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Abstract

Because of its sample efficiency, Bayesian optimization (BO) has become a popular ap-
proach in dealing with expensive black-box optimization problems, such as hyperparameter
optimization (HPO). Recent empirical experiments showed that the loss landscapes of HPO
problems tend to be more benign than previously assumed, i.e. in the best case uni-modal
and convex, such that a BO framework could be more efficient if it can focus on those
promising local regions. In this paper, we propose BOinG, a two-stage approach that is
tailored toward HPO problems. In the first stage, we build a scalable global surrogate
model with a random forest to describe the overall landscape structure. Further, we choose
a promising subregion via a bottom-up approach to the upper-level tree structure. In the
second stage, a local model in this subregion is utilized to suggest the point to be evaluated
next. Empirical experiments show that BOinG is able to exploit the structure of typical
HPO problems and performs particularly well on various problems from synthetic functions
and HPO.

1. Introduction

Hyperparameter optimization (HPO) is considered to be a tedious, error-prone, and expensive
problem, but nevertheless crucial for achieving peak performance of a machine learning
algorithm on a given dataset (Bergstra and Bengio, 2012; Feurer and Hutter, 2019). Here
we assume that a user-defined cost function f is optimized over a space X of possible
hyperparameter configurations @ € X: &* € argmingcy f(x). Typical cost functions f
include, for example, accuracy for classification or RMSE for regression either over a hold-
out validation set or a k-fold cross validation on the training set (Thornton et al., 2013).
Since HPO is often treated as an expensive black-box problem, where only a few function
evaluations can be afforded and no gradient is available, Bayesian Optimization (BO;
Jones et al. (1998)) is a common and efficient approach for obtaining well-performing
hyperparameter configurations (Bergstra et al., 2013; Eriksson et al., 2019; Hutter et al.,
2012; Snoek et al., 2012).

However, previous work on HPO showed two important insights: First, the loss landscape
of a hyperparameter optimization problem is more benign than what one would expect (Klein
et al., 2017; Pimenta et al., 2020; Pushak and Hoos, 2018). In most cases, the loss landscape
in well-performing regions is quite flat and the best-performing region is fairly well defined,
see for example Figure 1. Given a limited HPO budget, we prefer to focus more on
identified best-performing regions and avoid unnecessary exploration in the later stages
of the optimization. Second, different surrogate models, used to trade-off exploration and
exploitation, perform well depending on the task at hand (Eggensperger et al., 2013).
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Inspired by recent advances in exploiting local
structures in BO (Eriksson et al., 2019; Wan
et al., 2021; Wang et al., 2020), we address these

insights by proposing a two-stage BO algorithm.

Our approach treats the optimization problem
on different scales: in the first stage, i.e. the
global level, we execute a full BO iteration with

all observed points that are evaluated previously.

Then we extract a subregion based on the trained
surrogate model and the suggested point given by
the global optimizer. In the second stage, i.e. the
local level, we perform another BO iteration with
only the points inside the subregion and train a
local surrogate model. Finally, we propose the

sample to be evaluated next on the local model.

Since we combine the best of two surrogates by
extracting the subregion on the global level from
a random forest (RF) and performing BO with a
Gaussian Process (GP) inside this subregion, our
robust HPO method is hence named as Bayesian
Optimization inside a Grove (BOinG).

Our contributions are as follows:
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1. We propose the two-stage Bayesian Optimization approach BOinG that allows locating

a promising subregion that should be explored more.

2. By using a scalable global model (e.g., RF), BOinG reduces the computational burden
on the local model (e.g., GP), which scales better to more iterations than vanilla

GP-BO.

3. We propose to augment the local Gaussian Process with global data distribution such
that the model captures the local loss landscape while preserving the influence of the

global data distribution at a minimal cost.

4. We show the robustness and state-of-the-art performance of BOinG on several synthetic
functions and HPO benchmarks for deep learning and reinforcement learning.

