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Abstract

Physiological signal classification is of great significance for health monitoring and medical
diagnosis. Deep learning-based methods (e.g. RNN and CNN) have been used in this
domain to obtain reliable predictions. However, the performance of existing methods is
constrained by the long-term dependence and irregular vibration of the univariate physi-
ological signal sequence. To overcome these limitations, this paper proposes a Multi-scale
Progressive Gated Transformer (MPGT) model to learn multi-scale temporal representa-
tions for better physiological signal classification. The key novelties of MPGT are the
proposed Multi-scale Temporal Feature extraction (MTF) and Progressive Gated Trans-
former (PGT). The former adopts coarse- and fine-grained feature extractors to project
the input signal data into different temporal granularity embedding spaces and the lat-
ter integrates such multi-scale information for data representation. Classification task is
then conducted on the learned representations. Experimental results on real-world datasets
demonstrate the superiority of the proposed model.

Keywords: Physiological signal classification, Time series data, Multi-scale representa-
tion, Transformer.

1. Introduction

As a type of time series data, physiological signal data are sparkling in the field of intelligent
healthcare with the maturity of sensor technology, especially the increasing usage quantity
of wearable devices. Knowledge discovery or pattern recognition from physiological signal
data is of great significance for both health monitoring and medical aided diagnosis(Zhang
et al., 2021). The classification of physiological signal data is indeed a key and worth
studying research task, e.g., sleep-stage classification based on EEG, arrhythmia detection
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based on ECG, etc. Since the excellent feature representation ability of deep learning, deep
learning-based approaches have recently been investigated for physiological signal classifi-
cation (Rim et al., 2020). For example, following convolutional neural networks (CNNs) in
image classification, CNN-based methods (Huy et al., 2019; Michael et al., 2020) have been
designed for the sleep stage classification of physiological signals. Inspired by the time un-
folding properties of recurrent neural network (RNN) including its variant (such as LSTM
and GRU), RNN-based methods (Zhang et al., 2019; Wang and Zhou, 2019) have been
used for physiological signal classification to effectively model temporal patterns. In addi-
tion, attention-based model (Eldele et al., 2021) has been proposed for physiological signals
classification to capture dynamic dependencies of data by using the attention mechanism.

However, there are certain limitations in most of these existing methods for physiological
signal classification. As a typical time series data, physiological signal data collected by
sensors with a specific frequency not only have temporal correlation, but also have long-term
temporal dependence and irregular time series oscillation. For example, a 30-second EEG
signal collected at a frequency of
100 Hz (i.e., 100 time steps sam-
pled per second) eventually forms )
a long-term sequence with 3000
time steps. Fig. 1 shows a case
of sampled EEG signal data. In e
Fig. 1, the upper image is a se- e
quence of 600 time steps in the o 160 200 o 40000 o0
EEG signal, and the lower im- '
age is a sub-sequence of 100 time
steps. From the figure, we can w0
observe some temporal character-
istics of such physiological signals
from the figure: (1) Comparing o
Sub-sequence 1 with Sub-sequence
2, the temporal dependence of the ’ » st ® 0
relatively stable Sub-sequence 1 is
easily ignored, due to the irregular
change trend of the long sequence;
and (2) When Sub-sequence 1 has
been amplified, it is clear that there are multi-scale irregular temporal correlations in this
sequence. The reason is due to signal value drastically fluctuates with time on different
scales. Although existing methods can model nonlinear relationship of physiological signals,
most of them cannot fully exploit the above-mentioned complex temporal characteristics of
physiological signals.

To tackle aforementioned limitations and challenges, we propose a novel deep learn-
ing model in this paper, called Multi-scale Progressive Gated Transformer (MPGT), which
can progressively learn data representation for physiological signals from different temporal
scales. Specifically speaking, we first construct a Multi-scale Temporal Features extraction
(MTF) module to focus on the raw signal sequence with different temporal ranges (i.e.
coarse- and fine-grained). Unlike existing methods, our MTF utilizes convolution kernels of
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Sub-sequencel N\ h M. 000000 somm-----c-

