCNII, we use a initial layer H(0) = σ(XW (0)) without any graph convolution
using learning weights W (0) ∈ RN×h, where h is the number of hidden units. Given L layers
of graph convolutions, we replace the convolution by Ã at layer l of (1) with the generalized

Pagerank (2) using K orders of Ã and coefficients µ(l) = (µ
(l)
0 , . . . , µ

(l)
K−1) ∈ [0, 1]K . Addi-

tionally, we impose the constraint
∑K−1

k=0 µ
(l)
k = 1. In order to make generalized Pagerank

adaptive for each layer, the model needs to learn coefficients µ(l) ∈ RK , l = 1, . . . , L by
using separate learning weights v(l) ∈ RK , l = 1, . . . , L, respectively. Furthermore, we pro-
vide flexibility to apply a suitable activation function g(·) on v(l) in order to obtain specific
properties such as sparseness. We call the new graph convolution network AdaGPR, where
its (l + 1)th layer is defined as

H(l+1) = σ

((
(1− αl)

(K−1∑
k=0

µ
(l)
k Ã

k

)
H(l) + αlH

(0)

)(
(1− βl)IN + βlW

(l)
))
, µ(l) = g(v(l)),

(4)
where W (l) ∈ Rh×h, l = 1, . . . , L − 1 and W (L) ∈ Rh×c. Similarly to GCNII, parameters
αl and βl need to be specified by the user or tuned as hyperparamters. As with GCNII
(Chen et al., 2020), we also specify a predefined α := αl ∈ (0, 1) for all layers and decaying
βl = log(λ/l + 1) ≈ λ/l where λ is a predefined parameter.

The main advantage with AdaGPR compared to conventional graph convolution meth-
ods and GCNII is that it can learn how to apply convolution at each layer. It is obvious

that when µ
(l)
0 = 1.0 or µ

(l)
1 = 1.0 for all l = 1, . . . , L AdaGPR is equivalent to a multilayer

residual network or GCNII, respectively. Again, notice that AdaGPR has a generalized
Pagerank at each layer with aggregations and nonlinear activations compared to APPNP
and GPR-GNN. To our knowledge AdaGPR is the first graph convolution model to apply
layer-wise adaptive Pagerank in a deep graph convolution model.

We point out that AdaGPR has more learning parameters and hyperparamters than
GCNII. In practice, we have found that we need to consider K as a hyperparameter that
needs to be selected during the training phase. The increased number of hyperparameters is
a limitation of the proposed method. We can also use a different K for each layer, however,
that may be impractical due to the large combinations of GPRs we may have to consider.
Depending on the learning problem, we may also have to apply a separate weight decay for
v(l).

3.1. Learning Sparse Solutions for GPR

There are several ways to learn µ(l) of (4) such that
∑K−1

k=0 µ
(l)
k = 1. One of the simplest

methods is to use the Softmax, however, the resulting µ(l) may not be sparse which would
not give us the desired interpretable results. Variants of Softmax (Martins and Astudillo,
2016) such as sphericalmax and sum-normalization may lead to the same limitation of

spraseness in addition to the difficulty of implementing the restriction
∑K−1

k=0 µ
(l)
k 6= 0.

Layer-wise Adaptive GCN Using GPR

Another approach is message passing as used in GPR-GNN (Chien et al., 2021), however,
it can be computationally expensive to implement message passing in a deep GCN model
such as our proposed method.

We adopt the recently developed sparse activation function Sparsemax (Martins and
Astudillo, 2016) for the task of predicting each µ(l). Without loss of generality we restate
µ(l) belonging to a (K − 1)-dimensional simplex ∆K−1 := {µ(l) ∈ RK |1>µ(l) = 1, µ(l) ≤ 0},
then Sparsemax is the solution of

sparsemax(z(l)) = argmin
µ(l)∈∆K−1

‖µ(l) − z(l)‖2. (5)

The closed-form solution of (5) is given by sparsemaxi(z) = [zi − τ(z)]+ (Martins and As-

tudillo, 2016), where τ(z) =
(
∑

j∈k(z) z(j))−1

k(z) with k(z) := max{k ∈ [K]|1+kz(k) >
∑

j<k z(j)}
given sorted z(1) ≥ z(2) ≥ . . . ≥ z(K). By empirical evaluations, we found that we can obtain

better solutions for AdaGPR by using exp(µ(l)) instead of µ(l), which resembles a sparse
version of softmax. Our implementations of AdaGPR use the Pytorch code for sparsemax
associate with the paper (Martins and Astudillo, 2016)1.

4. Theoretical Analysis

We give a new generalization error bound for the proposed method. Unlike existing bounds,
our bound fully incorporates the information of the spectrum of the normalized adjacency
matrix Ã and thus can take the effect of oversmoothing into account.

