LEARNING WITH INTERACTIVE MODELS OVER DECISION-DEPENDENT DISTRIBUTIONS

Supplementary Material (Appendix)

Appendix A. Auxiliary Lemmas
We begin with some helpful lemmas as follows:

Lemma 16 (Berge’s Maximum Theorem (Aliprantis et al., 2006)) Let ¢: X — Y
be a continuous correspondence between topological spaces with nonempty compact values,
and suppose f: X x Y — R is continuous. Define the “value function” m : X — R by

m(x) = max f(x,y) ,
() ye¢(z)f( Y)

and the correspondence u: X — Y of mazximizers by

w(x) ={y € o(x) : fz,y) = m(z)} .
Then
e The value function m is continuous.

e The “argmax” correspondence [ is upper hemicontinuous and has nonempty compact
values.

Lemma 17 (Kakutani’s Fixed Point Theorem (Kakutani, 1941)) Let S be a com-
pact nonempty convexr subset of R™, and let ¢ : S — 25 be an upper hemicontinuous
correspondence, and ¢(x) is nonempty, closed and convez for every x € S, then ¢ has a
fized point s.t. x € ¢(x).

Lemma 18 (Bubeck (Bubeck, 2015)) Let f: R — R be a 5-smooth, y-strongly convex
function, then for every x,y € R,

By
B+

Lemma 19 (Kantorovich-Rubinstein (Villani, 2009)) A distribution map D(-) is €-
Lipschitz continuous if and only if for every 6,0' € O,

(Vf(z) = V() (@ —y) = lz = yll3 + Bi,yHVf(w) - Vi3 -

supy {|Ep0)9(2) — Eropn9(2)|} <€ll0 =02,
where g : R* — R, g is 1-Lipschitz function.

Lemma 20 (Banach Fixed Point Theorem (Aliprantis et al., 2006)) Let (X,d) be
a complete metric space and for every function f : X — X if there exists a constant
0 < ¢ < 1 such that for Ve,y € X,d(f(x), f(y)) < cd(z,y) then f has a unique fized point
x. Moreover, for any choice xg € X the sequence defined recursively by

Tn4+1 = f($n)7 n:071727"' )
converges to the fived point x and satisfies that for every n € N, we have

d(zp,x) < d(xg, ).
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Lemma 21 (Fournier&Guillin (Fournier and Guillin, 2015)) Let P(R?) denote the
set of all probability measures on R%, define §au(D) = fRd eIz gD, Assume that when
Ja > 1, 3D € P(RY),3u > 0, &4,,(D) < 0o holds, then for every N > 1, t € (0, 00),

P(Wi(DY,D) > t) < a(N, t)1y<1y + (N, 1) ,
where N is the number of sampled instances, and we define a(N,t),b(N,t) as follows

a(N,t) = C’ea:p(—cNtd) ,
b(N,t) = Cexp(—cNt*) 1y

where C, ¢ are constants, and only depend on d, o, pt, (D).

Appendix B. Proofs of Main Results
This section presents the detailed proofs of Example 1 and Theorems 6-15.

B.1. Proof of the Lipschitz continuity for Example 1

Denote by u(m;@i,ﬁé) = ﬁ(m&* - hi(x;Hi)] — |20, — hQ(x;GQ)]). In Example 1, the
transport distance for each instance (z, y) is bounded by the Euclidean distance between
the shifted y. Specifically, for every 01,62, 0' 62" € ©, y would shift from 26, + u(x; 6, 6?)

to x0y + pu(z; Hil, 92/), and it can be bounded as follows:

|00, + p; 01, 6%) — 26, — pu(z: 0", 6%)]

= ﬁ“xﬁ* — 20! + bl — |0, — x6? — bl — |20, — 20V + bl + |20, — 262 — ||
< ﬁ(bﬁi/ - xGi| + \xﬁi - 3392/\)
€ ‘U 7 51 5
< ——(jo" o' 0> — 6
< o107 — 0]+ 10% — 2]

< ¢|(6",6%) - (61,6%)], -

Therefore, the optimal transport distance between any pair of distributions D(Gi, 92) and
D(0Y,6?) can be upper bounded in the same way, i.e.,

Wi(D(60",6%), D(0",6%)) < €||(67,6%) - (6",6%)], -
Hence, the distribution in the Example 1 follows the e-Lipschitz continuity. ]

B.2. Proof of Theorem 6
We begin with model 1. We denote by gi(é?) = argminy; .o E.p(9)fi(2; 91) and f1 (0, 91) =

E.p@)li(2; 91), for § € ©72, ol ¢ O, for simplicity.
Firstly, with the e-Lipschitz continuity for the distribution D(f) and the continuity for
the loss function ¢;, it is obvious that f 1(9,01) is also continuous. Since the parameter
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space © is nonempty and compact, by applying Berge’s Maximum Theorem (Lemma 16),
we can conclude that g'(0) = arg ming cg f1(6,6%) is upper hemicontinuous with nonempty
compact values for every § € ©2. The same statement also holds for model 2. Let g(6) =

gt (9) x gi(e) be the Cartesian product of ¢g' and gi, and apparently g(6) is also upper
hemicontinuous.