signal value

signal value

Figure 1: Multi-scale information among EEG signal
time series.
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different sizes to extract coarse- and fine-grained features of sequences and then map them
into embedding spaces of different granularities. Besides, MTF adopts pooling operations
to retain key time points and those trend changing points. The proposed multi-scale extrac-
tion provides a comprehensive encoding of long sequence at multiple scales, enabling the
model to effectively capture long-term dependencies. In addition, on the basis of long se-
quence processing, the irregular temporal relations of physiological signals at different scales
is further explored. We then propose a novel Progressive Gated Transformer (PGT) mod-
ule. PGT exploits two convolution-transformer encoders to capture temporal dependencies
from multiple embeddings. One of the two encoders is to learn fine-grained embedding
by capturing local fluctuations of signal sequence and another encoder is to learn coarse-
grained embedding by mining global variation trend of signal sequence. The two encoders
are bridged by a gated unit. In practice, the gated unit integrates fine-grained features
into coarse-grained features to progressively fuse different grained temporal information to
enhance data representation. The learned temporal representations are then fed into a
classifier module to produce the final classification results.
Our main contributions in this paper can be summarized as follows:

e We design a Multi-scale Temporal Feature extraction (MTF) to approach the com-
plex long-term temporal dependencies of physiological signal data. MTF projects
physiological sequences into embedding spaces of different granularities to capture
multi-scale temporal dependencies of the time series data.

e We propose a novel Progressive Gated Transformer (PGT) to mine and fuse irregular
multi-scale temporal information for physiological sequences. Each layer of PGT
consists of two convolution-transformer encoders and a gated unit, which can mine
local and global multi-scale temporal dependencies and progressively fuse multi-scale
information to enhance data representation.

e We conduct extensive experiments on three real-world datasets. Experimental results
demonstrate the superiority of our proposed model. In addition, the visualization
analysis is performed to verify the effectiveness of the proposed model.

2. Related Work
2.1. Physiological signal classification

As the maturity of sensor technology (e.g. the popularity of wearable devices) and the
rapid development of machine learning, physiological signal classification has attracted more
and more attention in recent years. Yang et al. (2018) designed a principal component
analysis network (PCANet) for feature extraction, and then exploited a linear support vector
machine (SVM) for ECG signal classification. Tuncer et al. (2019) combined discrete wavelet
transform (DWT) with a novel ingredient called 1-dimensional hexadecimal local pattern
(1D-HLP) for arrhythmia detection in electrocardiogram signals. However, these traditional
machine learning methods require hand-crafted feature extraction. In addition, most of
them cannot fully tackle and explore the complex nonlinear relationship of physiological
signal time series.
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Since the success of deep learning applied in other research domains (Fawaz et al., 2019),
deep learning-based techniques have also boosted significant improvements in physiological
signal classification. For instances, Huy et al. (2019) proposed a joint classification-and-
prediction framework based on CNNs for automatic sleep stage classification, and subse-
quently designed a simple yet efficient CNN architecture to power the framework. Michael
et al. (2020) designed a deep CNN architecture for automated sleep stage classification on
EEG and EOG signals. Saeed et al. (2020) adopted a novel architecture consisting of wavelet
transform and multiple LSTM recurrent neural networks for ECG signals classification on
wearable devices. To improve the generalization of the model, Lin et al. (2021) presented
a Multi-Branch Network to separate the background features and task features of EEG
signals for emotion recognition to achieve better model performance. In addition, Eldele
et al. (2021) presented a novel multi-resolution CNN and multi-head attention based deep
learning architecture for sleep stages classification on single channel EEG signals. Jia et al.
(2020) proposed a novel spatial-spectral-temporal attention based 3D dense network for
emotion recognition from EEG signals. Although deep learning-based methods effectively
extract the nonlinear relationship of physiological signals, they ignore the long-term depen-
dencies and irregular temporal correlations of physiological signals, resulting in insufficient
exploration of the complex temporal characteristics for physiological time series.

2.2. Transformer networks

Transformer (Ashish et al., 2017) based on self-attention mechanism has shown great power
in many fileds (Wen et al., 2022). For example, Zhou et al. (2021) studied the long-sequence
time-series forecasting problem and designed a solid Transformer-based model, called In-
former, to predict long sequences. George et al. (2021) presented a novel framework based
on Transformer encoder to learn the effective representation of multivariate time series.
Kolesnikov et al. (2021) split an image into a sequence of patches and designed a novel
model based on Transformer encoder for image classification. Chen et al. (2021a) proposed
a dual-branch transformer to learn multi-scale features from image patches of different sizes
to produce stronger image features for classification. Wu et al. (2021) introduced the con-
volution into Vision Transformer architecture to further improve the performance on image
recognition tasks in performance and efficiency. Chen et al. (2021b) designed the Spatial-
Temporal Transformer Networks consisting of the spatial-temporal Transformer encoder
and the temporal Transformer to model the spatial and temporal dependencies for trajec-
tories prediction. Xu et al. (2021) investigated a Spatial-Temporal Transformer Networks
to learn dynamical directed spatial dependencies and long-range temporal dependencies for
long-term traffic prediction.