We analyse generalization bounds under transductive settings (El-Yaniv and Pechyony,
2009; Oono and Suzuki, 2020b) for semi-supervised node classification. We recall that
X ∈ RN×q is the feature matrix of N nodes with an associated graph G = (V,E) and
consider a 1-class labeled output Y ∈ RN×1. Let us consider the sets X and Y such
that X ⊆ X , Y ⊆ Y and (xi, yi) ∈ X × Y. Let us consider Dtrain and Dtest as the
training and test sets, respectively. Samples are drawn without replacement from Dtrain

and Dtest such that Dtrain ∪ Dtest = V and Dtrain ∩ Dtest = ∅. Given M := |Dtrain|
and U := |Dtest|, we define Q := 1/M + 1/U . Let F ⊂ {X → Y} be the hypothesis
for the transductive learning for AdaGPR. For a predictor h : X → Y, h ∈ F and a
loss function l(·, ·) (e.g., sigmoid, sigmoid cross entropy), we denote the training error by
R(h) = 1

M

∑
n∈Vtrain l(h(xn), yn) and test error by R̂(h) = 1

U

∑
n∈Vtest l(h(xn), yn). Using

a well-known result from El-Yaniv and Pechyony (2009), for a given hypothesis class F
we state the generalization bounds based on transductive Rademacher complexity R(F , p)
with p ∈ [0, 0.5] and S := 2(M+U) min(M,U)

(2(M+U)−1)(2 min(M,U)−1) and probability 1− δ as2

R(h) ≤ R̂(h) +R(F , p0) + c0Q
√

min(M,U) +

√
SQ

2
log

1

δ
, (6)

where

R(V, p) = QEε
[

sup
v∈V
〈ε, v〉

]
,

1. https://github.com/KrisKorrel/sparsemax-pytorch
2. Here, by abuse of notation, we regard F as a subset of RN by the identity {f(X) | f ∈ F} ⊂ RN

although it is a set of functions from X to Y.

Wimalawarne Suzuki

where ε = (ε1, . . . , εN) is a sequence of i.i.d. Rademacher variables with distribution P(εi =
1) = P(εi = −1) = p and P(εi = 0) = 1−2p and c0 is a constant. Following Oono and Suzuki
(2020b), the generalization error bound holds for the special case of p = p0 = MU/(M+U)2.

For the ease of analysis, we consider unscaled weight in (4) with βl = 1.0 and a single

αl = α ∈ (0, 1) for all layers. We consider a predefined µ(l) ∈ [0, 1]K with
∑K−1

k=0 µ
(l)
k = 1

for each layer l to construct layer-wise a GPR as Ã(µ(l)) :=
∑K−1

k=0 µ
(l)
k Ã

k. Let us define
C0, . . . , CL ∈ N+ with C0 = q, C1 = · · · = CL−1 = h and CL = 1 to represent the dimensions
of hidden layers and the output of AdaGPR. We define the hypothesis class for AdaGPR
fr semi-supervised node-classification as

F =
{
X 7→ f (L) ◦ · · · ◦ f (1)(X)

∣∣∣ f (l)(·) = σ
(

((1− α)Ã(µ(l))(·) + ασ(XW (0)))W (l)
)
,

‖W (l)
·c ‖1 ≤ B(l) for all c ∈ [Cl+1]

}
, (7)

where W (l) ∈ RCl×Cl+1 l = 0, . . . , L, and σ : R → R is a 1-Lipschitz function such that
σ(0) = 0 with bounded output3 as |σ(·)| ≤ R, and B(l) l = 0, . . . , L are constants. We point
out that σ(·) can be a ReLU (with output clipping) or a sigmoid function.

Analysing the Rademacher complexity allows up to obtain a data dependent bounds for
our proposed model. Theorem 1 gives the Rademacher complexity for the AdaGPR.

Theorem 1 Given the hypothesis class F , the Rademacher complexity of the AdaGPR is
bounded by

R(F , p0) ≤QC ′
{√

2MU

(M + U)2
B(0)α

[
L∑
l=1

(1− α)l2l
l−1∏
j=0

B(L−j)
(N∑
i=1

K−1∑
k=0

µ
(L−j)
k |λi|k

)
‖X‖F

]

+
L∑
l=1

(1− α)l+12l ×
l∏

j=0

[
B(L−j)

(N∑
i=1

K−1∑
k=0

µ
(L−j)
k |λi|k

)]
D

}
, (8)

where λi is the ith largest eigenvalue of Ã, D =
√
NR, and C

′
is a universal constant.

We extend the hypothesis class (7) to derive the hypothesis class for GCNII by setting

µ
(l)
1 = 1.0, l = 1, . . . , L and obtain the Rademacher complexity for GCNII given in the

Corollary 1.

Corollary 1 The Rademacher complexity of the GCNII is bounded as

R(F , p0) ≤ QC ′
{√

2MU

(M + U)2
B(0)α

L∑
l=1

2l(1−α)l
l−1∏
j=0

B(L−j)
(N∑
i=1

|λi|
)
‖X‖F+

L∑
l=1

(1− α)l+12l
l∏

j=0

[
B(L−j)

(N∑
i=1

|λi|
)]

D

}
, (9)

where λi is the ith largest eigenvalue of Ã, D =
√
NR, and C

′
is a universal constant.