Therefore loss functions ¢; and /5 are convex, g(¢) is non-empty and convex set for every
6, and is also upper hemicontinuous. With Kakutani’s Fixed Point Theorem (Lemma 17),
we can conclude that g(#) has a fixed point, which completes the proof. U

B.3. Proof of Theorem 7

For simplicity, we first denote by G(0) = (G;(0),G5(0)) with
G;(0) = argming o E.p(p) [:(2; 9%)] for 7 € [2].

2

Here, G;(0) denotes the output in one-step by RRM with input 6 = (01,92). For every
01,0, € ©2, denote by

f1(0) =E..po)[6;(2,0)] and f5(0) = E,p(e,)[6:(2,0)] for i€ [2].
Since f1i is ~y;-strongly convex, we have

FUG1(0) — [1(G1(82) = G1(61) 'V f1(G1(62)) — G1(82) "V f1(G1(62))

A 1
+%Hci(91)—6‘1(62)\l%, v

UG (82)) — [1(G1(61)) = G1(62) "V FL(G1(81) — G1(61) "V FL(G1(61)) o)
+ L1G1(62) = Gy ()3 -

Because G (61) minimizes f1(6), with the first-order optimality condition, we can infer that
(G1(62) — G1(01)) "V f1(G3(61)) > 0. (3)
Therefore, with Eqns. (2) and (3), we have
F(G1(02)) = F(G1(01) > (G1(62) = Gy(6) "V (Gy(62)) + Gy (62) — G100 3
L1G1(62) = G103

v

Together with Eqns. (1) and (4), it follows that
—71[G1(61) = G1(82) 13 > (G1(61) — G1(02)) "V f1(G1(62)) -
It also holds for model 2 that

—73|G5(01) — G3(02)|I3 > (G3(61) — G5(02) TV (G (62)) -
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Adding two inequalities together, we have
~ Ymin[[G(01) — G(02)]3
> (G1(61) — G1(62)) TV f1 (G1(62)) + (G3(61) — G5(82)) "V [ (G5(62)) (5)
= (G(61) — G(62))"V f1(G(62)) ,
where Yomin = min{yy, 73}, and Vf1(G(62)) = (VFH(G1(62)); VF2(G5(62))) is the concate-
nation of two gradient vectors.
Then, to prove the target, we only need to find the relationship between ||6; — 62| and
(G(61) — G(02))TV f1(G(2)) . With Cauchy-Schwarz inequality and the -smoothness of
losses (1, {3, we can infer that (G(61) —G(62))TVel(z; G(62)) is B||G(61) — G(62)||2-Lipschitz
continuous in z, where § = (ﬂf +,8§)1/2. Denote by g(z) = (G(61) — G(62)) T Vel(z; G(62)),
with Lemma 19 we can derive that

(G(61) = G(82)) " (V f1(2,G(82)) = V fa(2;G(62))) = —€B||G(61) — G(62)]|2]|61 — b2 -
While G; minimizes fi for i € [2], using the first-order optimality condition, we have
(G(61) = G(02)"V2(G(02)) 2 0.
This follows that
(G(61) — G(02)) "V f1(2; G(02)) > —€eB[|G(61) — G(02) 2161 — b2l - (6)
Finally, with Equs. (5) and (6), we have
~Ymin[|G(01) — G(62)[13 2(G(61) — G(82))" V [1(G(62))
> — ¢B]|G(61) — G(82)]|2]161 — 22 -
By eliminating ||G(61) — G(62)]||2 from both sides, we further have

g

min

1G(01) — G(02)]]2 < €

161 — 2|2 -

Finally, we only need to put fpg and f7_; into the inequality above and get
107 — Opsll2 = [(G1(01-1), G5(07-1)) — (G;(0ps), G5(0ps))||2

< (e(8} + B3)7 / min{y3,7}) 671 — O]

< (08 + B3)2 / min{y3.25}) " 160 — bsle

which completes the proof. O

B.4. Proof of Theorem 9

The proof sketch follows that we consider two cases: when ||y — Opg|l2 > r and when
10 — Opsll2 < 7.
Let D™ (0) denotes the empirical distribution consists of training sample S, drawn i.i.d.
from distribution D(#), then the update function for two models in RERM can be written
as

G*(0) = arg mingicoEwpne (g)4i (2 %) for i€ [2].
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For ||0; — Ops||2 > r:
With the triangle inequality for Wasserstein-1 distance, we have

Wi(D™(0:), D(0ps)) < Wi (D™ (0:), D(6r)) + W1(D(6:), D(0ps)) - (7)
For W1(D(6;), D(6ps)), since D(+) is e-Lipschitz continuous, which reveals that
Wi(D(6:), D(fps)) < €[|0; — Opsl2 - (8)
As for W1 (D™ (6;), D(6;)), by applying Lemma 21, when er = 2 < 1, we have
§ = P(W1(D™(6;), D(6;)) > er) < crexp(—cany(er)*™) .