Motivated by the powerful ability of Transformer for data representation, in this paper,
we explore Transformer and propose a Multi-scale Progressive Gated Transformer model to
learn temporal features at different scales for physiological signal classification.
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3. Method

3.1. Problem Formulation

Given a raw physiological signal time series S = {s1, 52, ..., 8;, ..., 8¢} € RY, t denotes the
number of time steps and s; is the signal value at the i-th time step. Our goal is to learn
an end-to-end deep neural network model to classify such a physiological signal time series,
formulated as follows:

Y = F(S|0) (1)

where Y € R is the final classification output distribution, C' denotes the number of class,
F denotes the proposed neural network model, and © is the parameters of the model.

3.2. Framework Overview

The overall architecture of the proposed MPGT model is shown in Fig. 2. The model mainly
consists of three modules: (1) Multi-scale Temporal Feature extraction (MTF) module,
which embeds the raw sequences at different temporal scales to obtain multiple embeddings;
(2) Progressive Gated Transformer (PGT) module, which learns informative knowledge
from multi-scale embeddings and progressively integrates them; and (3) Classifier module
that employs a fully connected layer and a softmax function to calculate the probability
distribution of each class for data.

3.3. Multi-scale Temporal Feature extraction

Physiological signal time series have a rich temporal structure over multiple time scales.
We also note that multi-scale learning has shown promising performance in other domains
(Wang et al., 2019; Qian et al., 2020). Therefore, we motivate and propose a Multi-scale
Temporal Feature extraction (MTF) module. As shown in Fig. 2, the MTF module (the
bottom part in Fig. 2) adopts coarse- and fine-grained feature extractors. Both two feature
extractors use the same network structure to encode the temporal information at different
scales into multiple embeddings.

We denote that the extracted features are different as the used convolution kernels are
with different scales. Convolution with large kernel size can capture relatively holistic fea-
tures while it may miss detailed (i.e., fine-grained) features. On the contrary, convolution
with small kernel size can capture fine-grained features more effectively. In our model, the
convolution with small kernel size is used to extract those high-frequency temporal fea-
tures of physiological sequences to produce fine-grained embeddings. The convolution with
large kernel size is utilized to extract those low-frequency temporal features of physiologi-
cal sequences to generate coarse-grained embeddings. We also apply pooling techniques to
preserve information at important time points and trends in sequences with different scales.
Next, we take fine-grained feature extractor as an example. The fine-grained feature extrac-
tor is a network stacked by a Conv1D(64, 50, 6), a Maxpooling, a ConvlD(128, 8, 1) and an
Avgpooling. The ConvlD (64, 50, 6) refers to using 1D convolution layer with 64 filters, a
kernel size of 50 and a stride of 6. Maxpooling is the max pooling layer. Avgpooling is the
average pooling layer. Given the original physiological signal sequence S € R?, the process
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Figure 2: The overall architecture of Multi-scale Progressive Gated Transformer (MPGT)

of feature extraction can be formulated as:
X1 =GELU(W1 %S +b)
X9 = Mazpooling(X;)
X3 =GELU(W3 % Xg + b3)
Xy = Avgpooling(Xs)

where W1 and Wy represent convolutional kernels, b1 and by are their biases, and the symbol
* denotes convolution operation. Xy € R™*4s is the extracted fine-grained embedding,
where n is the number of features, and d is the dimension of features. Activation function

use Gaussian Error Linear Unit (GELU).