3. This is just a technical condition to ensure the input to each layer is bounded.

Layer-wise Adaptive GCN Using GPR

Properties Cora Citeseer Pubmed Chameleon Cornell Texas Wisconsin

Classes 7 4 3 4 5 5 5
Nodes 2708 3327 19717 2277 183 183 251
Edges 5429 4732 44338 36101 295 309 499
Features 1433 3703 500 2325 1703 1703 1703

Table 1: Properties of datasets used for node-classification

The proof is given in Appendix A. We notice that the bounds (8) and (9) are char-
acterized by the spectrum of Ã. It shows that the mixing speed of information by node
aggregations at each layer affects the model complexity. The use of the normalized adja-
cency matrix results in a eigenvalue spectrum of 1 = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ −1 and as k
increases the summations of the eigenvalue spectrum with the higher powers shrink quickly.
With a large k, the Rademacher complexity may become small which coincides with the
intuition that the oversmoothing effect makes the model “simpler” and gives smaller gen-
eralization gap. Our bound successfully characterizes such an effect through the spectrum
information which represents how fast the node features are mixed by aggregation. On the
other hand, multiple applications of node aggregations would induce strong oversmoothing
and results in underfitting (while the generalization gap is small). Because of it, the model
complexity is uniformly bounded even there are many additional multiple node aggrega-
tion terms. Our proposed method automatically finds the appropriate weight that fits the
data well. It is also important to notice that the deeper layers have a strong influence on
the overall generalization bound due to recursive summations, which is coming from the
input injection (H(0)) to every layer. This indicates that the recursive multiplications of
the spectral components in deeper layers induce stronger bias (although it simultaneously
yields smaller generalization gap). Hence, in order to have less oversmoothing and to have
a small overall bias less graph convolutions are preferred at deep layers. This observation
agrees with the experimental results (Table 4).

The characterization by the spectrum is beneficial especially for large node-degree
graphs. Indeed, a PAC-Bayesian bound for GCNs given by Liao et al. (2020) includes
dk/2 instead of |λi|k where d is the maximum node degree of the graph. Such a bound
becomes loose for large degree d. However, a graph with large degree likely to have small
spectrum λi (because it can “mix” the information rapidly) and thus our bound gives a
tighter bound, which is contrary to the existing bound. Other bounds (e.g., by Oono and
Suzuki (2020b)) are merely characterized by the spectral norm of the weight matrices, but
our bound is characterized by not only the spectral norm B but also the spectrum of the
node aggregation.

5. Experiments

In this section we discuss node classification experiments that we carried out to evaluate
AdaGPR. Additionally, we discuss the behaviour of layer-wise sparse solutions of generalised
Pagerank coefficients to understand the adaptive behaviour of AdaGPR.

