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Appendix A. Algorithms to Extract Subregions

Algorithm 1: Subregion Selection with Random Forest

1: Input: Search Space X ∈ Rn; candidate selected by global Bayesian Optimization
xg, random forest model f̂ with ntree trees; minimal number of points stored in the
subregion nmin

2: Output: subregion Xsub extracted from X
3: Initialization: Dsub ← X ; a list of root nodes S of RF f̂ , a nodes indicator

I ← [False] ∗ ntrees indicating that if we will stop deeper from the node.
4: while no element in I is False do
5: for each node sp ∈ S do
6: s′p ← child(sp) with xg ∈ s′p
7: Let Ds′p be all observed points in s′p
8: if |Dsub ∩ Ds′p | > nmin then
9: s← s′

10: Dsub ← Dsub ∩ Ds′

11: else
12: Ip ← True
13: end if
14: end for
15: end while
16: Return: An extracted subregion Xsub

Algorithm 1 describes how a subregion is extracted with the help of a RF. Here we
illustrate a minimal toy example in Figure 1. We train an RF with two trees which split
the space accordingly. Suppose that at least nmin = 3 points are required to be included in
the subregion and the subregion grows from xg (marked in red). We note that, here xg is
not an actual sampled point, but it only indicates the position that the subregion should
contain. We first step from a0 to a2 as it contains xg and hence D, E and F are excluded
from the subspace. Then we split the subspace with the split of b0, where all the points are
preserved. We further go deeper into the first tree and arrive at node a3, in which case only
3 points lay in the subregion and we stop exploiting tree A. However, for tree B, as each
split will not further shrink the subregion or exclude the existing points from the subregion,
we arrive at leaf node b5 and stop further shrinking the subregion.
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Figure 1: Subregion selection. The final extracted subregion is illustrated in the red-shaded
region.

Appendix B. Implementation Details

We start with a Gaussian Process that is trained on all the previous evaluated data points
until nmin points exist in the dataset. Then we start to extract a subregion, as described in
Algorithm 1. It makes no sense to introduce LGPGA if the number of fo is smaller than nu.
In such a case, we still train a full GP model on all the previously evaluated points but only
optimize the acquisition function values in the subregion. If we have more observations, we
apply LGPGA to reduce the potential computation time.

B.1. LGPGA Details

Two sets of LGPGA hyperparameters need to be optimized: the kernel hyperparameters
and the position of inducing points. Comparing with inference time, we optimize these two
sets of hyperparameters in an inverse order: we first train a GP model to fit fi to get the
optimized kernel hyperparameters; thus LGPGA captures the local data distribution inside
the subregion. We then train a sparse GP to fit fo. Specifically, we first train a vanilla GP
model to fit fi to acquire the kernel hyperparameters. Then we use this optimized kernel
to initialize a sparse GP and keep its kernel hyperparameters fixed, i.e. we approximate fo
by only optimizing the position of the inducing points. The hyperparameters of LGPGA
thus captures both fi (the kernel hyperparameters) and fo (the inducing points positions).
We apply variational GP Titsias (2009); Hensman et al. (2013) to approximate fo with its
hyperparameters optimized with natural gradient descend Salimans et al. (2017). We train
the sparse GP to approximate the predictive variational evidence lower bound (ELBO),
as proposed in Jankowiak et al. (2020). A further advantage of a variational GP is that
it allows stochastic variational inference (SVI), i.e. we could scale variational GP to even
larger dataset as the number of evaluations grows. However, in this paper, we only consider
batch optimization.

We set number of inducing points to be at least min(2× ndims, 10) and it grows linearly
as number of total evaluations grows (min(nD

20 ) where D denote all the previous evaluations)
and up to 50 points.
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B.2. BOinG+ Details

When working with larger budgets (e.g. larger than 500 evaluations), as Random Forest
might converge to a local minimum, we combine TuRBO Eriksson et al. (2019) and BOinG
in the following ways: we start with BOinG and set a failure counter cfail. We increase it
every ndim times when we have not found a better configuration or decrease it if a better
configuration was found. The probability of switching to TuRBO is computed as:

pswitch = 0.1 ∗ cfail (1)

As BOinG potentially acts as an exploitation mechanism, we will let TuRBO focus
more on exploration: we randomly sample 20 configurations Xrandom ∈ X and extract their
subregions accordingly with Algorithm 1. We take the subspace Xsub with the largest volume
and build a TuRBO optimizer inside Xsub. The TuRBO optimizer is initialized with the
points inside this subspace. Eriksson et al. (2019) restarts TuRBO if the length of the
subregion is smaller than 2−7. We restart TuRBO if the length of the subregion is smaller
than 2−4 instead to allow more repetitions. Similarly, we adjust the probability of switching
to BOinG with Equation 1. However, if TuRBO finds a better configuration, we switch back
directly to BOinG for further exploitation. Each time when we switch between BOinG and
TuRBO, we halve their failure counts cfail accordingly to avoid too frequent switching.