2. Related Work & Background

Bayesian Optimization (BO) became a promising approach in solving expensive black-box
functions (Shahriari et al., 2016). Recent progress on BO focuses on extending BO to large
scale and high dimensional search space (Eriksson et al., 2019; Kandasamy et al., 2015;
Wang et al., 2020, 2018). BO needs to employ a surrogate model to describe the possible
data distribution of the target function. A GP model is the commonly utilized surrogate
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model. The predicted mean and variance of a GP for given configuration « is given by

px) =k (K+0’T)"y (1)
o?(x) = K(z,z) — kI (K + o1) "'k, (2)

where k, is the covariance vector between @ and all previous observations, while K is the
covariance matrix of all previously evaluated points.

One drawback of GPs is its O(n?)-complexity for fitting the n previous observations
and O(n?) for predicting means and variances at query points. Several approximate models
such as sparse Gaussian processes (Candela and Rasmussen, 2005) have been proposed to
alleviate this issue by only using a set of additional points as inducing points to approximate
the data distributions. Sparse GP reduces the complexity to O(m?n) and O(mn) for fitting
and predicting respectively, where m is the number of the inducing points. Additionally,
the introduction of variational inference (Titsias, 2009) brings great benefit to training a
sparse GP, e.g., one can optimize a sparse GP w.r.t. each points individually (Hensman
et al., 2013), apply natural gradient (Salimbeni et al., 2018) for faster optimization, etc.
However, in exchange, sparse GP leads to poor variance estimation that could mislead the
optimizer (Shahriari et al., 2016). Despite its various complexity issues, GPs remain the
most widely used surrogate model in BO frameworks.

An alternative surrogate model is a random forest (RF) (Breimann, 2001; Hutter et al.,
2011). An RF predicts the mean and variance values from the empirical mean and variance
of each individual tree’s predictions. Thereby, the computation complexity for an RF to
fitting and prediction only scales to O(nlogn) and Ologn respectively. Additionally, the
tree structure allows it to easily deal with various data types as well as conditional hyperpa-
rameters, which is a common case in complex hyperparameter spaces. Still, RF’s empirical
mean and variance predictions might cause poor variance estimation when extrapolation is
required (Shahriari et al., 2016). Other GP-free methods include Tree Panzer Estimator
(TPE) (Bergstra et al., 2013; Tiao et al., 2021), Bayesain neural network (Perrone et al.,
2018) or likelihood-free methods (Song et al., 2022).

Partitioning the entire search space into several subregions with trees has been applied
to reduce the computational complexity (Wang et al., 2018) or work with heteroscedasticity
(Assael et al., 2014; Gramacy et al., 2004) problems. The inborn hierarchy structure of
trees makes them especially suitable for selecting the region that satisfies our requirements
(Wang et al., 2014). We follow the same idea in BOinG to build a single local model on the
most promising subregion that is obtained by the trees in an RF model.

Similar to BOiInG, trust region BO (TuRBO) (Eriksson et al., 2019) maintains a local
model and expands or shrinks the subregion based on the evaluated result of the suggested
point. TuRBO discards all previously evaluated observations if the subregion shrinks to be
smaller than a threshold. Thus, TuRBO does not make full use of the previous evaluations
and might sample repeatedly in the same region.

While TuRBO only considers BO as a local optimizer, McLeod et al. (2018) rely on
BO to find the most promising subregion and only exploits inside that subregion. BOinG
considers the exploration and exploitation trade-off at both global and local levels. Hence it
can quickly adjust to the local model while avoiding falling into local optimum too early.
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Algorithm 1 Two-stage Bayesian Optimization with BOinG

1: Input: a black-box function f; search space X’; predictive models fg and fl that fit
global and local observation distributions respectively; acquisition functions ay (for
global models) and «; (for local models); evaluation budget T

2: Output: global minimizer of f: x € argmin ¢y f()

3: Initialization: Initialize data X(© = {(z(® f(2(™))}Ninit that contains both initial

configurations and their evaluations
4: fort=1,2,---T do
fit global model fg(,t) on X (1)
select a candidate point x4