Similarly, coarse-grained embedding X, € R™*% is achieved by sampling low-frequency
features through a coarse-grained feature extractor, which is composed of a Convl1D(64,
400, 50), a Maxpooling, a ConvlD(128, 7, 1) and an Avgpooling. In addition, to inject
the temporal-position information of sequence, we add relative positional encodings to the
embeddings of different granularity respectively, which is helpful in extrapolating to long

sequences (Dai et al., 2019).
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3.4. Progressive Gated Transformer

There are irregular and drastic oscillations in physiological signals at different scales. In
order to effectively characterize the irregular temporal dependencies of physiological time
series, we propose a Progressive Gated Transformer, as shown in the middle part of Fig. 2.
Our PGT module utilizes two convolution-transformer encoders to learn coarse- and fine-
grained information respectively in multiple embeddings. Meanwhile, we design a gated
unit between the two convolution-transformer encoders to progressively aggregate informa-
tion of different granularities. In practice, we stack multiple PGT modules to learn more
informative knowledge at different scales.

The convolution-transformer encoder, which introduces convolution operations on the
basis of the transformer encoder architecture, aims to capture the irregular vibration rela-
tionship of physiological signal. It is composed of a multi-head self-attention layer, a tem-
poral convolution network module and two feed forward network modules, each of which is
set with residual connection and LayerNorm to help build deep model.

Multi-head Self-Attention (MSA). Self-attention mechanism is a core of Trans-
former, which can effectively capture the interaction within the sequence to learn crucial
context information. Given an input sequence data X € R™ ¢ Self-attention mechanism
first linearly projects the data into three vectors, i.e., the quires Q = WX € R™*  the
keys K = W, X € R™% and the values V = W,X € R"*%  where W,, Wi, W, are the
learnable parameters and n is the number of input features. d, di, d,, denote the dimensions
of inputs, keys (or queries) and values, respectively. Then, the single head self-attention
operation is conducted on query-key-value triplet {Q, K, V}:

T

Vi,

For multi-head self-attention, the queries, keys and values are split to p parts i.e, [Q1, ..., Qp],
K1, ....,K,] and [Vy,..., V,]. They are performed the attention function in parallel and the
output features of each head are concatenated to obtain the final output:

MSA(X) = Concat(Hy, ..., H,) W, (4)

H = softmax( )V (3)

where Concat() is the concatenation operation, and W, is the linear projection parameters.

Temporal Convolution Network (TCN). In the convolution-transformer encoder,
MSA plays a leading role in capturing global context information and TCN can extract
local features. Inspired by (Gulati et al., 2020; Yan et al., 2021), we employ a temporal
convolution network to plug convolution operation into the structure of transformer. As
shown in Fig. 3, the TCN consists of three 1D convolution layers (ConvlD), two batch
normalization layers (BN) that are deployed following the convolution to aid training deep
model. In addition, to improve the ability to model signal sequences, the Gated Linear
Units (GLU) are equipped behind the first two convolution layers to replace the sigmoid
activation function.

Feed Forward Network (FFN). Feed forward network built with two fully con-
nected layers and Swish activation function is applied subsequently after the multi-head
self-attention layer and temporal convolution network for feature transformation and non-
linearity. The FFN layer is formulated as below:

FFN(X) = Wy(Swish(W1X + b1)) + bo (5)
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Figure 3: The structure of Temporal Convolution Network

In each Progressive Gated Transformer (PGT), there are two branches in which one
branch operates across the coarse-grained temporal embeddings and another one performs
on fine-grained temporal embeddings. For the fine-grained embedding X, we utilize a
convolution-transformer encoder to explore the temporal relation of local irregular fluctua-
tions in physiological signal. The learning process of each PGT is formulated as follows:

| = MSA(LN(X;

(6)

where LN() is the LayerNorm used for stable training and faster convergence, X}c is the
output of fine-grained features in the first-layer PGT. More generally, we denote that X’jc
is the output of fine-grained features in the i-th layer PGT.

As previously analyzed, there are some subsequences with relatively stable trends but
containing important information in the long-term physiological signal time series. If the
coarse- and fine-grained features are learned separately, some important information may be
missing. Therefore, we consider fusing the learned fine-grained features into coarse-grained
features, which helps to amplify the effects of those subsequences with smooth trends.
The most straightforward method is to simply add the fine- and coarse-grained features.
However, the direct addition of the features of different scales easily leads to information
redundancy, which degrades the performance. We thus design a gated unit whose pipeline is
illustrated in Fig. 4. Firstly, the learned fine-grained feature X} is projected to the coarse-
grained feature space by two mappings. Meanwhile, the tanh and sigmoid functions are
adopted to guarantee the nonlinear dependence of features and control which information
needs to be fused. Secondly, the learned attention vector Ag is used to update the fine-
grained features by element-wise product. The calculation process can be expressed as the
following formulas:

A; = tanh(WiX] + by)
A, =0(W A, +b,) (7)
Z; = Ay ® (WX} + by.)

where Z} is the updated fine-grained feature in the first layer PGT. ® denotes the element-
wise product between matrices.