Appendix C. Experiments Details

All the GP-related models use Mátern 5/2-kernel. We set the number of inducing points nu :=
min(10, 2 · d). Both BOinG and full GP are implemented with GPyTorch v.1.2.1 Gardner
et al. (2018); Balandat et al. (2020). RF and acquisition function optimizers of the above-
mentioned BO models are implemented in the framework of SMAC3 v1.0.1 Hutter et al.
(2012); Lindauer et al. (2022)1, where a combination of random and local search for the
optimization of the acquisition function is implemented.

We ran all methods multiple times with different random seeds on 4 Intel Xeon E5 cores
running openSUSE Leap 15.1. 2

For Adult and Cartpole problems, we allow 2 ·ndims initial points and they are initialized
with a Sobol sequence, except for TuRBO and LA-MCTS. The deterministic Sobol sequence is
not applicable to TuRBO and LA-MCTS since they require the randomness by initialization
to restart with different points. All the optimizer runs are repeated 30 times.

The PPO agent in the CartPole benchmark is implemented by Tensorforce Kuhnle et al.
(2017) and the environment is implemented in OpenAI gym Brockman et al. (2016). For
this benchmark, we optimized the reward value achieved by the agent after a maximum
of 200 episodes or 6000 steps—whichever was reached first. The final performance is the
mean reward of 20 episodes by the trained agent. To reduce the impact of noise, for each
hyperparameter configuration, we repeatedly evaluate 9 runs and return the mean value of
the final cost value.

Lunar Lander and Robot Pushing tasks are applied in Eriksson et al. (2019). We set
the same search space as TuRBO did3 due to the large amount of time required for each

1. https://github.com/automl/SMAC3
2. To ensure reproducibility, our code is publicly available at https://github.com/automl/SMAC3
3. https://github.com/uber-research/TuRBO
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evaluation. We only run 20 repetitions for these two benchmarks. For the lunar lander
problem, we allocate a budget of 1500 function evaluations and for robot pushing, a budget
of 3000 function evaluations. .

Appendix D. Ablation Study

Given the various decision choices and additional hyperparameters introduced by BOinG,
here we evaluate how different design choices affect the performance of BOinG.

D.1. LGPGA vs. GP

Figure 2: Ablation Study on different choices of GPs on (left) the cartpole benchmark and
(right) the adult benchmark.

We first study the extra benefit that a LGPGA brings to BOinG. In addition to LGPGA,
we train a GP model only with the evaluations inside the subregion (local GP) and another
GP model that is trained with all previous evaluations but the candidates are restrained
to be selected from the subregion(full GP local). We evaluate the local GP models on the
cartpole problem.

The result is shown in Figure 2. Both LGPGA and full GP local has better final
performances compared to a local GP. However, consider the potential benefit that a
LGPGA can bring (it requires less resources), we still suggest to use LGPGA in BOinG.

D.2. Number of points inside subregion

BoinG introduces a special hyperparameter: nmin, the number of points inside the subregion.
nmin determines the size of the subregion to be explored in the next stage. Setting this
value larger (e.g. to infinity) makes BOinG closer to a GP and thus requires more resources;
reducing this value (e.g. until 0) leads BOinG to behave as an RF. As RF is often considered
as a poor extrapolator, a BOinG with a small subregion might easily fall into a local
minimum. Here we do an ablation study on nmin: BOinG i in denotes a BOinG Optimizer
that contains at least i · d points inside its subregion.

The result is shown in Figure 3. For the Adult task, all the BOinG-variation has similar
performance. However, for the cartpole task, BOinG 3 in achieves a better reward in the
beginning but is then surpassed by BOinG 5 in; BOinG 7 in only starts to outperform a
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vanilla GP after ≈ 60 evaluations, which might be too late for a problem with 100-evaluation.
We consider 5 · d as a plausible number of points kept in the subregion.