Ty € argmaxy y oy (x; X (-1 fét))

with  global

acquisition

function  ay:

:  extract a subregion Xg,;, € & based on global candidate x, and model fét)
8 fit local model f; with the points inside the subregion X; N e X together with

the points outside the subregion X(()tfl)

9: determine final

10:  query y® = f(w(t))

11:  update data: X @)  X(E=1) {<m(t), f(gc(t)»}

12: end for
13: Return: @ € argming,y f(x)

local

— XD x (Y
1

sampling point based on

QNS argmaxey oy (x; Xi(t_l),XO(t_l), fl(t))

acquisition function «y:

3. A General Approach of Two-Stage Bayesian Optimization

Algorithm 1 outlines the general idea of BOinG.
In each iteration, we first train a global surrogate
model fg (Line 5) on all observations X*=1 to es-
timate the possible regions that are worth being
explored. Using an acquisition function a4 on fg,
we select a promising configuration (Line 6) that
will guide the extraction of a subregion (Line 7; see
Section 3.1 for details). Then a new local surrogate
model fl is fitted to the observations inside the se-
lected subregion X;*~1) (see Section 3.2 for details).
Based on fl, the maximum of a local acquisition
function o; (Line 9) decides the next configuration
to be evaluated on the real cost function f (Line 10).

To be applicable to more complex problems with
more reasonable evaluation budgets T', the global
model needs to scale well to many observations, e.g.,
an RF is suitable (Hutter et al., 2011). Since the
number of points inside the subregion is rather small
and nearly constant to some degree, we can afford
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the cost of accurate but expensive models (e.g., a
GP) even if the number of the total evaluated points increases by a high degree.

Figure 2 (right) illustrates how the subregion and the suggested points vary during the
optimization. As the optimization progresses, the subregion extracted by the global model
gradually shrinks toward a potential optimum. BOinG mostly focuses on the regions that
look promising—here the lower part of the figure—and invests in more evaluations inside
these regions to focus on the exploration of the landscape. Please note that here BOinG
hardly explores the region that is shown to be sub-optimal (the upper and right part of the
image). It only takes a few evaluations in the beginning to indicate the unfitness of that
region. As a comparison, the GP being trained on the entire space invests many evaluations
on sub-optimal regions; even worse, the GP suggests lots of points on the boundary; see
Figure 2 (left). BOinG hence focuses more on the regions that seem to be more promising.
Thus, there is a good chance for our method to find a better solution within a limited budget.

3.1. Subregion Extraction with RF

We build the global model on all previous observations and then select the most promising
region to be exploited in the next stage. We propose to leverage the scalable and hierarchical
structure of a tree-based model, such as an RF, s.t. we can split the global search space into
subregions that contain sufficient data points to fit a local model.

First, we do a single BO iteration to determine a global candidate x, based on a global
model fg and acquisition function 4. Then starting from the root node of each tree and a
subregion Xy, = X , we iterate toward the leaf node that contains x, and get a split of
the current node. Each split will shrink Xy,; and exclude several points from X;j (the set of
points in the subregion). We repeatedly continue the split until it contains at least np,
points. We stop further exploring one node if that split makes the number of the points
in the subregion smaller than 7,,;,. Finally, we stop shrinking the subregion if we cannot
step further in any of the trees without keeping the number of the points in the subregion
greater than n,,;,. For the corresponding algorithm, we refer to the appendix.

One common issue arising from local BO is the size of the subregion. This region should
not be too large, otherwise, we would revert to a global optimization again. On the other
hand, if the region is too small, the global optimum might be excluded from the subregion
and we might only find a local minimum. Furthermore, the size of the subregion needs to
be adapted to the number of the previous observations. A local optimizer should ideally
contain all the previously evaluated points in the beginning and then gradually shrink to
regions that are more likely to contain the global optimum. BOinG achieves this by its
user-defined hyperparameter n,;,. If the n,;, points in the subregion are far from each
other, i.e., BOinG still explores a lot and is not certain about a promising region, the selected
subregion will be fairly large. In contrast, if the n,,;, points in the subregion are near to
each other, i.e., BOinG has already found a promising region, the selected subregion will be
fairly small.