A short calculation infers that

1
= ———log(=) .
Denote by § = 1 — vx2t2 — 66/(mt), when ny > log (wtcr/(mt — Vw2t2 — 66)) /ca(er)?™, we
have 65
B(WL (D™ (6. D(8) > er) < o0y 0

where ¢, co are constants and only rely on m, a, 11, {q (D).
Therefore, by Eqns. (7)-(9), with probability at least v/7w2t? — 6/(wt), we have that

Wi (D" (0:), D(0ps)) < er + €|0; — Ops]l2 < 2¢[|6; — Opslz - (10)

For model 1, with the first-order optimality condition, we have

(G*(6:) = G1(00s)) " Exnp(ps) Vol (25 G (0ps))
(G (6r) — G1(0ps)) "E.pne (00 Voli(z; GY (6r))

v

0,
0,

IN

and this follows that,
(G7(6:) — Gy (6ps)) " (Ezrmnt(et)vefi(z; G (61)) —Eznp(ons) Veli(2;Gi(fps))) < 0.
A further calculation reveals that
(G2(01) = G (0)™ (Eammma o) Vol (23 G2 (0)) — Bxnpions) Voli (2: G4 (61)))

+ (G (0:) — Gy (6ps)) " (EZND(QDS)Vefi(Z; G (01)) — Ezp(ops) Voli(2; G1(9Ds)))
<0.

For model 2, we have the same conclusion, i.e. there is probability at least v/72t2 — 60 /(t)
that

(G5 (6:) — G5 (0ps)) " (Ezwnt(et)ve%(z; G3'(64)) —Ezup(ops) Vols(2: G3' (9t))>

+ (G5 (6:) — G3(0s)) <Ez~p(9Ds)Vefg(z; G2 (01)) —Eanp(ons) Vola(2; Gy (0ps)))
<0.
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Adding two inequalities together, we have
(G™(0;) — G(0ps)) " (Esmpne (0, Vol(z;G™(0r)) — Ep(ops) Vol (z: G™ (0))) (1)
+ (G™(0;) — G(0ps)) " (Eznp(ops) Vol 2 G™ (61) — Ezpiops) Vol(z; G(0pg))) <0 .

The probability of that Eqn. (11) holds is at least (v/72t2 — 66/ (nt))? = 1—65/(72t?). With

Cauchy—Schwarz inequality and the S-smoothness of loss /5, /5, we can easily infer that

(G™(0;) — G(0ps)) "B, upne (,) Vol (z; G (0y)) s Bl G™ (6;) — G(Bpg)||2-Lipschitz continuous

in z, where 8 = (ﬁf + 622)1/2. By applying Eqn. (10) and Lemma 19, we have that
(G™(0;) — G(0ps)) " (Eppre (0, Vol(2; G (0;)) —Ep(ops) Vol(z; G™(61)))
> —2¢f||G™(0;) — G(0ps)|2]16: — Opsll2 -

As for the second term in Eqn. (11), since ¢; is y;j-strongly convex and 5 is ~3-strongly
convex, we have

(G (6:) — Gy (fps)) " ( =~D(0ps) Voli (2 G (01)) —Ezwp(ops) Voli(z; Gi(0ps)))
> 71| G (6s) — Gy (0ps) |3 -
(G5 (6) — G3(0ps))* (EZND(GDS)VGKQ(Z; G5 (01)) —Ezp(ons) Vols(z; Gs(0ps)))
> 73| G5 (6:) — G (0ps) |13 -

Thus, we further have

(G™(0:) — G(0ps)) " (Ezup(ops) Vol G™(61)) —Ep(ops) Vol(z; G(0ps)))

(12)

. ) (13)
2 Ymin[|G™ (0;) — G(Ops)]f3 -
With Eqns. (11)-(13), we can conclude with probability at least 1 — 65/(7%t?) that
n 2¢
G (8) — Gy (Bl < 2 2 6.~ sz (14)

Note that the probability of which for all t € N*, Eqn. (14) holds at the same time can be

calculated as follows:
=, 60
(1- th - «W =1-0.

t=1 t=1

',:]8

For ||0; — Opslla < r:
Similarly, by applying triangle inequality, we have

Wi(D"(6:), D(0ps)) < Wi(D"(0:), D(6:)) + Wi(D(6:), D(6ps))
< Wi(D™(6;),D(6)) + er .
By Lemma 21, with the probability at least v/72t2 — 65 /(nt),
Wi (D" (0;), D(0ps)) < er + er = 2er .
With similarly proof, by Lemma 19, we have
IG™(0) = Gl6ps) 2 = 1001 — Opslla < 22

This completes the proof by combine Eqn. (14) with Eqn. (15). O
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B.5. Proof of Theorem 11
We can firstly prove that for every 61,0, € ©2, the following holds.

|Gaa(61) = Gya(02)]l2 < ( n(fj7 — B2+ 218+ 1eB)) )61 — all>

where Ggq i(0) = e (0 —1E...p(9) Vel;(2; 0")) for i € [2] denote the update of the parameter
for each model in RGD.