Wimalawarne Suzuki

Dataset Method
Layers
2 4 8 16 32 64

Cora

GCN 81.1 80.4 69.5 64.9 60.3 28.7

GCN(Drop) 82.8 82.0 75.8 75.7 62.5 49.5

JKNet - 80.2 80.7 80.2 81.1 71.5

JKNet(Drop) - 83.3 82.6 83.0 82.5 83.2

Incep - 77.6 76.5 81.7 81.7 80.0

Incep(Drop) - 82.9 82.5 83.1 83.1 83.5

GCNII (hidden 64) 82.2 82.6 84.2 84.6 85.4 85.5

GCNII* (hidden 64) 80.2 82.3 82.8 83.5 84.9 85.3

AdaGPR (hidden 32, GPR coeffs. 4) 83.8 84.5 84.8 85.0 85.0 85.0

Citeseer
GCN 70.8 67.7 30.2 18.3 25.0 20.0

GCN(Drop) 72.3 70.6 61.4 57.2 41.6 34.4

JKNet - 68.7 67.7 69.8 68.2 63.4

JKNet(Drop) - 72.6 71.8 72.6 70.8 72.2

Incep - 69.3 68.4 70.2 72.6 71.0

Incep(Drop) - 72.7 71.4 72.5 72.6 71.0

GCNII (hidden 256) 68.2 68.9 70.6 72.9 73.4 73.4

GCNII* (hidden 256) 66.1 67.9 70.6 72.0 73.2 73.1

AdaGPR (hidden 64, GPR coeffs. 16) 59.9 68.6 73.2 73.5 73.4 73.1

Pubmed
GCN 79.0 76.5 60.1 40.9 22.4 35.5

GCN(Drop) 79.6 79.4 78.1 78.5 77.0 61.5

JKNet - 78.0 78.1 72.6 72.4 74.5

JKNet(Drop) - 78.7 78.7 79.1 79.2 78.5

IncepGCN - 77.7 77.9 74.9 OOM OOM

IncepGCN(Drop) - 79.5 78.6 79.0 OOM OOM

GCNII (hidden 256) 78.2 78.8 79.3 80.2 79.8 79.7

GCNII* (hidden 256) 77.7 78.2 78.8 80.3 79.8 80.1

AdaGPR (hidden 128, GPR coeffs. 4) 78.3 78.8 79.4 79.6 79.3 OOM

Table 2: Accuracy for semi-supervised node classification

5.1. Setup

We performed semi-supervised and fully-supervised node classification. Datasets and their
properties used in our experiments are listed in Table 1. Since our method stems from
GCNII, we used a similar experimental setting as in Chen et al. (2020) and borrowed their
reported results for baseline methods. In addition to the hyperparameters αl, λl, weight
decays, and dropout rates common with GCNII, the number of GPR coefficients K and
in some cases (semi-supervised learning) weight decay for learning weights v(l) in (4) are
considered as hyperparameters. We tuned hyperparameters based on the loss over the
validation sets. The optimization method for all experiments is Adam with learning rate of
0.01. We use the publicly available processed data provided by Chen et al. (2020). Further,
we use code from Chen et al. (2020) to assist our implementations. The data and Pytorch
based implementation of AdaGPR is available at https://github.com/kishanwn/adaGPR.
We carried out experiments on NVidia V100-PCIE-16GB GPUs hosted on Intel Xeon Gold
6136 processor servers.

https://github.com/kishanwn/AdaGPR

Layer-wise Adaptive GCN Using GPR

5.2. Semi-Supervised Node Classification
M

et
h

o
d

D
at

a
se

t
C

o
ra

C
it

es
ee

r
P

u
b

m
ed

C
h

am
el

eo
n

C
or

n
el

l
T

ex
as

W
is

co
n

si
n

G
C

N
85

.7
7

73
.6

8
88

.1
3

28
.1

8
5
2
.7

0
5
2
.1

6
4
5
.8

8

G
A

T
86

.3
7

74
.3

2
87

.6
2

42
.9

3
5
4
.3

2
5
8
.3

8
4
9
.4

1

G
eo

m
-G

C
N

-I
85

.1
9

7
7
.9

9
80

.0
5

60
.3

1
5
6
.7

6
5
7
.5

8
5
8
.2

4

A
P

P
N

P
87

.8
7

76
.5

3
89

.4
0

54
.3

7
3
.5

1
6
5
.4

1
6
9
.0

2

J
K

N
et

85
.2

5
(1

6)
75

.8
5

(8
)

88
.9

4
(6

4)
60

.0
7

(6
4
)

5
7
.3

0
(4

)
5
6
.4

9
(3

2
)

4
8
.8

2
(8

)

J
K

N
et

(D
ro

p
)

87
.4

6
(1

6)
75

.9
6

(8
)

89
.4

5
(6

4)
62

.0
8

(6
4
)

6
1
.0

8
(4

)
5
7
.3

0
(3

2
)

5
0
.5

9
(8

)

In
ce

p
G

C
N

(D
ro

p
)

86
.8

6
(8

)
76

.8
3

(8
)

89
.1

8
61

.7
1

(4
)

6
1
.6

2
(1

6
)

5
7
.8

4
(8

)
5
0
.2

0
(8

)

G
P

R
-G

N
N

88
.1

6
77

.3
9

85
.8

63
.2

2
7
8
.3

7
7
7
.3

0
8
1
.5

7

G
C

N
II

8
8
.4

9
(6

4
)

77
.0

8
(6

4)
89

.5
7

(6
4)

60
.6

1
(8

)
7
4
.8

6
(1

6
)

6
9
.4

6
(3

2
)

7
4
.1

2
(1

6
)

G
C

N
II

*
88

.0
1

(6
4)

77
.1

3
(6

4)
9
0
.3

0
(6

4
)

62
.4

8
(8

)
7
6
.4

9
(1

6
)

7
7
.8

4
(3

2
)

8
1
.5

7
(1

6
)

A
d

aG
P

R
88

.1
9

(6
4,

3)
77

.2
5

(6
4,

4)
9
0
.2

3
(4

,3
)

6
4
.7

1
(2

,3
)

8
2
.7

0
(4

,2
)

8
1
.0

8
(4

,4
)

8
3
.5

3
(1

6
,3

)

T
a
b

le
3:

A
cc

u
ra

cy
fo

r
fu

ll
y
-s

u
p

er
v
is

ed
n

o
d

e
cl

as
si

fi
ca

ti
on

We used the commonly used citation datasets
Cora, Citeseer, and Pubmed to evaluate per-
formance of semi-supervised node classification.
These datasets are split based on the commonly
used the setting in Yang et al. (2016) that re-
sults in training sets with 20 nodes per each
class, test sets with 500 nodes, and validation
sets with 1000 nodes. The number of coeffi-
cients of the GPR is considered a hyperparam-
eter and selected from (2, 3, 4, 8, 16). We used
the same hyperparameter ranges as in Chen
et al. (2020) for λ, and dropout rates from
(0.1, . . . , 0.9). We fixed α = 0.1 following Chen
et al. (2020).

We used separate weight decay rates for dif-
ferent learning weights in AdaGPR; WD1 ∈
(1.0, 0.1, 0.01, . . . , 0.0001) for W (0), WD2 =
0.0001 for W (l), l = 1, . . . , L, and WD3 ∈
(1.0, 0.1, 0.01) for v(l) l = 1, . . . , L. WD1 and
WD3 are selected from hyperparameter tun-
ing (see Section 1 of the supplementary mate-
rials section for details). We borrowed results
for baseline methods Vanilla GCN (Kipf and
Welling, 2017), JKNet (Xu et al., 2018), In-
cepGCN (Rong et al., 2020), and GCNII (Chen
et al., 2020) from Chen et al. (2020).