3.2. Fit Sub-Region with Gaussian Process

The global model suggests a subregion that is worth being further explored. We could then
utilize a GP on the points inside the subregion as an accurate model to describe the local
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data distribution. However, this could lead to proposed points on the boundaries of the
subregion (Oh et al., 2018), since it does not capture the overall trend of the data. So, a
compromise between fitting a GP on all observations and on only the observations inside
the subregion is required. To this end, we propose a local GP with an augmentation of the
global trend that fits all points within the subregion and in addition, efficiently approximates
the global data distribution.

We denote the points in the subregion and their function values as X; and fj; here i
refers to ”inside subregions”. Similarly, we abbreviate the points outside the subregion as
X, and f, respectively). Training a GP with X; and f; implicitly assumes that the prior
distribution of f; follows p(f;) = N (0,Kj;); on the contrary, when a GP model is built to fit
all the previous evaluated points, f, provides a prior for fj:

p(filfo) = N (ug 5, o5 5,) (3)
bty |t = kz,i(KO,o + ‘721)713’0 (4)
o, = Kii— k(Koo +0°I) 'koj (5)

However, computing the posterior distribution with Equation 4 and 5 for Xj is expensive
and inefficient if we aim for higher evaluation budgets. Luckily, we can make use of the fact
that the number of X, is much greater than the X; and most of X, are far away from the
subregion and thus have little influence on the subregion. Thus, we approximate Equation 3
with a much cheaper proxy: a Sparse GP (Candela and Rasmussen, 2005).

Sparse GPs introduce a set of latent variables u called inducing points so that training
points x and test points x, are conditionally independent given u. We apply the same idea
to approximate the posterior in Equation 4 and 5 and compute the posterior as a prior for
p(fi|fo). Since the local GP model is augmented with a globally approximated distribution,
our model is dubbed Local GP with Global Augmentation (LGPGA).

We illustrate the differ- u—f
ence between the Fully Inde- / / \\ / \\\
pendent Training Conditional fon, fir -+ fu fu for =+ fon, [
(FITC) (Snelson and Ghahra-
mani, 2006) on all observa-
tions and our LGPGA with
an approximation of the global
trend and exact fit of the
points inside the subregion in
Figure 3. We note that we can-
not simply consider LGPGA
as a special case of FITC with f; being a subset of u: in FITC, all the inducing points
receive the information directly from f,; while in LGPGA, f; only acquire the information
from f, through u that allows us to reduce the computation complexity even further (for
details, we refer to the appendix).

The joint distribution of LGPGA is then computed in the following way (with FITC to
approximate the global trend):

fo Qo,0—diag[Qo,0—Ko,o] Qo,i Qo,*
fi | ~ N Qio Kii K. (6)

Q*,o K*,i K*y*

Figure 3: A comparison between FITC (left) and
LGPGA (right). In FITC, test latent func-
tion values f, can only obtain the information
of f through the inducing variable u. While in
LGPGA, f, can directly obtain information from
the information from fj.

£
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where Qqp is defined as Ka uK; 1, Kup (Candela and Rasmussen, 2005).

The posterior ¢(f,|fo, f;) can be directly computed from Eq. 6 analytically. However,
analogous to the hierarchy structure of BOinG, here we compute its posterior in a 2-step
manner. First notice that since f; and f; have the same format in Eq. 6, we can regard them
as one single test input, in which case the whole distribution is equivalent to a standard
sparse GP. Hence we can easily compute the joint posterior distribution of f; and f, (here
we denote them as fy):

a(fylfo) = N(uy, of) (
v = Ky o SKaiA lyo (8
o7 = Kyy — Qi + Ky uSKuy (
Y = (Kuu + KuoA 'Kgo) ™!
A = diag[Koo — Qoo + Trgisel]

—~
—
(==

—_ Y Y N —

—~
—_
—_

Now we build another GP model with mean and variance prioritize by Eq. 8 and Eq. 9
respectively. Finally, the posterior of f, is computed by Eq. 1 and Eq. 2. In a nutshell,
the first stage aims at approximating the global data distribution f, with sparse GPs and
provides a prior that warm starts the full GP in the second stage. For detailed information
on how an LGPGA is trained and guides the search in subspace, we refer to the appendix.