Then, the updated fine-grained feature is integrated into coarse-grained embedding X,
by element-wise addition. Next, the fused coarse-grained representation is fed into another
convolution-transformer encoder to learn the global variation trend of the sequence. The
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Figure 4: The pipeline of the gated unit

process can be formulated as follows:

X, =X.®Z}
X! = MSA(LN(X,)) +
X" =FFN(LN(X.))+ X’ (8)

X" = TON(LN (X)) + X"
X! = FFN(LN(X")) + X"

where @ is the element-wise addition between matrices, X} is the output of coarse-grained
features in the first-layer PGT.

Finally, to better classify physiological time series, we concatenate the coarse-grained
features focusing on sequence variation trends and the fine-grained features concentrating
on time point fluctuations for physiological signal representation enhancement. The final
representation is denoted as X f;,q1 = XL, X%], where X and X]Lc are the output of coarse-
and fine-grained temporal features in the last PGT module.

3.5. Classification

In the end, we construct a classifier using a fully connected layer with a softmax activation
function (see the top part in Fig. 2). The classifier takes the final learned representation
X tinal as input to calculate the probability distribution of the class and outputs the clas-
sification result. The proposed model is optimized by minimizing the cross-entropy loss
between the true class distribution and the predicted class distribution, formulated as:

C
Loss = Zyi log(y:) 9)
i=1

where C' is the number of classes, y; is the true class distribution and y; is the predicted
class distribution.

4. Experiments
4.1. Datasets and Evaluation Metrics

To verify the validity of the proposed model, three real-world physiological signal datasets
are used to evaluate the performance of our model. The lengths of EEG and ECG samples
are 3000 and 256 time steps, respectively. Table 1 shows the summary of the three datasets.
Below is a brief introduce to each dataset.
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Table 1: Summary of Three Physiological Signal Datasets

Dataset Signal Type Train Samples Test Samples Classes
Sleep-EDF-20 EEG 33846 8462 5 (8285/2804/17799/5703/7717)
Sleep-EDF-78 EEG 156383 39096 5 (65951/21522/69132/13039/25835)
MIT-BIH ECG 22827 4526 6 (11167/6731/3612/2228/787/2828)

Sleep-EDF-20": Sleep-EDF-20 collects the whole-night polysmnographic (PSG) sleep
recordings files from 20 subjects. Each PSG file contains two EEG channels (from Fpz-Cz
and Pz-Oz electrode locations), one EOG channel (horizontal) and one EMG channel (from
submental chin). Following previous studies (Eldele et al., 2021), we select the EEG channel
from Fpz-Cz with a sampling rate of 100 Hz as the raw single-channel signal time series.
The data is divided into five patterns: W, N1, N2, N3 and REM, which are corresponding
to the wake stage, three types of non-rapid eye movement, and rapid eye movement stages.

Sleep-EDF-78%: Sleep-EDF-78 collects the whole-night polysmnographic (PSG) sleep
recordings files from 78 subjects. The sampling settings are the same as Sleep-EDF-20.

MTI-BIH?: MIT-BIH dataset is used for arrhythmia detection and contains 48 records
of individuals from different genders and ages. Each record is a 30-minute long ECG
recording of heartbeat signals, with a sampling frequency of 360 Hz. In this work, we sample
the raw single-channel arrhythmia signal time series with six classes, i.e., N (normal beat),
A (Atrial premature beat), Ventricular (Premature ventricular contraction), F (Fusion of
ventricular and normal beat), Paced (Paced beat) and Noise (no kind of heart beat).

In this paper, we utilize Accuracy (ACC) and Fl-score to evaluate the performance of
each model. Given the True Positives (TP), False Positives (FP), True Negatives (TN) and
False Negatives (FN), ACC and F1l-score are defined as follows:

TP +TN
ACC = 10
TP+ FN+FP+TN (10)
2x PxR
F1- = 11
score PiR (11)
where P is the Precision = ijjripFP, R is the Recall = TPF‘CFI;,N.