The Table 2 shows that classification ac-
curacies for Cora using AdaGPR did not out-
perform the accuracy produced by GCNII.
However, AdaGPR has produced better perfor-
mances for shallow networks with layers rang-
ing from 2 to 16 compared to GCNII. AdaGPR
achieved a slightly improved accuracy for Cite-
seer compared to GCNII. The noteworthy ob-
servation is that AdaGPR provides the best ac-
curacy of 73.5 with 16 layers and 32 hidden
units compared to the GCNII which used 32
layers and 256 hidden units. AdaGPR obtained
a slightly lower accuracy for Pubmed compared
to GCNII. The stable accuracies with the in-
crease in depth for all datasets show robustness
against oversmoothing of AdaGPR.

Wimalawarne Suzuki

5.3. Fully-Supervised Node Classification

We experimented with fully-supervised node classification using the standards baseline
graph datasets of Cora, Citeseer, Pubmed, Chameleon, Cornell, Texas, and Wisconsin.
As suggested in Pei et al. (2020), all these datasets were randomly split into training, val-
idation and testing sets consisting of nodes by each class with percentages of 60%, 20%,
and 20%, respectively. We ran experiments over 10 different random splits as used in Chen
et al. (2020). For fair comparisons with Chen et al. (2020) we used the 64 hidden units for
all methods. Hyperparameter sets for dropout rates, and K are same as fully-supervised
learning. Similar to Chen et al. (2020), we used a single weight decay selected from the set
(0.001, 0.0005, . . . , 1e−6), α ∈ (0.1, · · · , 0.9), and λ ∈ (0.5, 1.0, 1.5).

The mean accuracy for node classification of AdaGPR and baseline methods (borrowed
from Chen et al. (2020)) are shown in the Table 3. These baseline methods are Vanilla
GCN (Kipf and Welling, 2017), GAT (Veličković et al., 2017), Geom-GCN (Pei et al.,
2020), APPNP (Klicpera et al., 2019), JKNet (Xu et al., 2018), IncepGCN (Rong et al.,
2020), and GCNII (Chen et al., 2020). We also experimented with GPR-GNN whose results
are included in Table 3. In addition to accuracy of AdaGPR, we show the number of layers
and number of GPR coefficients (K) in brackets that were selected from the hyperparameter
tuning.

Form Table 3 we can see that AdaGPR has obtained comparable accuracies compared to
GCNII for Cora, Citeseer, and Pubmed. Chameleon dataset has a similar number of nodes
as with Cora and Citeseer (Table 1), however, it has a larger number of edges compared to
Cora and Citeseer. This indicates that Chameleon has a dense adjacency matrix compared
to Cora and Citeseer, which may lead to faster oversmoothing with multiple convolutions.
This observation is reflected in AdaGPR model with 2 layers and 3 coefficients giving the
best accuracy for Chameleon. Notice that GCNII also has used a smaller network (8 layers)
for Chemeleon compared to other datasets. Further, it is noteworthy that GPR-GNN which
is another shallow model has gained a accuracy comparable to AdaGPR for Chemeleon.

There is a significant high accuracy for the three small scale datasets of Cornell, Texas,
and Wisconsin with AdaGPR compared to all the baseline methods. Again, we can see
that the increased performance with AdaGPR are achieved for Cornell and Texas with less
number of convolution layers compared to GCNII. These observations provide evidence that
adaptive GPR can perform model compression while enhancing prediction accuracy.

5.4. Layer-wise GPR Adaptation

We can quantitatively understand the amount of convolution by different orders of the nor-
malized adjacency matrix at each layer by analysing the coefficients of each generalized
Pagerank. In order to demsntrate layer-wise adaptation, we show coefficients of each gener-
alized Pagerank at each layer for Cornell in Table 4. Notice the clear lawer-wise adaptation
where only the first two layers apply graph convolutions with gradual decrease of the GPR
from shallow layers to deeper layers and the last two layers of the trained model have no
graph convolution.

Layer-wise Adaptive GCN Using GPR

Layers
GPR Coeff.

0 1

1 0.5150 0.4849

2 0.8581 0.1418

3 1 0

4 1 0

Table 4: GPR coefficients of Cornell

6. Conclusions

We proposed the AdaGPR to perform layer-wise adaptive graph convolution using gener-
alized Pageranks within GCNII models. We provide generalization bounds to analyse the
relationship between eigenvalue spectrum of a graph and the depth of the network and
its effect on oversmoothing. We evaluate our proposed method using benchmark node-
classification datasets to show performance improvements compared to other GCN models.
By analysing coefficients of the generalized Pagerank in the trained models, we confirm that
adaptive behaviour of graph convolution in each layer.

Acknowledgement

This work was partially supported by Japan Digital Design and CREST (JPMJCR2015,
JPMJCR2115).

References

Radoslaw Adamczak. A note on the hanson-wright inequality for random vectors with
dependencies. Electronic Communications in Probability, 20:1–13, 2015.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 1998. ISSN 0169-7552. WWW.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In ICML. PMLR, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In ICML, 2021.

Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applica-
tions. J. Artif. Int. Res., 35(1):193–234, June 2009. ISSN 1076-9757.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolu-
tional Networks. In ICLR, ICLR ’17, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propa-
gate: Graph neural networks meet personalized pagerank. In ICLR 2019, 2019.

Wimalawarne Suzuki

Chang Li and Dan Goldwasser. Encoding social information with graph convolutional
networks for Political perspective detection in news media. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, 2019.

Pan Li, Eli Chien, and Olgica Milenkovic. Optimizing generalized pagerank methods for
seed-expansion community detection. NeurIPS, 32, 2019. ISSN 1049-5258.

Renjie Liao, Raquel Urtasun, and Richard S. Zemel. A pac-bayesian approach to general-
ization bounds for graph neural networks. In NeurIPS, 2020.

André F. T. Martins and Ramón F. Astudillo. From softmax to sparsemax: A sparse model
of attention and multi-label classification. In ICML, ICML’16, 2016.

Yimeng Min, Frederik Wenkel, and Guy Wolf. Scattering GCN: overcoming oversmoothness
in graph convolutional networks. CoRR, abs/2003.08414, 2020.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power
for node classification. In ICLR 2020, 2020a.

Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction
through gradient boosting and application to multi-scale graph neural networks. In
NeurIPS 2020, 2020b.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. In ICLR 2020, ICLR’20, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In ICLR 2020, 2020.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In The
Semantic Web, pages 593–607, Cham, 2018. Springer International Publishing.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. 6th ICLR, 2017.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks.
In ICML, volume 80, pages 5453–5462, 10–15 Jul 2018.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. ICML’16, page 40–48, 2016.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
KDD ’18, KDD ’18, 2018.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In ICLR,
2020.

Layer-wise Adaptive GCN Using GPR

Appendix A. Proofs of Generalization Bounds

In this section we provide detailed proofs of Theorems given in the Section 4. The following
transductive Rademacher complexity is defined in El-Yaniv and Pechyony (2009).

Definition 1 Given p ∈ [0, 0.5] and V ⊂ RN , the transductive Rademacher complexity is
defined as

R(V, p) = QEε
[

sup
v∈V
〈ε, v〉

]
,

where Q = 1
M + 1

N and ε = (ε1, . . . , εN) is a sequence of i.i.d. Rademacher variables with
distribution P(εi = 1) = P(εi = −1) = p and P(εi = 0) = 1− 2p.

Below we restate the symmetric Rademacher complexity (Oono and Suzuki, 2020b), a
variant of the above tranductive Rademacher complexity.

Definition 2 Given p ∈ [0, 0.5] and V ⊂ RN , the symmetric transductive Rademacher
complexity is defined as

R̄(V, p) = QEε
[

sup
v∈V
|〈ε, v〉|

]
,

where Q = 1
M + 1

N and ε = (ε1, . . . , εN) is a sequence of i.i.d. Rademacher variables with
distribution P(εi = 1) = P(εi = −1) = p and P(εi = 0) = 1− 2p.

In (Oono and Suzuki, 2020b), it has been shown that R(V, p) ≤ R̄(V, p).
Below we provide the proof for the Theorem 1.
Proof of Theorem 1. We use the symmetric Rademacher complexity

R̄(F , p) = Eε

[
sup
v∈F
|〈ε, v〉|

]
, (10)

which upper bounds the Rademacher complexity R(F , p) in (9) as R(F , p) ≤ R̄(F , p). We
give the bound for a general p. The assertion can be obtained by substituting p← p0.

In the rest of the proof we abbreviate row s of any matrix Z by Zs := Z[s, :], columns
c by Z·c := X[:, c], and an element by Zsc := Z[s, c]. For the convenience of analysis we
break the hypothesis class F in (10) into different components and define

H(0) =

{
C0∑
c=1

X·cw
(0)
c |‖w(0)

c ‖1 ≤ B(0)

}
,

H̃(0) = σ ◦ H(0),

H(l+1) =

{ Cl+1∑
c=1

((1− α)[Ã(µ(l))Z]·c + αH·c)w
(l)
c |Z·c ∈ H̃(l), H·c ∈ H̃(0), ‖w(l)‖1 ≤ B(l)

}
,

H̃(l+1) = σ ◦ H(l) l = 1, . . . , L.

Wimalawarne Suzuki

Now, for a given layer l + 1, we have

Q−1R̄(H̃(l+1), p) = Eε

[
sup

‖w(l)‖1≤B(l),Z·c∈H(l),H·c∈H̃(0)

∣∣∣∣ N∑
n=1

εn

Cl+1∑
c=1

((1− α)[Ã(µ(l))Z]nc + αHnc)w
(l)
c)

∣∣∣∣]

= Eε

[
sup

‖w(l)‖1≤B(l),Z·c∈H(l),H·c∈H̃(0)

∣∣∣∣ Cl+1∑
c=1

N∑
n=1

εn((1− α)[A(µ(l))Z]nc + αHnc)w
(l)
c)

∣∣∣∣]

= B(l)Eε

[
sup

Z∈H(l),H∈H̃(0)