Figure 3: Ablation Study on nmin (Bottom) on (left) cartpole benchmark and (right) the
adult benchmark.

D.3. The choice of acquisition function at the global level

Figure 4: Ablation Study on the choice of the acquisition function at the global level on
ackley (Left) and levy (right) function.

Instead of the default setting of logEI Hutter et al. (2012), we apply vanilla EI as the
acquisition function at the global level on synthetic functions. These synthetic functions
usually do not fit the requirement of ”heavy-tailed cost distributions” Lindauer et al. (2022)
and possess several local minima that an optimizer might easily fall into. Applying EI
allows the optimizer to explore the unknown regions more and thus provides the optimizer a
higher probability to find the global optimum. The result is illustrated in Figure 4. BOinG
equipped with EI as the acquisition function at the global level generally has a better any
time performance, especially on the Ackley benchmark. However, Levy has a large flat
region near the optimum hence the benefit of replacing LogEI with EI is not so significant.

D.4. BOinG+ vs. vanilla BOinG

In Section 3.3, we proposed to randomly switch between BOinG and TuRBO depending
on their results accordingly. Here we will study if BOinG+ achieves a better exploitation-
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exploration tradeoff than TuRBO. As we restart TuRBO earlier to allow more exploration, we
first check if this strategy helps TuRBO to find a better configuration. According to Section
3.3, we restart TuRBO if the length of the subregion is smaller than 2−4, called TuRBO 4.
Additionally, we will study the extra benefit that BOinG+ brings to BOinG and TuRBO, we
compare it with vanilla BOinG where BOinG never switches to TuRBO (BOinG Vanilla) and
a BOinG+ version where TuRBO never switches to BOinG (RF TuRBO). The results are
shown in Figure 5. Vanilla BOinG underperforms compared to the other variants. TuRBO 4
becomes more explorative in the very beginning but cannot dig deeper as it restarts too
early and is outperformed by RF TuRBO as it cannot capture the global data distribution.
BOiNG+ instead allows further exploitation and finds the best configuration in the end.

Figure 5: Ablation Study on BOinG+.

Appendix E. How LGPGA Guides the Search in Subspaces

To illustrate how LGPGA incorporates the information outside the subregion, we present
a toy example in Figure 6 to show how LGPGA handles heteroscedastic noise. The data
is generated according to Yuan and Wahba (2004) and follows a normal distribution with
mean: µ(x) = 2(exp(−30(x− 1/4)2)) + sin(πx2) and variance σ2(x) = exp(2 sin(2πx)). This
distribution has low noise level with larger x values and high noise level with smaller x
values. Here we only use our model to fit the distribution of the right side. We randomly
sample 50 points from [0, 1] and select the points indices from 35 to 45 as the points inside
the subregion. The predicted mean and variances are illustrated in Figure 6. Fitting a GP
on the entire data distribution (full GP) will not exactly describe the noise on the right part
of the data distribution. The GP fitting only the data points inside the subregion (Local
GP) and our LGPGA describe better the heteroscedastic noise inside the subregion.

Additionally, we illustrate how LGPGA influences the acquisition function value landscape
and guides the search.

We train full GP, local GP and LGPGA on the same data distribution. The subregion
is bounded by the rectangle. Without knowing the information of the points outside the
subregion, the local GP will have a large chance to sample the points on the top right of the
subregion for exploration. However, the high loss of the samples on the top right indicates
that it might not be a good choice to sample a new point in this direction, as illustrated by
the acquisition value loss landscape of the full GP model. However, LGPGA optimizes its
inducing points to approximate the distribution outside the subregion and we see that two
inducing points are located on the bottom left of the subregion while another two lay on the
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Figure 6: Predicted mean and variance of a Left: full GP Middle: local GP Right:
LGPGA. A LGPGA is utilized to fit the data points inside the subregion and still
model the overall data trend also at the subregion’s boundaries. We note that the
inducing points only contain the positional information D. We put them at the
bottom of the figure to to distinguish them from the training points.