3.3. BOinG+: BOinG with Local TuRBO for Huge Budgets

Since RF's can have poor uncertainty estimates, SMAC (Lindauer et al., 2022) adds additional
exploration by randomly sampling a new point with a certain probability and thus can
provably converge to the true optimum in the limit (Hutter et al., 2011). In BOinG, we
can also combine SMAC’s approach with the more explorative strategy of TuRBO: if we
cannot make further progress with BOinG, we gradually increase the probability of switching
to TuRBO instead of sticking to the subregion proposed by RF. To avoid unnecessary
exploration, similar to Wang et al. (2020), we only do a TuRBO search inside a subregion,
i.e. we randomly sample several points from X and extract the subregions X, around them
with the method proposed in Section 3.1. Since we are interested in stronger exploration,
we then select the subregions with the largest volume and thus with the smallest density of
observed points. Then we start a new TuRBO run within this subregion whose initial points
are the existing points in this subregion. Similarly, if we cannot make further progress with
TuRBO, we increase the probability of switching back to BOinG. For the details, we refer to
the appendix.

All in all, BOinG (and BOinG+) is introduced to alleviate the weakness of an RF model:
RF is a poor extrapolator and might fail to estimate the data distribution correctly in
the regions with lower density of evaluated points (Shahriari et al., 2016). Thus we build
another GP model in the vicinity of the point suggested by RF with lower evaluated budgets.
Because of the poor extrapolation abilities, we extend BOinG by random search with a
model-guided optimizer (TuRBO) for larger budgets where we can afford and potentially
need better exploration.
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4. Experiments

Experimental Setup As a baseline, we compare BOinG with RF and a GP that is trained
on all the previous evaluations. Since TuRBO! and LA-MCTS? are based on a similar idea of
leveraging subregions, we compare BOinG against these, using their original implementations.
LA-MCTS provides two ways of doing local optimization: BO and TuRBO; we present both
approaches in our experiments, dubbed LAMCTS-BO and LAMCTS-TuRBO. TuRBO allows for
batch BO; however, for a fair comparison, we only evaluate TuRBO-1 and set its batch size
to 1. Finally, we consider TPE (Bergstra et al., 2011) as another baseline.

SMAC implemented LogEI to model heavy-tailed cost distributions (Lindauer et al.,
2022), our global optimizer and the RF baseline follow the same implementation for HPO
problems. However, our local optimizer and the GP baseline will optimize EI instead in each
iteration as EI is considered one of the most popular choices of acquisition functions. Further
implementation details can be found in the appendix.? We empirically set the number of
included points of a subregion based on an RF as n,,;, := 5 - d, where d is the number of
dimensions of the target function.

4.1. Synthetic Function

We assessed the algorithms on the following functions: Branin (2D), Ackley (10D) and Levy
(10D). The input domain follows the suggestions by Surjanovic and Bingham (2013). All the
optimization processes are repeated 30x. These synthetic functions usually do not fit the
requirement of "heavy-tailed cost distributions”. We simply apply the EI acquisition function
instead of logEI on these functions at the global level (the first stage). (However, this setting
only works for the experiments in the synthetic functions. For the other experiments in this
paper, logEI is still considered as the acquisition function in the first stages)

Figure 4 shows that—as one might expect—GP-BO is a very strong approach for the
Branin and Levy function, while on the Ackley function, the GP is not able to capture
the high-dimensional, complex landscape well, and is outperformed by other approaches.
Among all the compared optimizers, BOinG is the only one showing a robust performance
on higher-dimensional problems, being always at least on par with the best optimizer.