∣∣∣∣ N∑
n=1

εn((1− α)[Ã(µ(l))Z]n + αHn)

∣∣∣∣]

= B(l)Eε

[
sup

Z∈H(l),H∈H(0)

∣∣∣∣(1− α)
N∑
n=1

εn[Ã(µ(l))Z]n + α
N∑
n=1

σnHn)

∣∣∣∣]

= B(l)(1− α)Eε

[
sup

Z∈H(l)

∣∣∣∣ N∑
n=1

εn[Ã(µ(l))Z]n

∣∣∣∣]+ αB(l)Eε

[
sup

H∈H̃(0)

∣∣∣∣ N∑
n=1

εnHn

∣∣∣∣].
(11)

Let ε′ = (ε′1, . . . , ε
′
N) be a random variable that is independent to and has the identical

distribution as ε. Then, we have that

Eε

[
sup

Z∈H(l)

∣∣∣∣∣
N∑
n=1

εn[Ã(µ(l))Z]n

∣∣∣∣∣
]

= Eε

[
sup

Z∈H(l)

∣∣∣∣∣
N∑
n=1

εn[Ã(µ(l))
1

2p
Eε′ [ε′ε′>]Z]n

∣∣∣∣∣
]

(∵ Eε′ [ε′ε′>] = 2pI)

≤ 1

2p
Eε,ε′

[
sup

Z∈H(l)

∣∣∣ε>Ã(µ(l))ε′ε′>Z
∣∣∣] ≤ 1

2p
Eε,ε′

[∣∣∣ε>Ã(µ(l))ε′
∣∣∣ sup
Z∈H(l)

∣∣∣ε′>Z∣∣∣]

=
1

2p
Eε′
[
Eε
[∣∣∣ε>Ã(µ(l))ε′

∣∣∣] sup
Z∈H(l)

∣∣∣ε′>Z∣∣∣]

≤ 1

2p
Eε′
[√

Eε
[(
ε>Ã(µ(l))ε′

)2
]

sup
Z∈H(l)

∣∣∣ε′>Z∣∣∣] =
1

2p
Eε′
[√

Eε
[
ε′>Ã(µ(l))εε>Ã(µ(l))ε′

]
sup

Z∈H(l)

∣∣∣ε′>Z∣∣∣]

= Eε′
[√

ε′>Ã(µ(l))2ε′ sup
Z∈H(l)

∣∣∣ε′>Z∣∣∣] ,
where we used Eε[εε>] = 2pI in the last equation. Here, by the Hanson-Wright concentration
inequality (see, for example, Theorem 2.5 of (Adamczak, 2015)) implies that

P[|ε′>Ã(µ(l))2ε′−Eε′ [ε′>Ã(µ(l))2ε′]| ≥ c(
√

2p‖Ã(µ(l))2‖F
√
t+‖Ã(µ(l))2‖t)] ≤ exp(−t) (t > 0),

with a universal constant c, where ‖A‖F =
√

Tr[AA>]4. Moreover, Talagrand’s concentra-
tion inequality yields

P

∣∣∣∣∣ sup
Z∈H(l)

ε′>Z

∣∣∣∣∣ ≥ c′
Eε′

[
sup

Z∈H(l)

∣∣∣ε′>Z∣∣∣]+

√√√√Nt sup
Z∈H(l)

N∑
n=1

Z2
n/N + t sup

Z∈H(l)

‖Z‖∞

 ≤ e−t (t > 0),

4. There also exists a uniform type Hanson-Wright inequality.

Layer-wise Adaptive GCN Using GPR

where c′ > 0 is a universal constant. Then, by noticing that Eε′ [ε′>Aε′] = 2pTr[A], these
inequalities yield

Eε′
[√

ε′>Ã(µ(l))2ε′ sup
Z∈H(l)

∣∣∣ε′>Z∣∣∣]

≤
∫ √

2pTr[Ã(µ(l))2] + c(
√

2p‖Ã(µ(l))2‖F
√
t+ ‖Ã(µ(l))2‖t)

c′(|Eε′ sup
Z∈H(l)

ε′>Z|+
√
t‖H(l)‖2 + t‖H(l)‖∞)2 exp(−t)dt

where we define ‖H(l)‖∗ := supZ∈H(l) ‖Z‖∗ for ∗ = 2 and∞. The right hand side can be fur-

ther bounded as C
√

Tr[Ã(µ(l))2]
(
Eε′
[
supZ∈H(l)

∣∣ε′>Z∣∣]+ ‖H(l)‖2
)

for a universal constant
C, where we used 2p ≤ 1.