Because projecting onto a convex set can only bring two iterates closer together, we would
ignore the projection operator in the following proof. Thus, the update formulas for each
model can be shown as follows.

0Ly = Gy i(0r) = 0} — nE.p(s, Voly (% 6}) |
071 = Gyq5(01) = 07 — NEp(o,) Vols (2 67) .
Firstly, we consider model 1, and we have
1G41(01) = Goq 1 (62)113
= HQ% - UEZND(el)Veﬁi(Z;H}) — 6} +NE2p(6) Vol (2; 9%)”2
= 16} — 6313 — 20(61 — 03) (Eawipior) Vol (2:61) — Exopoy) Voly (2:63))

a A 112
+ 7 ‘ E.p(oy) Voli(2;01) — Eoopioy) Voli(2; 9§)H2

The equation above would also holds for model 2. Adding them together, we have

[GalBr) — Gua(O)I3 = Gy (81) — Gy I3 + Gy 5(61) — G (62
= (|61 — O2[5—2n (61 — 02)" (E.p(a,) Vol (25 61) —Epo,) Vel(z; 62))
+ 1% || Esupioy) Vol (25 01) — Eop(o,) Vol (2 02) Hz
=Ty — 2nTs + n*T; .
where Vyl(z;0) = (V(;Ei(z;ﬂi); Vols(z; 92)) is the concatenation of two gradient vectors,
and 17,75, T3 is defined as below
Ti =6 — 6af3 ,
Ty = (61— 602)" (Baup(on) Vol(z:01) —E.up(o,) Vol(z:62)) |
T3 = ||E.up(o,) Vol(z:01) _EzwD(Gg)VGE(Z§02)H; :
Next, we analyze each term individually. Starting with 75, we have
Ty =(01 — 02)" (Eop(o,) Vol(2:01) — Eop(o) Vol(z; 02)
+ E.p9,)Vol(2;02) — B, p(a,) Vol(z; 02))
=(01 — 02)" (Eoup(o,) Vol(2;02) — Ep(ay) Vol(z; 62))
+ (01— 02)" (Eop(o,)Vol(z;61) — Eoopo,) Vel(z; 62)) -
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Applying Cauchy—Schwarz inequality to the first term of Eqn. (16), we have

Ty > — |01 — O2]l2 |Eupioy) Vol (z; 02) —Epia,)Vol(z;02)],

- (17)
+ (01 — 02)" (Ezp(o)Vol(2;01) —E. p(a,) Vol(z 792)) :

With the e-Lipschitz continuity of distribution D(f) and S-smoothness of losses ¢;, (5, by
Lemma 19, it reveals that

|Ezpioy) Vol (2;01) — Eup(o,) Vol(z; 01) ||, < Bel|61 — ]2
where 3 = (Bf + 35)1/2. Put it back to Eqn. (17), we have

T2 > —BeHOl - 92”% + (91 - 92)T (]EZN'D(02)VQE(Z; 91) - EZND(GQ)VGE('Z; 92)) .

As for the second term of Eqn. (16), because loss /1,5 are both Spax-jointly smooth and
Ymin-strongly convex, where Sy = max{fj, 55} and yyin = min{~j,v5}. With Lemma 18,
we have

(01 — 02)" (Ezp(a,) Vol(2;01) — ELupe,) Vol (z; 62))
= (0f —03)" (Ezwp(gl)VMi(z; 01) — E.up(o,) Vol (2 95))
+(07 — 03)" <Ez~D(91)V0£Q(Z; 07) — Eoup(or) Vols(z; 95))

Bmax'}’min i in92 1 : : 9
2 g M= Ofp+ . \Vﬂze—VﬂzﬂH
/Bmax+7min|| ! 2”2 Bnlax+’7min #~D(61) 0 1( 1) 6 1( 2) 9
BmaxYmin 5 5019 1 5 Nt
PmaxVmin_ g2 gq2y - g W@zw —VﬂzHH
Bmax + Ymin H ! 2 H2 Bmax + Ymin #~D(01) 0 2( 1) 0 2( 2) 9
BmaxYmin 1 9
- mll% = Oafl3 + E— () IVol(z;61) — Vol(z:62)]]3
> Pmaimin g2 B o) [Vol(z: 61) — Val(z:02)]|

ﬁmax + Ymin Bmax + Ymin

Hence, we finally can get the following inequality for 75:

_PmaxYmin 1

Ty >(—€B + 01— Ooll3+———
( 5rnax + Ymin ) H ||2 /Bmax + Ymin

B (o) [Vol(z; 01)— Vol (2 0,)]]2 -

As for T3, we have
Ts =||E.p(o,) Vol(z;61) — Eopor) Vol (2; 62)
+ E.up6,)Vel(2;02) — E, p(g,) Vel(z; 02) H§
= ||E.p(0) Vol (2;61) — Epopioy) Vol (2; 92)“5
+ || Ezupion) Vol (25 02) — Eop(oy) Vol (2; 92)“3
+2 (Eonp(on) Vol (2 61) — Exp(oy) Vol (2 62)) "
(Eznp(o)) Vol(2;02) — Eoop(oy) Vol (2 62)) -
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For the second term in Eqn. (18), with the same calculation in Eqn. (B.5), we can infer
that

B (o) Vol (z: 02) — Eoopoy Voll(z: 02)||2 < 52|01 — 613 .