4.2. Hyperparameter Optimization of ML Algorithms

Although synthetic functions are a nice sanity check, we designed BOinG with HPO in mind
and thus evaluated it on several HPO tasks.

We utilize BOinG to optimize the following hyperparameter benchmarks introduced
by Falkner et al. (2018), provided by HPObench* (Eggensperger et al., 2021): (i) Tuning
hyperparameter of a neural network surrogate model (ParamNet) for the Adult dataset
(Adult) with eight hyperparameters; (ii) Tuning seven hyperparameters of proximal policy
optimization (PPO) (Schulman et al., 2017) to learn the cartpole task. For the details, we
refer to the appendix.

. https://github.com/uber-research/TuRBO

. https://github.com/facebookresearch/LaMCTS/tree/master/LA-MCTS

. To ensure reproducibility, our code is publicly available at https://github.com/automl/SMAC3
. https://github.com/automl/HPOBench/

=W N
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Robot (Bottom Right). We show the mean performance and the standard error.
Larger is better.

Figure 5 (top) shows the result of different optimizers on both target algorithms. BOinG
achieves substantially better final performance on both benchmarks. Since BOinG shares
the same model as a full GP model at the beginning of the optimization phases (5 - d), it
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achieves nearly the same performance as a full GP in the first few iterations and is able to
identify the most promising region after ~ 60 function evaluations.

Additionally, as BOinG introduces a local model to reduce the complexity and BOinG+
solves the poor-extrapolator issue by RF, we could now study how BOinG scales to problems
with larger budgets. We optimize 12 hyperparameters of a heuristic controller for a lunar
lander implemented in the OpenAl gym (Brockman et al., 2016) and 14 hyperparameters of
a controller for the robot pushing problem (Wang et al., 2018).> Both tasks are applied by
Eriksson et al. (2019) and we set the same search space as TuRBO did.% The results are
shown in the lower part of Figure 5.

Although TuRBO and LA-MCTS-TuRBO are able to gain some advantage in the
beginning, BOinG+ is able to catch up and even outperform TuRBO and LA-MCTS-
TuRBO after 200 function evaluations on Lunar Lander. On the robot benchmark, BOinG+,
TuRBO and LAMCTS-TuRBO clearly outperform all the other methods, with a small
advantage for BOinG+. Overall, the results show the strong performance of BOinG even in
the large-budget setting.

5. Discussion and Outlook

In this paper, we proposed BOinG, a hierarchical approach that combines the best of a
random forest on a global optimization level and a Gaussian Process on a local level. The
underlying idea is that BOinG can better focus on promising subregions by having better
local models and pinpointing the optimum with fewer function evaluations. Empirical
experiments show that BOinG is a very robust approach and is able to outperform vanilla
BO and other local BO approaches on HPO problems.

Even though BOinG is a robust approach, i.e. combining the best of GP-BO and RF-BO,
GP-BO is often still the most efficient approach in low-dimensional spaces. Furthermore,
in higher-dimensional spaces, BO frameworks tend to suggest points near the boundary
(Oh et al., 2018) of the configuration space. Such points might not give the RF enough
insights about how to extract a subregion, i.e., the subregion might still be too close to
the boundary. Last but not least, BOinG’s combination of two surrogate models and two
acquisition functions might be brittle in some applications; however, in our experiments,
BOinG turned out to be surprisingly robust across different tasks.

Although we focused on RFs and GPs as upper and lower-level surrogate models, BOinG
can also be seen as a model-agnostic approach, which could adopt other surrogate models,
such as TPE. In future work, we plan to study whether we can benefit from a data density
estimation approaches such as TPE or non-axis-aligned splits (Wang et al., 2020) for better
guidance on the upper level. Another promising approach would be to combine Thompson
sampling for BO (Kandasamy et al., 2018) while maintaining multiple subregions (Eriksson
et al., 2019) to perform batched BOinG efficiently.

5. This task requires 10000 evaluations that might be too expensive for 'LAMCTS-BO’ so we omit 'LAMCTS-
BO’ here
6. https://github.com/uber-research/TuRBO
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