Since the output is bounded by the assumption on the activation function, we have
supZ∈H(l) ‖Z‖2 ≤

√
NR =: D. Now substituting the above result back to (11), we have

Q−1R(H̃(l+1), p)

≤ B(l)(1− α)

[
C

√
Tr[Ã(µ(l))2]

(
Eε sup

Z∈H(l)

∣∣∣∣ N∑
n=1

εnZn

∣∣∣∣+D

)]
+ αB(l)Eε

[
sup

H∈H̃(0)

∣∣∣∣ N∑
n=1

εnHn

∣∣∣∣]

≤ B(l)(1− α)

[
C

√√√√ N∑
i=1

(K−1∑
k=0

µ
(l)
k λ

k
i

)2(
Eε sup

Z∈H(l)

∣∣∣∣ N∑
n=1

εnZn

∣∣∣∣+D

)]

+ αB(l)Eε

[
sup

H∈H̃(0)

∣∣∣∣ N∑
n=1

εnHn

∣∣∣∣]

= CB(l)(1− α)

[(N∑
i=1

K−1∑
k=0

µ
(l)
k |λi|

k

)(
Q−1R(H(l), p) +D

)]
+ αB(l)Eε

[
sup

H∈H̃(0)

∣∣∣∣ N∑
n=1

εnHn

∣∣∣∣],
(12)

where λt is the t-th eigenvlaue of Ã and we have used the used

√∑N
i=1(

∑K−1
k=0 µ

(l)
k λ

k
i)

2 ≤∑N
i=1

√
(
∑K−1

k=0 µ
(l)
k λ

k
i)

2 =
∑N

i=1

∣∣∑K−1
k=0 µ

(l)
k λ

k
i

∣∣ ≤∑N
i=1

∑K−1
k=0 µ

(l)
k |λi|

k.
Since σ is 1-Lipschitz using the contraction property from Proposition 10 of (Oono and

Suzuki, 2020b), we have
R̄(H(l+1), p) ≤ 2R̄(H̃(l+1), p),

leading to reduction in (12) to

Q−1R̄(H̃(l+1), p) ≤ C2B(l)(1− α)

[(N∑
i=1

K−1∑
k=0

µ
(l)
k |λi|

k

)(
Q−1R̄(H̃(l), p) +D

)]

+ αB(l)Eε

[
sup

H∈H̃(0)

∣∣∣∣ N∑
n=1

εnHn

∣∣∣∣]. (13)

Wimalawarne Suzuki

Given that F = H̃(L), the final reduction using (13) leads to

Q−1R̄(F , p) ≤ C ′α
L∑
l=1

(1−α)l2l
l−1∏
j=0

{
B(L−j)

(N∑
i=1

K−1∑
k=0

µ
(L−j)
k |λi|k

)}
Eε

[
sup

H∈H̃(0)

∣∣∣∣ N∑
n=1

εnHn

∣∣∣∣]

+ C
′
(1− α)

L∑
l=1

(1− α)l2l
l∏

j=0

B(L−j)
(N∑
i=1

K−1∑
k=0

µ
(L−j)
k |λi|k

)
D. (14)

By construction of F , we know that R̄(H̃(0), p) = Eε

[
supH∈H̃(0)

∣∣∣∣∑N
n=1 εnHn

∣∣∣∣], and we

have that

R̄(H̃(0), p) ≤ 2R̄(H(0), p) = 2Eε

[
sup

w∈RC0 :‖w‖1≤B(0)

∣∣∣∣∣
N∑
n=1

C0∑
c=1

εnXncwc

∣∣∣∣∣
]

= 2B(0)Eε

[
max
c∈[C0]

∣∣∣∣∣
N∑
n=1

εnXnc

∣∣∣∣∣
]
≤ 2B(0)Eε

[∥∥∥∥∥
N∑
n=1

εnXn·

∥∥∥∥∥
2

]

≤ 2B(0)

√√√√Eε

C0∑
c=1

(
N∑
n=1

εnXnc

)2

(∵ Jensen Inequality)

= 2B(0)

√√√√Eε

C0∑
c=1

N∑
n,m=1

εnεmXncXmc = 2B(0)

√√√√ C0∑
c=1

N∑
m=1

2p(Xmc)2

= 2B(0)
√

2p‖X‖F.

Given that p = p0 = MU
(M+U)2

, we have

R̄(H̃(0), p0) ≤ 2B(0)

√
2MU

(M + U)2
‖X‖F. (15)

By combining (15) with (14), the resulting final Rademacher complexity bound is given
by

Q−1R(F , p0) ≤Q−1R̄(F , p0)

≤C ′
{√

2MU

(M + U)2
B(0)α

L∑
l=1

(1− α)l2l
l−1∏
j=0

{
B(L−j)

(N∑
i=1

K−1∑
k=0

µ
(L−j)
k |λi|k

)}
‖X‖F

+ (1− α)

 L∑
l=1

(1− α)l2l
l∏

j=0

B(L−j)
(N∑
i=1

K−1∑
k=0

µ
(L−j)
k |λi|k

)D}, (16)

by redefining the universal constant C ′ if necessary.
GCNII Proof of Corollary 1. By replacing the generalized Pagerank Ã(µ) with the

normalized adjacency matrix Ã, which is equivalent to setting µ
(l)
1 = 1 and rest of the

elements in µ(l) to zero, we obtain the desired result.

	Introduction
	Review
	Proposed Method
	Learning Sparse Solutions for GPR

	Theoretical Analysis
	Experiments
	Setup
	Semi-Supervised Node Classification
	Fully-Supervised Node Classification
	Layer-wise GPR Adaptation

	Conclusions
	Proofs of Generalization Bounds