4.2. Baselines and Experimental Setup

In our experiments, we compare the proposed model MPGT with eight baselines, includ-
ing CNN(Lecun et al., 2015), LSTM(Hochreiter and Schmidhuber, 1997) and MCNN(Cui
et al., 2016) that are neural network-based methods, Transformer(Ashish et al., 2017), In-
former(Zhou et al., 2021) and GTN(Liu et al., 2021) that are self-attention based methods.
In addition, we compare two specific physiological signal classification methods, AttnSleep
(Eldele et al., 2021) and HADM (Amin et al., 2021), which are applied to sleep staging and
arrhythmia detection respectively.

1. https://www.physionet.org/content/sleep-edf/1.0.0/
2. https://wuw.physionet.org/content/sleep-edfx/1.0.0/
3. https://www.physionet.org/content/mitdb/1.0.0/
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For Transformer and Informer, we first utilize two convolution layers to encode features
in the raw sequence, then use the Transformer encoder to learn temporal dependencies,
and finally employ fully connected layer to obtain classification results. GTN uses two
tower structure to model channel-wise and step-wise correlations. We then use it to learn
temporal dependencies at different scales for comparison. We built our models on Ubuntu
16.04 using PyTorch and trained all models on a NVIDA TITAN XP 32GB GPU. All
experiments were run ten times and their averages were recorded to reduce the effects of
experimental randomness.

4.3. Performance Comparison

In this section, we evaluate the proposed MPGT and the aforementioned eight baseline
methods on three real-world datasets. The comparison results in terms of ACC and F1-
score are shown in Table 2. From the results, we make the following observations:

1. The performance of the models with multi-scales is superior to those models without
multi-scales. In particular, MCNN achieves better performance than CNN and LSTM.
GTN and MPGT outperform Transformer and Informer. It shows that multi-scale
learning can capture richer features of long sequences.

2. Self-attention based models (i.e., Transformer, Informer, GTN and AttnSleep) out-
perform those CNN and RNN based models. This indicates that self-attention mech-
anism can better learn irregular long-term dependencies of sequences by exploring
correlations within the data.

3. Our MPGT has better performance than GTN in terms of ACC and Fl-score. The
reason is due to MPGT progressively integrates features from different scales to obtain
more robust representations.

4. Compared with methods targeting specific physiological signals (i.e., AttnSleep and
HADM), MPGT achieves better performance. This is due to the progressive fusion
of multi-scale features during learning process.

In conclusion, our MPGT outperforms these state-of-the-art methods comprehensively.
The results indicate that our proposed model can capture more informative features and
obtain more discriminative representations for physiological time series classification.

4.4. Ablation Study

To demonstrate the effectiveness of the design of each module in our model, we conduct
ablation experiments with several variant models. The variants of MPGT are set as follows:

e MPT: We remove the gated unit in MPGT, which directly adds fine-grained features
into coarse-grained features.

e MPT-1: The gated unit is removed and the fine-grained features are not added into
coarse-grained features (they are just concatenated at the last layer).

e MPGT-1: Instead of concatenating the features of different granularity, we directly
use the learned coarse-grained feature representation for classification.
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Table 2: Performance comparison results of the proposed model and baselines

Dataset Sleep-EDF-20 Sleep-EDF-78 MIT-BIH

Method Fl-score ACC Fl-score ACC Fl-score ACC
CNN 72.13 76.38 70.13 77.16 84.17 86.75
LSTM 72.35 75.23 69.66 76.89 85.23 87.32
MCNN 73.95 80.04 71.65 78.37 85.73 90.11
Transformer 77.52 84.01 74.65 80.52 89.67 95.89
Informer 77.09 83.99 74.35 82.35 89.16 96.13
GTN 77.84 84.30 74.84 81.14 90.20 96.32

AttnSleep 78.01 84.41 75.06 81.31 - —
HADM - - - - 90.72 96.53
MPGT 80.50 86.95 77.82 83.43 92.86 98.92

e MPGT-T: In this variant, the convolution-transformer encoder is replaced by the
conventional Transformer encoder.

e MPGT-C: We replaces our convolution-transformer encoder with Conformer (Gulati
et al., 2020), which is also convolution-augmented transformer structure.