As for the third term in Eqn. (18), we can define the unit vector v as follows.

E.~p(0,)Vol(z;01) — E.op(a,) Vol(2; 62)
HEZND 01y Vol(z;01) — B, po,) Val(z; 02)],

This follows that
2 (Eop(o)Vol(2;01) — E,up(a,) Vol (z; 02 )T( E.p(6,) Vol (2;02) — B op(,) Vol(z; 02))
= 2||E.~p(6,) Vol (2 01) — E.up(e,) Vol(z: 02) |,
- (Eop(on) Vol (2 02) — B, up(o,) Vol(2; 92)) v
= 2||E.p(0,)Vol(2; 01) — Erop(a,) Vel(z; 02)]],
- (Bamp(onv Vol(z;02) — Eoupo,) v Vol(2;602))
. (19)
Similarly, with B-smoothness, vTVyl(2;0) is -Lipschitz continuous. By the e-Lipschitz
continuity of D(f), with Lemma 19, we have
E.p@v Vol(z;01) — Eupo, v’ Vol(z:01)
= ’ EZND(gl)UTVQK(Z; 0%) - EZND(QQ)’UTVQK(Z; 0%) H2 (20)

< Be|61 — 6] -

By the definition of S-smoothness, we have
|E2p(05) Vol (25 01) — Eupio,) Vol (25 602) ||, < BmaxllOr — b2]2 - (21)
Therefore, put Eqns. (20) and (21) back to Eqn. (19), we can infer that
2 (E.(y) Vol (2 01) — Ep(o) Vol(2:62)) " (Eonp(oy) Vol(2; 02) — Eup(ay) Vol(z; 62))
< 26fmaxBl|01 — 0213 -
Hence, we can bound T3 as
Ty < (52 + 26BBmax) |01 — 02][3 + ||Ezupioy) Vol(z: 61) — Eopioy) Voll(z; 92)H§ :

Having bounded all the terms, we can finally conclude that

21 BmaxYmin 2 P
[Gua61) ~ GualB)3 < (1= Z80 43 i 1 e ) 1 — 2l

2
B <ﬁjr77 - "2> B~ im0 Voll2: 61) — Banpoy) Vol(2:62)];
max min
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Because BN / V2 < Brax < B, if the step size n small enough, satisfying n < 2/(Bmax + Ymin) <
2v/2/(B 4+ V2%min), We can then further bound it as follows:

20 Bun Vi i )
1Gga(61) — Gga(62)]3 < <1 - ﬁnﬂmi zml.l + 2n€B + 20*€BBmax + 1€ r211ax> 161 — a]f5
max min

27757min > 2 72 2 2732 2
S| 1= =+t 2meB+207ef + e B | |61 — ba]f5 -
( ﬁ + \/§7min

To ensure the contraction, we need 2nﬁ~ymin/(ﬁ~ + V2Vmin) — 2nef — 2n%ef2 — 222 > 0.
When € < 1, we have

27min
B + \/§7n1in

27111111
/8 + \/if)/min

€<

—26—2?7€B—U62BZ —26—31765>0,

2%Ymin
= = <1
(6 + \/§7min)(377/3 + 2)

Therefore, with a short calculation we have

267min

Gaa(61) — Gga(f2)|la < |1 -7 | =
1Gea(01) = Geal(f2)ll2 < U <5+\/§%ﬂm

— B2+ 2mB + 7765)> 101 — O2]]2 .
For x € [0,1], we have v/1 —2 <1 — Z, thus we can further simplify it as

[Gga(bh) — Gga(f2)2 < <1 -1 <B+ﬁ7\/ng;m1 —eB(1+nB+ 0-57765))) |01 — Oal2 . (22)

According to Banach fixed point theorem (Lemma 20), we can prove that when e <
2’ymin/[(ﬁ~ + ﬂ’)/min)(?mé +2)] < 1, there exists a unique fixed point, i.e., there exists
a unique decision-dependent stable point and two models will converge to this point.
Recursively apply Eqn. (22), we can get the convergence rate