Figure 7: Predicted EI value of different GP models, red rectangles are the boundary of the
subregion. From top left to bottom right: a GP model that is trained on all the
previous evaluations; a GP model that is trained to only fit the distribution inside
the subregion (the red rectangle); a LGPGA model trained with all the previous
evaluations; the loss landscape of branin function.

top side. Thus we could avoid unnecessary exploration on the bottom left and focus more
on the region near the optimum or the direction that is still not fully explored.
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Appendix F. Scalability

One drawback of a Gaussian Process is its cubic complexity with respect to the number of
the points ever evaluated. Similar to other local BO approaches Eriksson et al. (2019); Wang
et al. (2018, 2020), our approach alleviates this problem by developing a model only with
a subset of the previous evaluations. However, a local GP still scales cubically w.r.t. the
number of points inside the subregion (and does not capture the overall trend). Hence the
complexity of our algorithms mainly depends on the number of points inside the subregion.

F.1. Complexity of LGPGA

Figure 8: Left: fraction of subregion volume versus the entire region. Right: number of
points inside subregion versus number of evaluated points.

Assuming that the size of fo, fi and u are ng, nl and m respectively, the complexity of
fitting a model in the first and second stages are O(m2ng) and O((m+ nl)

3) respectively.
Predicting the mean and variance takes the complexity of O(m + ng) and O((m + nl)

2).
Oppositely, if we consider fi as a subset of u, then the complexity of fitting the models
increases to (O)(m+ nl)

2ng, while the complexity for predicting the mean and variance stay
the same.

Normally we havem≪ ng ≪ nl, although the posterior distribution needs to be computed
twice, we can still save a lot of resources by introducing LGPGA without loss of precision.
Additionally, a sparse GP can only be trained with fi and fo jointly, which might underfit
fi. Later we will show how different components of LGPGA emphasise different parts of
training data.

Figure 8 illustrates how the number of data points varies as the number of evaluations
grows. Here we take the evaluation result on the lunar lander problem as an example, where
ndims = 14 and thus the minimal number of points inside the subregion is 70. We could
see that the number of points inside the subregion stays nearly constant as the number of
evaluations grows. The subregion quickly shrinks after about 100 evaluations and hence our
local model could focus more on the most promising region. However, this trend does not
hold for the following evaluations. The subregion only shrinks smoothly in the following
evaluations, which will prevent BOinG from converging to a local minimum too early.

Figure 9 illustrates the time spent for a BOinG iteration as the number of evaluations
grows. Starting from the 200th evaluations on ackley 10D, BOinG takes less time in each
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Figure 9: Scalability Analysis, we note that we optimize GP’s hyerparameters with L-
BFGS Liu and Nocedal (1989) optimizer and repeat optimization for 10 repetitions
with different initial points on Lunar Lander (14D). Upper Left: time spent for
training different GP models. Upper Middle: Time Spent by BOinG and Full
GP for each BO iterations on Ackley (10D). Bottom: Time Spent for each BO
iterations on Lunar Lander (14D).

iteration compared to a full GP. From the bottom plot in Figure 9, we could see that BOinG
scales nearly linearly as the number of evaluations grows until up to 1500 evaluations.

Next we evaluate the saved resources and the additional overload that LGPGA brings to
global and local GP models. Again, we train 3 different models on the data that we obtained
when we optimize the hyperparameters on lunar task: full GP, local GP and LGPGA. Here,
the GP’s hyperparameters are optimized with 10 repetitions. The result is illustrated in the
top part of Figure 9. Compared to a full GP model, LGPGA requires much less resources
and scales nearly linearly as the number of the previous evaluations grows.

Appendix G. Will BOinG+ Give Better Suggestions compared to
TuRBO?

BOinG+ switches between TuRBO and BOinG randomly according to their failure counts.
In the ablation study, we show that BOinG+ has a better final performance compared to
different variation of TuRBO. However, it is still unclear where the incumbent configuration
comes from, i.e., if BOinG+ works as we expect: explore with TuRBO and exploit with
BOinG? To answer this question, we show the fraction of the incumbents’ origin as the
number of evaluations grows on the two tasks where BOinG+ is applied.

The results are shown in Figure 10. Depending on the task, the performances are quite
different. This shows that BOinG+ could adjust to different sorts of landscapes and not get
stuck at one single optimizer. The share of TuRBO reaches peak at roughly 500 evaluations
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Figure 10: Share of different incumbents’ origins

and then more incumbents are suggested by BOinG. Thus, as expected, TuRBO explores
more in the mid term of the optimization process and thus finds more incumbents during
this period; while BOinG exploits more in the most promising regions and thus gives more
incumbents at the end.
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