Fig. 5 illustrates the classification performance of different variant models. From the
figure, we can see that: (1) The ablation of the gated unit from MPGT results that MPT
produces redundancy in the process of progressively fusing information of different granu-
larities, which makes its performance significantly inferior to MPGT; (2) Although MPT-1
is slightly better than MPT, it still shows poor performance. This is because it does not
sufficiently learn effective information at different scales. (3) In the process of progres-
sive learning, MPGT-1 has fused features of different granularity, which can effectively
avoid some important subsequences being ignored, even if their change trends are stable.
Note that only using coarse-grained representation to classify may cause some critical time
points in the sequence to be lost, which also degrades the model performance. (4) Com-
pared with the conventional Transformer encoder, the convolution-enhanced Transformer
structure can learn more informative knowledge. This results that MPGT and MPGT-C
outperform MPGT-T; and (5) MPGT-C is competitive with MPGT, because they are both
the convolution-Transformer based architecture.

100 100

- PT a8 = VPT 38

. MPT-1 94 . MPT-1 94

= VMPGT1 5 54 W MPGT1 o3

mm MPGTT 5 g8 B MPGTT 3 88
g =

s MPGT-C S 84 MPGT-C 8 84

78 82

MpGT % B3 MPGT <X &2

78 8

76 76

ic 74

7 7

Sleep-EDF-20Sleep-EDF-78  MIT-BIH Sleep-EDF-205leep-EDF-78  MIT-BIH
Dataset Dataset

Figure 5: Evaluation of different network modules on all datasets. (Best viewed in color)



SHORT TITLE

4.5. Parameters Analysis

In our model, there are mainly two hyperparameters, namely the number of heads p in
the multi-head self-attention mechanism and the depth of PGT modules L. We set p to
[2,4,6,8,10] and L to [1,2,3,4,5] respectively to evaluate the performance of the MPGT
model. The parameter study results are shown in Fig. 6. From the results, we can observe
that our model is not sensitive to the number of heads. In our work, we set the number
of heads as 4 because the model performs slightly better when the number of heads is 4.
In addition, we can see that as the number of modules increases, the model performance
initially improves before it arrives at a peak (say, the number of PGT modules increases to
3). After the peak, the model performance begins to decline and then stabilize. Therefore,
in our experiments, the number of PGT modules is set to 3.

98 08l g T 98 98 ._’/./‘\._.
% 96 % 9%
94 94 94 94
2] ey . 2 @ .’/\'\. 2
—~ 9% 90 —~ 9% 90
§ 88 —&— Sleep-EDF-20 5 8 § 88 —=— Sleep-EDF-20 g 88
g 8 —— SleepEDF-78 | & 86 e e 5 86 —a— Sleep-EDF-78 | & .,/_4/.\-—-
84 S & S 84 S a4
% g —e— MITBIH e — 0 . | % —e— MITBIH et "_‘/‘\‘__‘
80 ./‘\.’__.%. 80 “ 80 .’__./'\.——. 80
78 — 781 —m— Sleep-EDF-20 78 781 —m— Sleep-EDF-20
I 61— Sleep-EDF-78 I 61— Sleep-EDF-78
7 74 7 74
72 72| —o— MITBIH 72 72| —o— MITBIH
70 70 70 70

2 a 6 8 10 2 4 6 8 10 i 2 3 a 5 1 2

3 a 5
Head Head Depth Depth

Figure 6: Evaluation in terms of using different numbers of heads and depth

4.6. Visualization Results

Fig. 7 shows the visualization results of attention maps at different granularities on Sleep-
EDF-20 dataset, where the coordinates denote the sequence lengths of the encoded coarse-
and fine-grained features, respectively. As can be seen from the figure, the coarse-grained
attention map is relatively sparser. This phenomenon indicates that the learned coarse-
grained attention only concentrates on the global change trend of the sequence, and gives
more weights to a few crucial subsequences. While the fine-grained attention map is more
intensive, this result shows that the learned fine-grained attention tends to focus on the
details of the sequence and assign more weights to significant time points in the sequence.
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Figure 7: Visualization of coarse-grained attention (left) and fine-grained attention (right)
at different granularity. (Best viewed in color)
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5. Conclusion

In this paper, we proposed a novel Multi-scale Progressive Gated Transformer model for
physiological signal classification. To capture more sufficient temporal dependencies, we
first designed a multi-scale temporal feature extraction module to embed physiological sig-
nal sequences into different embedding spaces. We then constructed a progressive gated
transformer to learn temporal correlation at different scales of physiological serial sequence
in a bridge manner. Extensive experiments on three real-world datasets show the effective-
ness of the proposed model. In future work, we plan to improve our model for multivariate
or multi-channel time series data, or even spatial-temporal data.
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