_ T
|07 — Opsll2 < [1 -1 <5~fyx/rg;ml —eB(1+nB+ 0.5776/3))>] 160 — Opsl|2

< exp

~Tn (ij/% — eﬁ(l + 1B+ 0.5176/3))] 160 — Opsl2 ,

which completes the proof. O

B.6. Proof of Theorem 13

Here we follow the proof of Theorem 9, which considers two cases: ||6; — Opgl|l2 > r and
|60: — Opg|l2 < 7. Let D™(0) denotes the empirical distribution consists of training sample
S, drawn i.i.d. from distribution D(#), then the update function for two models in REGD
can be written as

Gt

nei(0) = Tle (0; — NEpni(9)Voli(z;0")) for i€ [2].
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For ||0; — Ops||2 > r:
When n; > log(%)/(ca(er)®™), with the probability at least /722 — 60/(nt) we have

Wi (D™ (6:), D(0ps)) < er+€l|f; — Opsll2
< 2€||6; — Opg]l2 -

Firstly, we consider model 1,
IG7 1(01) = Gyq 1 (Bs) 15
= {|6F — 76 Vot (23 03) 8+ (o) Vol (3 0bs)
= Heti - eli:)sH% - 277(91:;L - 91138>T (EzwD”t(et)v9£ (2; 9 ) = Eonpons) Vol (2 9DS)>

~ ~ 2
+ 7 ‘ Epme 00 Vol (2 01) — Ep(ops) Voli (2 91138)H2

The equation above would also holds for model 2. Adding them together, we have
1G5 (6e) — Gea(Ops) |13
= 1674 1(00) — Gaq 1 Cos)I3 + 167 5(60) — Gy 500313
= (16 — Opsll5 — 20(6; — Os) " (Bznpre (o) Vol (2 0:) — Expions) Vol(2; Ops))
+ 1% ||Ezpne () Vol (25 0¢) — Eopions) Vol (2; 9DS)H§ :
=Ty — 20Ty + 0T .

where Vyl(z;0) = (V(;Ei(z;ﬂi),VM@(z; 92)) is the concatenation of two gradient vectors,
and 17,75, T3 is defined as below

T = 6 —Opsl3
Ty = (0 —0ps)" (Esupni(o,)Vol(2;0:) —Ep(ope) Vol(2;0ps))
T3 = HEzND"t(Ht)VGE(z;gt) —EzND(gDS)ng(Z;HDs)Hi .

Next, we individually bound each of the three terms. For T5, we have
Ty =(0; — Ops) " (Bapne (0, V0l(2;0t) — Eoop(onsVol(z; 0t
+ B, p(ops Vol (2 0) —E popsVel(Z: 0ps))
=(0; — 0ps)" (Ezupne (o) Vol (2;61) —Euopops) Vol (2 61))

+ (0 — 0ps) " (Ean(ops) Vol(2:0:) —Ep(ops) Vol(z:0ps)) -
By Cauchy—Schwarz inequality,

— 16 = Opsllz ||Eznpre 0, Vol (2; 0:) —Epiong) Vol(z; 00|,

+ (0: — Ops) " (Baun(ops) Vol (25 0:) —Ep(ons) Vol(2:0ps)) -

Since loss (1, ¢2 are Bi-smooth and f5-smooth respectively, Vgl(z;0) is -Lipschitz contin-
uous in z with 8 = (ﬂf + ﬁ%)lﬂ. By Lemma 19, we have

HEzwD”t(Gt)vee(z; 9t) - EzND(eDS)Veﬁ(Z; Ht)HQ < 2B€||9t - 9DSH2 )
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which follows that
Ty > —2B¢|6; — Opsll3 + (6: — Ops) ™ (Ezwp(ong) Vol (2;01) —E.pions) Vol(2:0ps)) -
Because {5, /5 are both Byax-smooth and vymis-strongly convex, with Lemma 18 we have

Bmax “Ymin
B max T Ymin

Eomn(ons) [Vol(2; 0) — Vol(2; 00s)] |5 -

T Z—QBEHQt—QDSH%—F ||9t_9DS||%

1
Bmax + “Ymin

As for T3, we have

T3 = ||Ezupre (0, Vol(2;0:) — Eupiopng) Vol (z; 0r)
+E (o) Vol (2;01) — E.op(ops) Vol (2; GDS)H;
=||E.pre (0, Vol (2:0:) — Eropions) Vol (z; 61)
+ [|E2opions) [Vol(z; 0:) — Vol (z; 0ps)]| Z
+2 (Eqpre (6 Vol (25 61) — Eop(ong) Vol (z:61)
- (Exup(ong) Vol(2; 0:) — Euop(ane) Vol(2; 0ps)) -

I

For the first term, we can similarly get

9 -
B2 p(0,) Vol(z: 0:) — Eopons) Vol (2 01|, < 48°€ (10, — Ops]3 -
For the third term, we can define unit vector v as shown below

B, p(ops) [Vol(2;0:) — Vol(z;0ps)]
H]EZND (0ns) [Vol(2;0:) — Vol(z;0ps)]||,

A simple calculation reveals that

2(Eopre (9,) Vol (25 0;) —Eop(ope) Vol (z; 9t))T(Ez~D(9DS)Vef(Z; 0:) —E.p(ops) Vol (2; Ops))
= 2||Exp(ons) [Vol(z; 0:) = Vol (2; 0ps)]||, (Ezmpri (9, Vol (25 0:) —Eop(ong) Vol (2 6,)) v
= 2HEZND(9DS) [V(;E(z; 49,5) —ng(z; 92)] HQ(EZNDnt(gt)UTVQf(Z; (9,5) —EZND(QDS)UTVQK(Z; 6’75)) .

By the smoothness of /; and /5, vIVgl(2;0) is -Lipschitz continuous. With Lemma 19,

we have . -
E.pneo,)v Vol(2;0t) — Eoop(ops) v Val(z;0r)

= || Bsupre 00" Vol (25 01) — Euopions)v” Vol(z: 6],
< 2B3€||6: — ps2 -
With the definition of S-smoothness, we have
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where fyax = max{fj, 3;}. Hence, we can conclude that

2 (Expne (0, Vol (25 0¢) —Eoop(op) Vol (2 9t))T (E=np(0ps)V0£(2: 0r) = Bznp(ops) Vol (3 Os))

T
=2 || Ezup(ops) [Vol(z;0:) — Vol(2;0ps)] ||, (Eznpne (6, Vol (2; 01) — Ezp(ong) Vol(2:61)) v
< 4BBmaxel|0: — Ops|3 -

This follows that
Ts < 43%€* (|6 —0ps |13 +4BBmaxel| 0 —0ps 13+ | Ezop(ops) Vol (2 ) — B op(ons Vol (2; Ops) H; :

Therefore, we can finally prove that, if the step size n small enough, i.e. 7 < 2/(Bmax +
Yin) < 2v2/ (B + YminV'2). With probability at least (YT-L=69)2 — 1 _ 65 /(x242), we have

it
IG24(6:) — Gga(bns) 13

2 /Bm min P 2 3
< (1 _ Z7PmaxYmin + 4nep + 47726252 + 477265/8111&)() Het - HDSH%
/Bmax + /len

2n 2
— (= 1) ||Ezp(ops) Vol (2: 61) —Ep(ops) Vol(2; 0ps)||;
/Bmax + “Ymin
2 ; ~ ~ -
< (1 — ZBmaxTnin gl gy2e2B2 4 4n2e/3ﬁmax) 16 — fps|3
ﬁmax + Ymin
27]67min 5 2 52 2 2739 2
S|\ l—s—F%—— +4neB+4n"ef” +4n"e | |0 — Opsll5 -
( ,8 + \/if)/min 2

When € < 1, to ensure the contraction, we have

2’}’min

s ~ Ymin >
— e —4nef —Aneé?B > ——— — 2¢ —4Anef > 0,
B + \@Vmin

/8 + \/if)/min

“Ymin

= — <1
S Bt V) @i+ 2) =

Hence we have

1G4 (0) — Gea(Ops)|l2 = (041 — sl

<, |1-2n (ijg;mm —2€(B+7752+77652)>||9t — Opsll2
<|1-n ﬂ —2¢(B+nB% +ne?) | | 16 — Opsllz -
N B + \@’Ymin

For || — Opsll2 < r:
Similarly, by triangle inequality, we have with the probability at least v/ 72t2 — 6/ (wt) that,
Wi(Dgi(0:), Dga(bps)) < Wi(Dgg(6r), Dga(0:)) + Wi(Dga(6t), Dga(fps))
< Wi(Dyg(6), Dga(6r)) + er
< 2er .
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With similarly procedures in the proof above, we have

Ty = ||0: — GDSH% )

Ty 2 2fer6s — Bus a5 T 6, — g
1 2
o [Bapians V(21 00) ~Eapions Vot(z:00s) 5

x ~ 2
T3 <4B%€r* +45Bmaxer||0: — Ops |2t [|Eoupions) Vol 2; 01) —Epians) Vol (2 0ps) || -
With probability at least 1 — 65/(7%t?), for » < 1 we have

|G (B) — Gea(6ps) 13

21 Bmax Yimi N B} ~
< (1 ZWPmaxTmin g0 g 12 4 4nPe 5% 4 (dnfer + 4nP B Baer)||6r — s
/Bmax + Ymin
< (1— 2000min 0 OnglB + 4P + (Aner + An2Ber) 6, — Opso
/8 + \/§7min
QWB%nin 2 2 2732 2 3 232
< (1 — =————)r" +4n°epr* + (Anfer + 4n°Ger)r
/8 + \/§’Ymin
216%min 2 279 > 272\ .2
< | 1= =———+4n°e"° + dnBe + 4n~ L% | r=.
( B + \/§’Ymin

Similarly, to ensure a contraction, we further have

[G4a(0t) — Gea(Ops)ll2 = [|0e+1 — sl

B’Ymin > P P
<a|l=2n(=——2z— —2e(B+nB%+nep?) |r
<ﬁ + \/§'Ymin
<(1-n|=—F2"— Bimin__ 2¢(B+nB> +nef) | | r,
B + \/imein
which completes the proof. ]

B.7. Proof of Theorem 15

For model 1, because © is convex and closed, projection can only bring iterates closer to
the stable point, i.e.

1611 — 0bg13 = ITe (0} — nVey(2:01) — 05613 < 10 — eV e5 (217 08) — 0Lg13 .

Splitting the expectation of the square into three terms, we have

E |} —nive; (= 6) = Obsll3] = E [16] - 6bsl3] — 2mE |ve3 (=1 61)7 (6] — 0bs)]

+ 7B [V (=75 013 -
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Hence, for two models, we have:
E (1041 — OpslI3] = E (11041 — 0bs3] +E [102,1 — 03s3]
< E [0, — 0ps3] - 20 [VA(=0500)T (0, — bps)| + n?E [IVe(=; 00 ]

=Ty — 20Ty + 0T ,

where V/(z®);6;) denotes (Vﬁi(z?;Qt);VKQ(zét);Ht)), the concatenation of two gradient
vector for models. Then, we can bound each term respectively. To begin with 75, since fpg
is the optimal parameter for two models, we have E [Vﬁ(z(eDS); Ops) T (6; — HDS)] > 0 with
first-order optimality condition. We can bound 75 as:

T, >E [Ve(z(t); 0:)" (6: — QDS)} —E [VK(Z(GDS); Os)" (6 — 9DS)]

=E [(Vg(z(t)Q 0r) — V(23 0,) + VI(2%); 0pg) — VE(z); 0pg)) T (6, — GDS)}
(23)
= E|(V(=:0,) — VE(z702):6,))" (6, — bps)|

+E [(VZ(Z(M; Ops) — VE(z1%5);6ns))T (6, — QDS)} :
For the first term in Eqn. (23), by applying law of total expectation, we have

E [(W(z@); 0,) — VE(2%5);9,))T (6, — eDS)}

) [E [(W(z@); 0,) — V(=) 0,)) (6, — HDs)\HtH :

Note that when it is conditional on 6;, with Cauchy-Schwarz inequality and jB-jointly
smoothness of £, V{(z;0;)T(6; — Opg) is 3||0; — Ops||2-Lipschitz continuous in z. Therefore,
by applying Lemma 19 with e-Lipschitz continuity of distribution D, we have

E [(Vﬂ(z(t); 0,) — VI(25);0,))T (6, — 9DS)}
—E [E [(Vé(z(t); 0,) — VI(25);0,))T (6, — HDS)‘@”
> —efE [||6, — Ops|l3] -
For the second term in Eqn. (23), we use the ymin-strongly convexity of ¢ and get:
E [(Ve(=%); 6ps) = Ve(="): 65))" (6 — bps)|
= E [E [(VA(="); 005) = VE(2); 005)) " (61 — 00s)161] |
> YminkE |16 — Ops3] -
Adding the two inequality together, we can finally bound 75 as:

Ty > (Ymin — €B)E [|16: — Ops]13] -
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Now we consider T5. With the assumptions on the variance on the expected norm of
gradients, we have:

E[IVez1;00)[3] < 62 + L2 [16: — G(6:)]3]
= &7 + LB [[10; — Ops + Ops — G(0,)][3]
< 5%+ L (E (100 = Ops]l2 + 1005 — G(0)]2)°] )

2
5. ) E [||6; — Opsll3] ,

<&+ 12, (1+e
Ymin
where 6 = a% + ag, Lyax = max{Lj, Ly}, and the last step follows the first statement in
the proof B.3. Adding all the three terms together, we can get that
<\ 2
E (1041 — 0psl3] < | 1 — 20t (min — €B) + 07 L ax (1 + e%i) E [||6: — Ops||3] + nio>.

Since € < Ymin/ B , we can further get
E 0001 — 0ps13] < (1= 20 (min — e8) + 4L ) E [0 — s3] + 152
We now can give the rest of the proof by induction on ¢. Let to = 8L2. /(Ymin — €5)?, and
Nt = 1/(Ymin — €8)(t + to). Assume that for ¢ € N, it holds that
max{262, 8L, 101 — Ops|3}
(Ymin — €8)?(t + to)

E [[|6:41 — 6ps|3] <

then it follows that
E [[|6¢4+1 — QDS”%]
< (1 — 20 (i — ) + 47 L ) E (16, — s3] + 75>

— 4Lmax 5
< S (Hto iig)m‘ﬁ) max {252, 8LmaXH01—0DSH§}+(th
< B 2<t+f+°;015max{2a S0~ 005l } + o
< o 2<t;‘iot0 max {252, 8Lmax||91—eDs||§}—W)
1 1

max {26%,8L2 . [|61 — Opsll3}

B ('Ymin - EB)2 L+t+to

where the last step follows (¢ +t9)? > (t+t9)? — 1 = (t +to+ 1)(t +to — 1). This completes
the proof by setting t =T — 1. O
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